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Interacting dark energy, holographic principle, and coincidence problem
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The interacting and holographic dark energy models involve two important quantities. One is the
characteristic size of the holographic bound and the other is the coupling term of the interaction between
dark energy and dark matter. Rather than fixing either of them, we present a detailed study of theoretical
relationships among these quantities and cosmological parameters as well as observational constraints in a
general formalism. In particular, we argue that the ratio of dark matter to dark energy density depends on
the choice of these two quantities, thus providing a mechanism to change the evolution history of the ratio
from that in standard cosmology such that the coincidence problem may be solved. We investigate this
problem in detail and construct explicit models to demonstrate that it may be alleviated provided that the
interacting term and the characteristic size of holographic bound are appropriately specified. Furthermore,

these models are well fitted with the current observation at least in the low redshift region.
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I. INTRODUCTION

Recent astronomical observations indicate that our
Universe is currently undergoing an epoch of accelerated
expansion [1-6]. Following the standard Friedmann-
Robertson-Walker cosmology, such an expansion implies
the existence of a dark energy (DE) component to the
mass-energy density of the Universe.' At present it is fair
to say that disclosing the nature of DE is one of the central
problems in the research of both cosmology and theoretical
physics (for recent reviews, see [11-13]). In this direction
we are faced with many fundamental and difficult issues,
among which the following two open questions are of
particular importance. The first one is on the nature and
dynamical properties of the dark energy. Currently it is not
clear yet whether DE can be described by a cosmological
constant which is independent of time, or by dynamical
fields such as quintessence, K essence, tachyon fields, or
phantom fields. The second is the coincidence problem,
dubbed as “why are the densities of matter and dark energy
of precisely the same order today?”” [14].

To shed light on these two open questions, some inter-
esting DE models were proposed recently. Those models
can be divided into two categories, i.e. the holographic
dark energy (HDE) models and the interacting DE models.
The former stems from the holographic hypothesis [15-17]
and can provide an intriguing way to interpret the dynam-
ics of DE, while it is suggested that the latter can help to
understand the coincidence problem by considering the
possible interaction between dark energy and cold dark
matter [18-22].
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Let us first start with a close look on the holographic
dark energy model motivated from the holographic hy-
pothesis, which has gradually been believed to be a funda-
mental principle in the quantum theory of gravity.
According to this principle, the number of degrees of
freedom for a system within a finite region should be finite
and is bounded roughly by the area of its boundary. While
in a cosmological setting, the challenge is to put a reason-
able and well-defined upper bound on the entropy of the
Universe. Motivated by a Bekenstein entropy bound, it
seems plausible to require that for an effective quantum
field theory in a box of size L with UV cutoff A, the total
entropy should satisfy the relation

L3A3 = SBH = 7TL2M2, (1)

where Sgy is the entropy of a black hole with the same size
L. but further consideration indicates that to saturate this
inequality some states with Schwarzschild radius much
larger than the box size have to be counted in. As a result,
a stronger entropy bound has been proposed in [15], re-
quiring that the total energy of a system with size L should
not exceed the mass of a black hole with the same radius,
namely,

L3A* = L3p, = LM:. ()

While saturating this inequality by choosing the largest L it
gives rise to a holographic energy density

pr = 3MAL72, 3)

where c is a dimensionless constant. Then the key issue is
what possible physical scale one can choose as the cutoff L
constrained by the fact of the current acceleration of the
universe. Originally, the natural choice is to identify the
Hubble horizon as L, however, as pointed out in [16], this
will lead to a wrong equation of state for dark matter which
conflicts with the ordinary one in standard cosmology. As a
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result, in [17] Li proposed to take the future event horizon
as the largest size L, which gives rise to desired results, and
then stimulate a lot of interests and discussions in this
subject [23]. However, there are some unsatisfactory points
in this conjecture. First, it still remains puzzling how the
current evolution of dark energy density can be determined
by the future event horizon. Second, the coincidence prob-
lem can hardly be solved in this context.

