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Structure formation in the quasispherical Szekeres model
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Structure formation in the Szekeres model is investigated. Since the Szekeres model is an inhomoge-
neous model with no symmetries, it is possible to examine the interaction of neighboring structures and its
impact on the growth of a density contrast. It has been found that the mass flow from voids to clusters
enhances the growth of the density contrast. In the model presented here, the growth of the density contrast
is almost 8 times faster than in the linear approach.
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I. INTRODUCTION

Galaxies redshift surveys indicate that our Universe is
inhomogeneous. Galaxies form structures like clusters,
superclusters, and voids. The most popular methods which
are used to describe the evolution of these structures are
N-body simulations [1–3] and the linear approach.
However, because the present day density contrast is large
the linear approach is in most cases inadequate. On the
other hand, the N-body simulations describe the evolution
of a large amount of particles which interact gravitation-
ally. However, interactions between particles are described
by the Newtonian mechanics. In Newtonian mechanics
matter does not affect light propagation, hence within the
N-body simulations it is impossible to estimate the influ-
ence of matter distribution on light propagation. In general
relativity the situation is different, the geometry defined by
matter distribution tells the light along which paths to
propagate. Thus, in order to have a suitable model which
would predict a proper evolution of the density contrast
and be adequate to trace light propagation, models based
on exact solutions of the Einstein equations need to be
used. In this paper the Szekeres model is employed to study
the evolution of a galaxy supercluster and an adjourning
void. The Szekeres model is an exact solution of the
Einstein equations, which is inhomogeneous and has no
symmetries. Being an exact model of spacetime geometry,
the Szekeres model can be adopted not only to describe the
evolution of cosmic structures but also to examine light
propagation.

The structure of this paper is as follows: Sec. II presents
the Szekeres model; in Sec. III B the model of the double
structure is presented; in Sec. III C the evolution of a void
and an adjourning cluster is presented. The results of this
evolution are compared with the results obtained in the
linear approach and in the inhomogeneous spherically
symmetric Lemaı̂tre-Tolman model.
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II. THE SZEKERES MODEL

The metric of the Szekeres [4] models is of the following
form:

d s2 � dt2 � e2�dz2 � e2��dx2 � dy2�: (1)

The components of the metric are as follows:

e � � ��t; z�e��x;y;z�; (2)

e � � h�z���t; z��;z; (3)

where h�z� is an arbitrary function of z, and e�� is

e�� � A�z��x2 � y2� � 2B1�z�x� 2B2�z�y� C�z�: (4)

The functions A�z�, B1�z�, B2�z�, C�z� are not indepen-
dent but obey the following relation:

C�z� �
B2

1�z�
A�z�

�
B2

2�z�
A�z�

�
1

4A�z�

�
1

h2�z�
� k�z�

�
(5)

The Einstein equations reduce to the following two:

�2
;t�t; z� �

2M�z�
��t; z�

� k�z� �
1

3
��2�t; z�; (6)

�� �
�2Me3��;z
e2�e�;z

: (7)

In a Newtonian limit Mc2=G is equal to the mass inside
the shell of radial coordinate z. However, it is not an
integrated rest mass but active gravitational mass that
generates a gravitational field.

Equation (6) can be integrated:

Z �

0

d ~��������������������������������������������
2M�z�

~�
� k�z� � 1

3 ��2
q � c�t� tB�z��; (8)

where tB appears as an integration constant, and is an
arbitrary function of z. This means that the big bang is
not a single event as in the Friedmann models, but occurs at
different times for different distances from the origin.
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As can be seen the Szekeres model is specified by 6
functions. However, by a choice of the coordinates, the
number of independent functions can be reduced to 5.

The Szekeres model is known to have no symmetry
(Bonnor, Sulaiman, and Tomimura [5]). It is of great
flexibility and wide application in cosmology (Bonnor
and Tomimura [6]), and in astrophysics (Szekeres [7];
Hellaby and Krasiński [8]), and still it can be used as a
model of many astronomical phenomena. This paper aims
to present the application of the Szekeres model to the
process of structure formation.

