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Local effects of cosmological variations in physical ‘‘constants’’ and scalar fields. II.
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We investigate the conditions under which cosmological variations in physical ‘‘constants’’ and scalar
fields are detectable on the surface of local gravitationally bound systems, such as planets, in nonspheri-
cally symmetric background spacetimes. The method of matched asymptotic expansions is used to deal
with the large range of length scales that appear in the problem. We derive a sufficient condition for the
local time variation of the scalar fields driving variations in constants to track their large-scale
cosmological variation and show that this is consistent with our earlier conjecture derived from the
spherically symmetric problem. We perform our analysis with spacetime backgrounds that are of
Szekeres-Szafron type. They are approximately Schwarzschild in some locality and free of gravitational
waves everywhere. At large distances, we assume that the spacetime matches smoothly onto a Friedmann
background universe. We conclude that, independent of the details of the scalar-field theory describing the
varying constant, the condition for its cosmological variations to be measured locally is almost always
satisfied in physically realistic situations. The very small differences expected to be observed between
different scales are quantified. This strengthens the proof given in our previous paper that local experi-
ments see global variations by dropping the requirement of exact spherical symmetry. It provides a
rigorous justification for using terrestrial experiments and solar-system observations to constrain or detect
any cosmological time variations in the traditional constants of nature in the case where nonspherical
inhomogeneities exist.
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I. INTRODUCTION

Over the past few years there has been a resurgence of
observational and theoretical interest in the possibility that
some of the fundamental ‘‘constants’’ of nature might be
varying over cosmological time scales [1]. In respect to
two such constants, the fine structure constant � and
Newton’s constant of gravitation, G, the idea of such
variations is not new, and was proposed by authors such
as Milne [2], Dirac [3], and Gamow [4] as a solution to
some perceived cosmological problems of the day [5]. At
first, theoretical attempts to model such variations in con-
stants were rather crude and equations derived under the
assumption that constants like G and � are true constants
were simply altered by writing-in an explicit time varia-
tion. This approach was first superseded in the case of
varying G by the creation of scalar-tensor theories of
gravity [6], culminating in the standard form of Brans
and Dicke [7] in whichG varies through a dynamical scalar
field which conserves energy and momentum and contrib-
utes to the curvature of spacetime by means of a set of
generalized gravitational field equations. More recently,
such self-consistent descriptions of the spacetime variation
of other constants, like � [8,9], the electroweak couplings
[10], and the electron-proton mass ratio, � [11], have been
formulated, although most observational constraints in the
literature are imposed by simply making constants into
variables in formulas derived under the assumption that
they are constant.

The resurgence of interest in possible time variations in
� and � has been brought about by significant progress in
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high-precision quasar spectroscopy. In addition to quasar
spectra, we also have available a growing number of
laboratory, geochemical, and astronomical observations
with which to constrain any local changes in the values
of these constants [12]. Studies of the variation of other
constants, such as G, the electron-proton mass ratio, � �
me=mpr, and other standard model couplings, are con-
fronted with an array of other data sources. The central
question which this series of papers addresses is how these
disparate observations, made over vastly differing scales,
can be combined to give reliable constraints on the allowed
global variations of � and the other constants. If � varies
on cosmological scales that are gravitationally unbound
and participate in the Hubble expansion of the universe,
will we see any trace of this variation in a laboratory
experiment on Earth? After all, we would not expect to
find the expansion of the universe revealed by any local
expansion of the Earth. In paper I [13], we examined this
question in detail for spherically symmetric inhomogene-
ous universes that model the situation of a planet or a
galaxy in an expanding Friedmann-Robertson-Walker
(FRW)-like universe. In this paper we relax the strong
assumption of spherical symmetry and examine the situ-
ation of local observations in a universe that contains
nonspherically symmetric inhomogeneity. Specifically,
we use the inhomogeneous metrics found by Szekeres to
describe a nonspherically symmetric universe containing a
static star or planet. As in paper I, we are interested in
determining the difference (if any) between variations of a
supposed constant or associated scalar field, when ob-
-1 © 2006 The American Physical Society
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served locally, on the surface of the planet or star, and on
cosmological scales.