As pointed out in [22], the reason that one is forced to
take the future event horizon is based on the assumption
that the energy densities of dark energy and dark matter
evolve independently. However, if there exists interaction
between DE and dark matter (DM), then the cutoff L is not
necessarily identified as the future event horizon. As a
matter of fact, the interaction between DE and DM is
proposed to solve the coincidence problem and has been
discussed in many recent works [24]. This can be accom-
plished by introducing the coupling terms in the equations
of state for matter and dark energy densities, which can
bring the ratio of these two ingredients into a constant at
late times. From the theoretical point of view this sort of
coupling is completely possible due to the unknown nature
of DM and DE. In addition, this proposal is compatible
with the current observations such as the SNIa and
Wilkinson Microwave Anisotropy Probe (WMAP) data
[19] and even favored in some circumstances as suggested
in [25]. But until now, only certain special interacting
terms have been considered in existing literatures.

Now based on the above discussion, it is natural to ask if
we could combine these two theoretical proposals together
so as to improve our understanding of dark energy. This is
the main purpose of our paper. Although there are many
existing works in both directions, most discussions in those
works only considered specific characteristic sizes or in-
teracting terms. For instance, the characteristic size is
usually assumed to be the future event horizon after the
work [17] and the interaction term is assumed to take a
form as 3b>Hp where b is a coupling constant. However,
there is no strong theoretical motivations for these choices.
In this paper, rather than fixing either the interacting term
or the holographic characteristic size, we intend to inves-
tigate the nature of interacting and holographic DE and the
coincidence problem in a more general formalism.

Our paper is organized as follows: We first present brief
reviews on interacting dark energy and holographic dark
energy in Secs. II and III, respectively. In particular, given
the conditions that our Universe is currently accelerating
and the ratio of dark matter density to dark energy density
deceases, we derive general constraints on the relations
among the interacting term, holographic size, and the
equation of state parameter of dark energy w. Then we
turn to the coincidence problem in Sec. IV, under the
simplest requirement that the ratio of dark matter to dark
energy density be constant. In Sec. V we consider the case
that the ratio can vary with time slowly and demonstrate
how the coincidence problem can be alleviated through
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some specific examples by providing appropriate interact-
ing terms and holographic sizes.

II. INTERACTING DARK ENERGY

We start with the standard Friedmann equations in which
DE and DM are assumed to be independent and there is no
interaction between them. Provided our current Universe is
dominated by dark energy with the state equations p =
wp, and cold dark matter with p = 0, these equations
read as

pa + py = 3M,H?, 4)
H= =M [p\(1 + w) + pyl, &)
pa+pu = —3H[pr(l + @) + pyl (6)

where H = a/a is the Hubble factor. It is well known that
Egs. (4)—(6) are not independent and any one of them can
be derived from the other two. By introducing Q, =
pr/BM2H?) and Q= py/(BM2H?), the first
Friedmann equation also can be written as {1, + Q,, = 1.
Now we proceed to interacting dark energy models in
which dark matter and dark energy are postulated to be
coupled such that dark energy can decay into cold dark
matter. As a result, the last equation can be written as the
combination of the following two evolving equations,

pa=—3Hp\(1+w) -0, )

pPu= —3Hpy + 0, (8)

where Q denotes the interacting term. To be a realistic
model, the interacting DE model should satisfy the obser-
vational constraints. First, we consider the constraint on Q
by the observation that our Universe is currently accelerat-
ing. Since the ratio of dark matter to dark energy plays a
special role and its dynamics is a major subject of this
paper, for convenience we denote the ratio py/pa by r
which is related to 1, by 1 + r = 1/Q . Then from (4)
and (5) we have

. 3
H=—_@+

2

@ 2

Notice that Eq. (9) always holds no matter whether the
interaction is taken into account or not. The solution to this
equation can be formally written as

H = Hoe—s/z fg(u[w/mr)])dx (10)
where x = Ina. As a result, the requirement d > 0 leads to
1+r+3w<0. (11)

On the other hand, from (7) and (8) we find that the
interacting term has the following general form:
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o 7 o
Hpy, (Q+rnH 1+7r

0= 30, (12)

where H can be absorbed by redefining i//H = dr/dx =
', such that

0= (r' = 3wr). (13)

1+r
Then from (11) one finds that

/
O>r+

1+7r (14)

Furthermore, it is expected that the ratio of dark matter
density to dark energy density decreases with the evolution
of the Universe, namely, ' < 0. This requirement together
with the previous one (11) implies that the interacting term
should satisfy the following constraint:

/ —3wr

1+r

r
1+r

r+

<0< (15)

III. HOLOGRAPHIC DARK ENERGY

Now we turn to the holographic dark energy models. As
introduced in Sec. I, in this context the dark energy density
is assumed to be saturated in the region with size L,