A. Coordinate system

The coordinate system in which the metric is of form (1)
can be interpreted as a stereographic projection of polar
coordinates. This can be seen if the following transforma-
tion is considered:

A �
1

2S
; B1 � �

P
2S
; B2 � �

Q
2S
;

C �
P2

2S
�
Q2

2S
�
S
2
�
B2

1

A
�
B2

2

A
�

"
4A
; " �

1

h2 � k:

(9)

After this transformation we obtain

e2��dx2�dy2��
�dx2�dy2�

�A�x2�y2��2B1x�2B2y�C�2

�
�dx2�dy2�

� 1
2S�x

2�y2��2 P
2Sx�2 Q

2Sy�
P2

2S�
Q2

2S�
S
2�

2

�
�dx2�dy2�

S2

4 ��
x�P
S �

2��y�QS �
2�"�2

: (10)

When " � 1 the above transformation is the stereo-
graphic projection of a sphere, when " � 0 the surface is
a plane, and when " � �1 it is the stereographic projec-
tion of a hyperboloid.

As we are interested in the Friedmann limit of our
model, i.e. we expect it becomes an homogeneous
Friedmann model in a large distance from the origin, we
will focus only on the " � 1 case.

Then the transformation of the following form,

x� P � S cot
�
�
2

�
cos���;

y�Q � S cot
�
�
2

�
sin���;

z � r;

(11)

leads to

e 2��dx2 � dy2� � �2�d�2 � sin2�d�2�: (12)

After transformations (9) and (11) the metric (1) be-
comes
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ds2 � cdt2 �
�
��;r ���;r�2

1� k
��2e2�

�
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2

� 2S;r cot
�
2
�Q;r sin�� P;r cos��

� �P2
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��
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drd���2�d�2 � sin2�d�2�; (13)

where

e � �
1� cos�

S
; (14)

and

�;r �
S;r cos�� sin��P;r cos��Q;r sin��

S
: (15)

As can be seen, if t � const, and r � const, the above
metric becomes the metric of the 2-dimensional sphere.
Hence, every t � const and r � const slice of the Szekeres
" � 1 spacetime is a sphere. Therefore, the " � 1 case is
often called the quasispherical model. However, as S, P,
and Q are now functions of r, spheres are not concentric.
For the spheres to be concentric, the following conditions
must hold:

P;r � 0; Q;r � 0; S;r � 0: (16)

Such conditions lead to the spherical symmetric case, and
the metric (13) becomes the line element of the Lemaı̂tre-
Tolman model [9,10].

B. The Friedmann limit

The Friedmann limit is an essential element of our
model. The model presented in this paper describes the
evolution of a void with an adjourning cluster in the
expanding Universe. Far away from the origin density
and velocity distributions tend to the values that they would
have in a Friedmann model. Consequently, the values of
the time instants and values of the density and velocity
fluctuations are calculated with respect to this homogene-
ous background.

The Friedmann limit follows when

��r; t� � R�r�f�t�; (17)

k�r� � �k0R
2�r�; (18)

where k0 is the curvature index of the Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) models.

The above conditions are sufficient to obtain the homo-
geneous FLRW model, and the metric (1) assumes the
Goode and Wainwright [11] form of the FLRW model.
Then from Eq. (7) follows
-2
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M�r� � M0R3�r�; (19)

where M0, expressed by FLRW parameters, is M0 �
�1=2���mH2

0=c
2�. Inserting the above into Eq. (8) it fol-

lows that tB�r� � const, which implies that the big bang
was simultaneous. Although the metric in polar coordi-
nates (13) is still not diagonal, under the transformation
(16), the metric obtains a more usual form:

d s2 � dt2 �
f2�t�

1� k0R
2 dR2 � R2f2�t�d�2; (20)

where d�2 � d�2 � sin2�d�2.
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FIG. 1. The mass distribution within the homogeneous back-
ground (BG) and in the Szekeres model (SZ).
III. STRUCTURE FORMATION

This paper aims to present the application of the
Szekeres model to the process of structure formation. In
this section the model of an evolving void with adjourning
supercluster is presented. As will be seen, the use of the
Szekeres model gives a better understanding of the struc-
ture formation, and shows the importance of voids in the
process of cluster formation.