When a constant, C, is made dynamical we can allow it
to vary by making it a function of a new scalar field, C!
C���, that depends on spacetime coordinates:� � �� ~x; t�.
It has become general practice to combine all observational
bounds on the allowed variations of C���. This practice
assumes implicitly that any time variation of C, on or near
the Earth, is comparable to any cosmological variation that
it might experience, that is, to high precision,

_�� ~x; t� � _�c�t�; (1)

for almost all locations ~x, where �c is the cosmological
value of�. This assumption is always made without proof,
and there is certainly no a priori reason why it should be
valid. Strictly,� mediates a new or ‘‘fifth’’ force of nature.
If the assumed behavior is correct then this force is unique
amongst the fundamental forces in that its value locally
reflects its cosmological variation directly.

In these papers we are primarily interested in theories
where the scalar field (or ‘‘dilaton’’ as we shall refer to it),
�, evolves according to the conservation equation

�� � B;�����T � V;����;

where T is the trace of the energy momentum tensor, T �
T�� (with the contribution from any cosmological constant
neglected). We absorb any dilaton-to-cosmological con-
stant coupling into the definition of V���. The dilaton-to-
matter coupling B��� and the self-interaction potential
V��� are arbitrary functions of � and units are defined
by c � G � 1 and � � 8�. This covers a wide range of
theories which describe the spacetime variation of con-
stants of nature; it includes Einstein-frame Brans-Dicke
(BD) and all other single-field, scalar-tensor theories of
gravity [7,9,14,15]. In cosmologies that are composed of
perfect fluids and a cosmological constant, it will also
contain the Bekenstein-Sandvik-Barrow-Magueijo
(BSBM) theory of varying �, [9], and other single-dilaton
theories which describe the variation of standard model
couplings [15]. We considered some other possible gener-
alizations in [13]. It should be noted that our analysis and
results apply equally well to any theory which involves
weakly coupled, ‘‘light,’’ scalar fields, and not just those
that describe variations of the standard constants of
physics.

In the first paper [13], we determined the conditions
under which condition (1) would hold near the surface of
a virialized overdensity of matter, such as a galaxy or star,
or a planet, such as the Earth, under the assumption of
spherical symmetry. We chose to refer to this object as our
‘‘star.’’ In paper I, matched asymptotic expansions were
employed to analyze the most general, spherically sym-
metric, dust plus cosmological constant embeddings of the
star into an expanding, asymptotically homogeneous and
isotropic spherically symmetric universe. We proved that,
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independent of the details of the scalar-field theory de-
scribing the varying constant, (1) is almost always satisfied
under physically realistic conditions. The latter condition
was quantified in terms of an integral over sources that can
be evaluated explicitly for any local spherical object.

In this paper we extend that analysis, and our main
result, to a class of embeddings into cosmological back-
ground universes that possess no Killing vectors, i.e. no
symmetries. The mathematical machinery that we use to
do this is, as before, the method of matched asymptotic
expansions, employed in [13], where the technical machi-
nery is described in detail. A summary of the results
obtained there can also be found in [16].

Shortly after the first paper in this series appeared,
another study [17] came to similar conclusions as we did
in our work. While we, clearly, do not disagree with those
conclusions, we feel it important to note that in [17] the
matching of the local values of � and _� to the cosmologi-
cal one is implicitly assumed to occur whenever the local,
inhomogeneous region is in some sense ‘‘small.’’ We agree
that this is a valid a priori matching assumption provided
the scale of the region is in some sense small, and where
that region is in some sense weakly nonlinear as a pertur-
bation to the FRW background; however, in [17] it is not
established how small is ‘‘small.’’ It is also not clear if this
assumption is valid near the surface of a black hole. We
believe that the assumption of ‘‘small scales’’ needs to be
stated precisely so as to define the range of validity of any
subsequent result. In paper I, we rigorously established the
validity of the assumption, made in [17], for McVittie
spacetimes, and also, under certain conditions, for
Tolman-Bondi spacetimes. In this paper we extend that
proof to cover Szekeres-Szafron spacetimes (again under
the requirement that certain specified conditions hold). It is
on the basis and validity of this small scale assumption that
the results of this series of papers, and that of [17], rest.