PA = 362M12,L72. (16)

Comparing this bound with the first Friedmann equation
we easily obtain a relation between the characteristic size L
and the Hubble factor H as

LH =<1+ rc. (17)

In general the characteristic size L needs to be chosen in
such a way that the dark energy can be responsible for the
acceleration of the Universe. Furthermore, such a choice
should not conflict with the state equations of dark energy
and dark matter. As a result, when there is no interaction
between DE and DM, i.e. Q = (0, L is conventionally taken
as the future event horizon [17,23] so as to fit the obser-
vational data. However, as explained in Sec. V, the coinci-
dence problem is hardly solved by pure HDE alone.
Therefore, in the following discussion on HDE models,
we will consider the case with nonvanishing Q. Moreover,
instead of fixing L or the interacting term Q at the begin-
ning, we will take a more phenomenological view and
consider them to be free dynamical quantities but con-
strained by observations.

Now, as in the previous section, from the requirements
of an accelerating universe and decreasing ratio of DM
density to DE density, one can derive the constraints on
those quantities. Taking the derivative with respect to time
on both sides of Eq. (17) and using (13) leads to a relation
between L and O as
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L 2

Now due to the constraint (15) we find the size L should
satisfy

/ / /
§<i+ @ +1><L<r+1. (19)
2\3r 1+r L 2(1+r
Thus we find in a general formalism of interacting holo-
graphic dark energy, the interacting term and the character-
istic size of holographic bound are constrained by the
inequalities (15) and (19), respectively.

Alternatively from (13) and (18) we may have a relation
between L and w as

0=r— 2r<L—I - E). (18)

L' w r
2— =31+ + . 20
L < 1+r> 1+r (20)
Thus ' < 0 leads to
r3
L2+ @) @1)
L 2 1+r

Furthermore, replacing the parameter @ appearing in
(15) by L we may find the following inequality:

L 3 ~ L r
—2r<z—§>>Q>2(z+§— 1). 22)

In summary, we find for interacting holographic dark
energy models, L, O, w, and r are not independent quan-
tities but related by Egs. (18) and (20) or (13) and (20)
since among these three equations only two of them are
independent. Thus, given any two of them, the dyanamics
of the other two can be determined. For instance, if we
specify the interaction term Q and the characteristic size L,
then the dynamics of w and r may be determined and vice
versa. However if only one of them is specified, then the
dynamics of the other three cannot be uniquely fixed. For
example, in an interacting HDE model with the future
event horizon as the characteristic scale L, i.e.

o ]
L= a(t)j; mdﬂ, (23)

which gives rise to a relation L = LH — 1. Then from (20)
it is easy to derive the following relation:

V1 + d
L+ r+30) + ) (24)
2 c 2
In this case ' < 0 requires that
24/1 +
1 +r+30>-2"1 (25)
c

If we further specify the interaction term, e.g. Q =
3b%(1 + r) as in Refs. [24], then the dynamics of w and r
can be determined uniquely, as discussed in [26]. However,
since our goal is to investigate the coincidence problem, we
intend to put constraints on the evolution of r and then
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explore what expressions the other quantities including L,
0, and w may take. This is what we are going to do in the
next two sections.

IV. COINCIDENCE

Before we proceed, we first demonstrate how the coin-
cidence problem arises in the standard cosmology with a
cosmological constant. Setting Q = 0 in (7) and (8) will
lead to ¥’ = 3wr [see also (13)]. Now from (11) one finds
that

dlnr

=3w<-r—1<-1,
dx

which means during acceleration r decreases faster than
a~'. Furthermore, from Friedmann equations, one finds
that

r=ryla/ay)?, (26)
and
a/ao — C(e/\z/to _ efAt/to)Z/B’ (27)

where C and A are O(1) constants which can be related to
the current values of (), . Then it is easy to see when t <
to, r = t~2 and r decreases quadratically as expected for a
matter dominated universe and when t > f,, r deceases
exponentially as expected in a dark energy dominated
universe. Then it is only when 7 is around £, that r ~ O(1).