The model is expected to remain consistent with the
astronomical data. As mentioned in Sec. II B, the density
fluctuations as well as time instants are calculated with
respect to the homogeneous background model. The
chosen background model is the FLRW model with the
density:

�b � �m � �cr � 0:3�
3H2

0

8	G
: (21)

The Hubble constant is ofH0 � 72 km s�1 Mpc�1, and the
cosmological constant corresponds to �� � 0:7, where
�� � �1=3��c2�=H2

0�.
Below the density distribution and the evolution of a

void and an adjourning cluster is calculated. It can be seen
from Eqs. (7), (14), and (15) that, to calculate the density
distribution for any instant ti, one needs now 5 functions:
M�z�, S�z�, Q�z�, P�z�, and ��ti; r�. The explicit forms of
these functions are presented below. Using these functions
the density distribution of the present day structures can be
calculated (see Sec. III B). Then, the evolution of the
system can be traced back in time. The density distribution
depends on time only via the function ��t; r� and its
derivative. The value of the ��t; r� for any instant can be
calculated by solving the differential equation [see
Eq. (6)]. In most cases, as in this paper, this equation can
be solved only numerically. To solve this equation one
needs to know the initial conditions: ��t0; r�, and the
functions M�r�, and k�r� as well as the value of �. This
equation was solved numerically using the fourth-order
Runge-Kutta method [12]. Knowing the value of ��t; r�
for any instant, the density distribution can be calculated as
described above.
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A. Observational constraints

Astronomical observations show that in small scales
matter distribution and expansion of the space are not
homogeneous. The measurements of matter distribution
imply that density varies from � 	 0:06�b in voids [13]
to � equal several tens of background density (�b) in
clusters [14]. These structures are of diameters from sev-
eral Mpc up to several tens of Mpc. However, if the
averaging is considered on large scales, the density varies
from 0:3�b to 4:4�b [15,16], and the structures are of
several tens of Mpc.

B. Model of a void with an adjourning supercluster

As mentioned above, to specify the model one needs to
know 5 functions of the radial coordinate. Let us define the
radial coordinate as a current value of �:

r :� ��z; t0�: (22)

Three out of these five unknown functions can be P�r�,
Q�r�, and S�r�. However, the physically important quanti-
ties are not these functions, but their gradients. If P�r�,
Q�r�, and S�r� are constant, then as can be seen from
Eqs. (7), (14), and (15), the density distribution and the
evolution Eq. (6) do not depend on them. Then the
Szekeres model becomes the Lemı̂tre-Tolman model. The
explicit forms of these functions are presented in the next
subsections. The next two functions can be either tB�r�,
M�r�, k�r�, or any other combination of functions, from
which these can be calculated. The functionM�z� describes
the active gravitational mass inside the t � const, z �
const sphere. The assumed mass distribution is presented
in Fig. 1. The void is placed at the origin, so the mass of the
model in Fig. 1 is below the background mass, but then it is
compensated by more dense regions, and soon, at the
distance of about 30 Mpc, the mass distribution goes
over into the homogeneous background. To define the
-3



KRZYSZTOF BOLEJKO PHYSICAL REVIEW D 73, 123508 (2006)
model we need one more function. Let us assume that the
bang time function is constant and equal to zero. Then from
Eq. (8) the function k�z� can be calculated.

1. Model 1

As mentioned above, if the functions P�r�, Q�r�, and
S�r� are constant, the quasispherical Szekeres model be-
comes a Lemaı̂tre-Tolman model. Let us then consider the
simplest generalization of the Lemaı̂tre-Tolman model. Let
us focus on a model with S�r� and P�r� being constant, and
Q�r� being chosen as below.