It is expected that adding interaction may change the
dynamics of r greatly. In this section we consider the
simplest possibility with 77 = 0, which implies p, * p;; «
H?. It is worthwhile to stress that this situation only occurs
at late times. Suppose the ratio r is a constant, i.e. r = r,.
We immediately obtain the following equations:

~ —3wr,
0=-7 r°, (28)
0
3¢ w
= 7“1 + r0<l + T ro). (29)

In addition, the Hubble factor is inversely proportional to
the characteristic size L as H = /T + rocL™'. Therefore,
specifying any one of the quantities Q, L, w, the dynamics
of the other two can be uniquely determined from the
above equations. We classify some possibilities in the
following subsections.

A. 7 = 0 with only interaction term specified

One possible choice for the interaction term is setting
0 = 3b%*(1 + ry) as in previous references, where b is a
constant. Then from (28) we find that w is fixed as

w = —b2(1 + 7"0)2
ro ’

(30)

Consequently, the solutions to H and L can be obtained
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from (29) as

H = Hya 3/20-0"=®*/n), (31)
In addition, from (15) one finds that
T
3wr>—2 _=Q,. 32
I+ry) M (32)

Therefore, it is obvious that in noninteracting models (i.e.
b=0) ¥=0 and d >0 cannot be achieved simulta-
neously. This can be considered as an important hint for
the need of interacting dark energy.

B. 7 = 0 with only holographic characteristic size
specified

As shown in the previous section, specifying the holo-
graphic characteristic size will determine Q and w since r
has already been fixed to be r,. Here we consider the HDE
model with L being the future event horizon. From (28)
and (29) we find correspondingly that the parameters w
and O have to be constants as well:

~ ~ 2

1 21+
w = Wy = _§<1 +r0+— ’"O>. (34)
c

Using the current data py,q = 0.25, ppo = 0.72 and set-
ting ¢ = 1, we find

ro = 0.35, wy = —1.22, (35)
which is a phantom-preferred model. From (9) we find that
a~ t2(1+r0)/3(1+r0+w0)’ (36)

while
pA~ Py~ 1 (37)

C. r = 0 with both interaction term and holographic
characteristic size specified

If both L and Q are specified as in previous subsections,
then from (30) and (34) it is easy to see 7 = 0 can be
reached only when the constant b? takes the value as

) T Wohp

V. SOFT COINCIDENCE

The above discussion shows that the interaction between
DE and DM can lead to a constant r. Although it is not
clear how to obtain a r of O(1) size at early times, this
simple strategy can be used to account for particular situ-
ations (e.g. late time evolution of the Universe).
Nevertheless, there is no strong motivation for setting r
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to be a constant. It is worthwhile to explore some more
realistic models in which r varies slowly with time. We
discuss this possibility in detail here.

Advocated by the above discussion, one expects that a
certain amount of interaction can alleviate the coincidence
problem. One possibility which has been proposed in [19]
is to allow the ratio of two energy densities to vary slowly
but require that there are two positive solutions r+ to 7 =
0. Then the coincidence can be alleviated if r_ is close to
O(1) as the ratio r evolves from the unstable but finite
maximum 7, to a stable minimum r_ at late time, instead
of from oo to 0. To demonstrate this possibility we consider
again the model with an interaction term Q = 3b2(1 + r)
and a constant w. From Eq. (13), we have

r'=3b%(1 + r)? + 3wr. (39)

Obviously, setting ' = 0 the equation has two positive
solutions with a relation r,r_ = 1. It is also possible to
show that the ratio will run from an unstable but finite
maximum 7, to a stable minimum r_ at late time [19].

However, this does not occur in the context of pure
holographic dark energy if one chooses the future event
horizon as the characteristic size L. In the absence of
interaction, the dynamics of r is described by

2
= —p(1 + ——). 40
" r( +c\/1~|—r> (40)

Defining /1 + r =y (y = 1) leads to
2cy?y' = (1 = y})(cy +2). (41)

There is only one positive solution to ' = 0 with y = 1 or
r = 0. Thus, as in standard cosmology r runs from infinity
to zero and consequently the coincidence problem still
exits in this setting.

Next we intend to propose an alternative way to alleviate
the coincidence problem. That is, it might not be necessary
to have both an unstable finite maximum and a stable
minimum close to O(1). The later is more important in
the coincidence problem and presumably is determined by
the physics effective at the current evolution of the
Universe. The former is more related to the early evolution
of the Universe, and whether or not an O(1) initial condi-
tion can be obtained is determined by physics beyond the
scope of this work. Therefore, we would rather leave the
question concerning the existence of a positive maximum
open and concentrate on the models with a positive stable
minimum at late time. In particular, if we find this stable
value is not quite far from the current observation, then the
coincidence problem may be alleviated as the Universe has
a long time to stay at this stage with a similar ratio. Now, as
an example, consider adding the interaction term Q =
3b%(1 + r) into the holographic dark energy model pre-
sented above. Then we find Eq. (41) is changed to
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cy?y = 5(31)2 — 1)y —y* + ¥ + 1. (42)

Provided ¢ > 0 and 3b* < 1, it still has only one positive
solution to y’ = 0 but not at r = 0. The exact position of
the minimum depends on the values of ¢ and b. For
explicitness we illustrate the evolution of r in Fig. 3 with
¢ =1 and b? = 0.12, which is described by the dotted-
dashed curve.

Moreover, in the discussion of (39) from which two
positive solutions are obtained for ' = 0, we have made
two assumptions, i.e. the coefficients b? and w are con-
stants. A time dependent b? or @ might change this situ-
ation. In addition, as mentioned in Sec. III, specifying any
two of L (or py), Q w, and r will determine the other two
uniquely. In principle, @ might be different from those
assumed in the discussion of (39) and consequently will
lead to different results. Below we will discuss this in more
detail through the following models.

A. Model 1: Given Q with time dependent b>

In this model we assume that
b? = ble /R,
i.e.
0 = 3b%(1 + r)e "R, (43)

where b2 = constant. The interaction given by (43) de-
creases exponentially as r increases and consequently at
early times when r > R, Q is very small and thus can be
ignored. Therefore, in this model the early age of the
Universe can be described by the standard Friedmann
equations without interaction. The interaction becomes
important only at late time and will lead to a stable mini-
mum which can mitigate the coincidence problem. As (13),
one finds that in this case

' =3b2e "R(1 + r)? + 3wr, (44)
and subsequently from (18) one has
r3
Lf =01+ @ + B2 + e k) (45)

Now to obtain more explicit results we have two options.
One is to set w to be a constant, for example w = —1. This
is completely possible in the presence of holographic dark
energy and the corresponding size of holographic bound is
determined by

LI

%b%(l + r)e /R, (46)
With this choice the Eq. (44) has only one solution to r' =
0 for small R. For example, when b2 = 0.3, R = (.25, the
solution to ' = 0 is r; = 0.196. The second option, in-
stead of specifying w, is setting an appropriate character-
istic size L which can also lead to the same results obtained
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above. To show this, we consider the HDE model with L
being the future horizon. From (45) one has

2
3w =—1—3b2(1+ r)e /R - —, 47
(= Ve
which leads to
/ 1+ 2
dinr _ 7y yap2e T . (48)
dx r r V1 +re

For b2 = 0.3, R = 0.5, and ¢ = 1, the solution to 7 = 0 is
ry = 0.246. In addition, one can check that for r > r; one
always has 7 < 0. In addition, in this case w also can across
—1 as in many DE models. For instance, for b% =0.1,c =
landR =1, ry= 0.102, one finds that w across —1 at r =
0.35.

B. Model 2: Given Q with time-independent b2

In this subsection we will consider the situation where
the dynamics of r at late time can be approximated by a
power law dependence on g, i.e.

r=r;+ (ro — rf)a_k, (49)

under the assumption that Q = 3b%(1 + r) where k =
3b%/rs and b7 is a constant. As in Sec. III, now one can
solve for w and p,. From (7) and (8) it is easy to find that
1
w=—b2r— (2 4 —)bg. (50)
'y

Then from (39), one finds that the only solution to ¥ = 0 is
r = ry. Note that this result does not dependent on the
choice of k, as what can be obtained from (49) directly. The
DE density is found to be

pa = pRa PRI, (51)
Then from (10) one finds that

)1+r
1+}’0‘

H? = H(z)a—3(1—b3—b§/r,

From (11) one finds that the condition d > 0 requires
that

1+r
b2 > 0o
¢ 3(}"0"!‘2"!‘ l/rf)

As an example, ry = 0.2 leads to b2 > 0.06. To compare
the predictions of this model with low redshift observa-
tions, the distance moduli vs redshift are plotted in Fig. 1.