Let us choose

S � 140; P � 10; Q � �113 ln�1� r�: (23)

The density distribution was calculated from Eq. (7), and
it is presented in Figs. 2(a)–2(d). Figure 2(a) presents a
schematic view of the structure. Figures 2(b) and 2(c)
depict the horizontal cross section through the equator
(Z � 0), so it goes through the void and the cluster [as
presented in Fig. 2(a)]. Figure 2(d) depicts the vertical
(a) (b

(c)

FIG. 2. The present day density distribution of model 1 (Sec. III B 1
the density distribution in background units. Coordinates X, Y, and Z
sin� sin�, and Z � ��t0; r� cos�.
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(X � 0) cross section, so it goes through the void and the
cluster [as presented in Fig. 2(a)].

It should be stressed that the shapes presented in
Figs. 2(b)–2(d), are a bit distorted in comparison with
the real density distribution. The Szekeres model describes
the density distribution in a curved space, and it is impos-
sible to map it into a 2-dimensional flat surface (such as a
sheet of this paper). This problem is similar to drawing
maps of our globe.

2. Model 2

Let us consider the following functions:

S � �r0:59; P � 0:83� r0:59; Q � 0:4� r0:59:

(24)

The density distribution is presented in Figs. 3(a)–3(f).
Figure 3(a) presents a schematic view of the stricture.
Figure 3(b) depicts the vertical cross section, so it goes
through the void and the cluster [as presented in Fig. 3(a)].
Figures 3(c) and 3(d) show the cross section through the
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FIG. 3. The present day density distribution of model 1 (Sec. III B 2). Figure 3(a) presents a schematic view. Figs. 3(b)–3(f) present
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equator (Z � 0) while Figs. 3(e) and 3(f) depict the cross
section through the surface of Z � �20 Mpc [it passes
through the cluster presented in Fig. 3(b)].

As can be seen, this model does not qualitatively differ
from model 1. Both models present mass distributions
similar to dipole structure. It is well known that the mass
distribution in the Szekeres model has the form of a mass-
dipole superposed on a monopole. This was first noticed by
Szekeres [7]. The functions S, P, and Q simply describe
the position of this dipole. As can be seen from Eq. (15),
the functions P, and Q cause the density distribution
[Eq. (7)] changes periodically with the period 2	.
Although �;r appears in the denominator as well as in the
numerator of Eq. (7), it is impossible to have the period
larger than 2	 because it would introduce shell crossing
singularities (see Hellaby and Krasiński [8]; Plebański and
Krasiński [17] for details on how to avoid shell crossings in
the Szekeres model). The function S�r� on the other hand,
as seen from Eq. (15), describes the dipole distribution
along the vertical axis. By setting S, P, and Q constant we
drag the dipole to the origin and smooth it out to a spheri-
cally symmetric mass distribution.

The shell crossing, which was mentioned above, can
also occur during the evolution. Sometimes it can be
avoided by a suitable choice of the initial data, but there
are situations when it is impossible and the Szekeres model
breaks down. This means that pressure cannot be neglected
and a more realistic matter model should be employed. (It
is expected that in those more realistic models, for which
no exact solutions of Einstein’s equations are known so far,
the shell crossings would be replaced by regions of high
density. These large densities would become infinite in the
limit of zero pressure gradient.) However, in models pre-
sented here, matter density is not extreme and diameters of
considered structures are large, thus the Szekeres model is
appropriate and employing a more sophisticated model
with inhomogeneous pressure distribution is unnecessary.

C. Evolution

Since model 1 does not differ significantly from the 2,
lest us focus only on the evolution of model 1. The evolu-
tion of the model is presented in Fig. 4. Figure 4 shows the
evolution of a density profile which goes through the void
and the cluster, it is the line Z � X � 0 presented in
Figs. 2(a)–2(d). The density distribution is presented for
different time moments, from 100� 106 years after the big
bang up to the present.

1. Comparison of different approaches

To estimate how two neighboring structures influence
each other’s evolution, let us compare the evolution of the
double structure presented above with the evolution of
single structures obtained by other models. The usual
way of calculating the evolution of a density contrast is
the linear approach. The linear approach is based on the
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assumption that the density evolves like in a homogeneous
background but with a small correction:

��r; t� � �b�1� 
�r; t��: (25)

Inserting the above formula into the Einstein equations and
after linearizing the equations, one obtains

�
� 2
_ab
ab

_
�
1

2
�c2�b
 � 0: (26)

However, due to the large present density contrast, this
approach is in most cases inadequate. An alternative ap-
proach is to use the spherical symmetric Lemaı̂tre-Tolman
model. Since it is an exact and inhomogeneous solution of
the Einstein equations, one does not have to worry about
the smallness of the present day density contrast. The
density contrast is defined similarly as above:


�r; t� �
��r; t� � �b

�b
: (27)

The evolution of cosmic structures in the Lemaı̂tre-Tolman
model was studied in detail by Krasiński and Hellaby [18–
20], and Bolejko, Krasiński, and Hellaby [21].

The comparison of the evolution of the density contrast
in the Szekeres and Lemaı̂tre-Tolman models, and in the
linear approach, is presented in Figs. 5 and 6. These figures
present the values of the density contrast at central parts of
a void (Fig. 5) and a cluster (Fig. 6). The initial conditions
specifying these models were the same as in the Szekeres
model. The initial instant was 100� 106 years after the big
bang.
-6
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Figure 5 presents the evolution of the density contrast
inside the void. As one can see the linear approach be-
comes inadequate very soon, and after 2 Gy it gives un-
physical values (the density contrast cannot be smaller than
�1). The evolutions of the density contrast in the Szekeres
and Lemaı̂tre-Tolman models are comparable, although the
Lemaitre-Tolman produces lower values. In the Lemaı̂tre-
Tolman model, mass flows from the central part in all
directions with the same rate. In the Szekeres model, the
mass flow depends on the direction, hence this small
123508
difference in final values of the density contrast. The
feature of the mass flow’s direction and its significance is
more visible in the cluster evolution’s case.

Figure 6 presents the evolution of the density contrast
inside the cluster. As one can see, the evolutions of the
density contrast in the linear approach and Lemaı̂tre-
Tolman model are comparable. The evolution of the den-
sity contrast in the Szekeres model is significantly faster.
This implies that the adjourning void plays a significant
role in the process of the cluster formation. The mass flow
from the void towards the cluster is much faster than from
other directions. This can be seen as an asymmetry of a
void. This asymmetry is clearly depicted in Fig. 4.
IV. CONCLUSIONS

This paper presents the application of the Szekeres
model to the process of structure formation. A model of
a double structure, i.e. a void with an adjourning super-
cluster, was constructed. Since this model is based on an
exact solution of Einstein’s equations, it presents the evo-
lution of these structures without such approximations as
linearity, hence the interaction between described struc-
tures can be estimated.

The results show that the mass flow from the void to the
cluster enhances the growth of the density contrast of a
galaxy cluster. In the model presented here the growth of
the density contrast was about 5 times faster than in a
spherically symmetric model, and 8 times faster than in
the linear approach. The evolution of the voids is similar to
the evolution in the Lemaı̂tre-Tolman model but, because
the spherical models do not distinguish any direction, the
outward mass flow is a little bit faster than in the Szekeres
model. As seen in Figs. 5 and 6, the process of the structure
formation is a strongly nonlinear process.

The models based on the Szekeres solution have also
one more advantage. They can be used in problems of light
propagation, which is impossible in the N-body simula-
tions. The Szekeres model has still a great, but so far
unused, potential for applications in cosmology, and in
the future might be of great importance in modeling
some processes.
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