As shown in Sec. III, given Q and r, the characteristic
size L and the dynamics of w can be determined uniquely.
In fact, from (51) one finds immediately that in HDE
models

L o g3/20-b2=b%/ry) (52)

Moreover, from another point of view, (49) and (50) can
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307 1 1 1

FIG. 1. Distance moduli vs redshift plot for model 2 (b2 =
0.12, r; = 0.2). The data points are from the gold sample of
type Ia supernovae of [1].

also be considered as the consequences of the character-
istic size given by (52).

C. Model 3: Given the characteristic scale of holo-
graphic bound L

Similar to the previous subsection, here we consider the
situation where the late time evolution of r to ry can be
approximated by an exponential function of a, i.e. r =
re(1+ ve *%) where both A and 7y are constants. For
simplicity, in the following discussion we set vy = 1 and
thus we have

r= rf(l + e 1a), (53)

which leads to ry = ro/(1 + e~ *). Nevertheless, rather
than fixing the interaction term Q, we consider in this
subsection the HDE model with the characteristic size L
being the future event horizon. As discussed in Sec. III,
from (13) and (24), the interaction Q and w are found to be

~ 2r
=r—Aalr —ry) + ———,
¢ r=r)* i s
1 2J1+r  Aae M
w=—(1+r+ — — o )
3( c 1+e )

From (11) and (25) one finds that ¢ >0 and r <0
require that

_I_
A b 3e <o
C

Then from (54) one has
2Vl + r_ 21+ N Aae M

1o <O0.
c ¢ [+e 20
Since Age 2 < ¢~ 1
—Aa eil
Aae <o 1
1+ e 2 1+e

123510-6



INTERACTING DARK ENERGY, HOLOGRAPHIC ...

30 I 1 1 1
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Z

FIG. 2. Distance moduli vs redshift plot for model 3 (¢ = 3,
A = 0.5). The data points are from the gold sample of type Ia
supernovae of [1].

o'
\ :
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\ \ :
[ \\ v
0.6 \\\-,_“
04l
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Log [a]
FIG. 3. r vs log[a] (see text for explanations and parameters

used for different curves).

It is easy to check that the above requirement can be
satisfied for any A if ¢ < 2e/ry =~ 15. Again we can com-
pare the predictions of this model with low redshift obser-
vations, as shown in Fig. 2.

Moreover, to compare the above three models and the
interacting HDE model discussed at the beginning of this
section [see (42)], the dynamics of r in these models are
plotted in Fig. 3 in which the dotted curve corresponds to
model 1, the dashed curve to model 2, the solid curve to
model 3 and the dotted-dashed curve to (42). The parame-
ters used for models 2 and 3 are the same as those for Fig. 2
and 3. For model 1, the parameters are given in the sentence
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following (44). For the curve corresponding to (42), ¢ and
b? in (42) are taken to be 1 and 0.12, respectively.

VI. DISCUSSION

We have presented a general formalism of interacting
and holographic dark energy in this paper. Let us summa-
rize the main results as follows. First we pointed out that in
this general formalism both the characteristic size of holo-
graphic bound L and the coupling term of interaction Q for
dark energy are not necessarily fixed as in previous refer-
ences where these two sorts of models are separately
investigated. Given the conditions that our Universe is
currently accelerating and the ratio of dark matter to dark
energy decreases, we derived the general relations among
the quantities of L, Q, w, and r as well as the constraints on
the possible range of these quantities. In particular, the
dynamics of parameters w and r are determined by the
choice of L and Q, thus providing a mechanism to change
the evolution of r from that in standard cosmology such
that the coincidence problem may be solved. This is the
main feature of our formalism. Then we proposed three
kinds of strategies to show how the coincidence problem
can be alleviated in this context. One possibility is to have a
constant ratio throughout the evolution of the Universe.
The second is to have two constant solutions to the ratio r
such that it will run from the maximum constant to the
minimum stable one, while the third and perhaps the most
practical one is to have a stable constant solution at the late
time but this value is not quite far from our current obser-
vation. Focusing on the third strategy we constructed some
models explicitly and show how this can be implemented
by appropriately choosing the quantities of L and Q. In
particular, our results show that, at least in the low redshift
region, these models are well fitted with the current
observation.

In this paper we assume our Universe is spatially flat but
it is completely possible to show that the parallel analysis
could be extended to the spatially closed and hyperbolic
universe. We also expect that further investigation will
provide us a more exact picture of the dark matter and
dark energy by strictly fitting the observations in a high
redshift region.
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