This paper is organized as follows: we shall first provide
a very brief summary of the method of matched asymptotic
expansions (MAEs) used here; a much fuller discussion
with simple examples is given in paper I. In Sec. II we will
introduce the geometrical setup employed here. It is similar
to that of paper I but with the requirement of spherical
symmetry removed. We will be working with spacetime
backgrounds of Szekeres-Szafron type [18,19]. These so-
lutions of Einstein’s equations are invariantly defined by
four assumptions (listed in Sec. II) about the nature of the
background matter density. Three of these assumptions
seem quite artificial, but are expected to hold approxi-
mately if the deviations of spherical symmetry come about
in a manner that is in some sense ‘‘slow,’’ and they greatly
simplify the analysis. A fuller study, where these assump-
tions are relaxed or dropped, is beyond the scope of this
work. We introduce the particular solutions of Einstein’s
equations that we use first in Sec. II and then describe them
in greater detail in Sec. III. In Sec. IV we construct over-
-2
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lapping asymptotic expansions of the dilaton in Szekeres-
Szafron backgrounds. In this way we extend the analysis of
[13] to include nonspherically symmetric backgrounds of
this type. As with the Tolman-Bondi case of paper I, it is
possible, within the framework of the Szekeres-Szafron
models, to specify the initial dust density and mass dipole
in such a way that the matching procedure that we rely
upon will formally fail. In Sec. V, therefore, we consider
the validity of the matching procedure and other approx-
imations used, and state the conditions under which they
should be expected to hold.

In Sec. VI we match our asymptotic expansions in
accordance with the method of MAEs, for those space-
times in which the procedure is valid. We use the final,
matched asymptotic expansion of the dilaton field to es-
tablish a sufficient condition for condition (1) to hold. We
thereby prove that, whenever this sufficient condition holds
and the spacetime background is of Szekeres-Szafron type
satisfying the conditions found in Sec. V, Eq. (1) will apply.
We also show that under reasonable assumptions a weaker
sufficient condition (because it may fail to hold in some
cases where the original condition does) can be given that
is of the form of the generalized sufficient condition con-
jectured in paper I.

In Sec. VII, we refine and extend our previous conjecture
that our generalized condition is a sufficient one for (1) to
hold even in spacetimes more general than the types ex-
plicitly considered in this series of papers. We conclude
with some astronomical discussion and interpretation of
our main result and, as was done in paper I, we conclude
that we should expect Eq. (1) to hold for terrestrial or solar-
system based observers. As we previously noted in paper I,
this conclusion differs from that in Refs. [20]. In those
papers, the spherical infall model was used and inhomo-
geneities were modeled by matching spatially homogene-
ous Friedmann metrics of different spatial curvature. This
implicitly assumes that the spatial derivatives of the dilaton
are negligible compared with its time variation. This as-
sumption, however, will only be valid if the scale of the
inhomogeneous region of spacetime is of the order of, or
larger than, the Hubble scale; this in not the case for the
situation of a planet or galaxy in an expanding background
universe in which we are interested here.

In what follows, our approach is to employ the method
of matched asymptotic expansions [21,22]. We solve the
dilaton conservation equations as an asymptotic series in a
small parameter, �, about a FRW background and the
Schwarzschild metric which surrounds our star. The devi-
ations from these metrics are introduced perturbatively.
The former solution is called the exterior expansion of
�, and the latter the interior expansion of �. The exterior
expansion is found by assuming that the length and time
scales involved are of the order of some intrinsic exterior
length scale, LE. Similarly, in the interior expansion we
assume all length and time scales be of the order of LI, the
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interior length scale. Neither of the two different expan-
sions will be valid in both regions. This means that, in
general, only a subset of our boundary conditions will be
enforceable for each expansion, and as a result both the
interior and exterior solutions will feature unknown con-
stants of integration. To remove this ambiguity, and fully
determine both expansions, we used the formal matching
procedure. The idea is to assume that both expansions are
valid in some intermediate region, where length scales go
like Lint � L�I L

1��
E , for some � 2 �0; 1�. Then by the

uniqueness property of asymptotic expansions, both solu-
tions must be equal in that intermediate region. This allows
us to set the value of constants of integration, and effec-
tively apply all the boundary conditions to both expan-
sions. A fuller discussion of this method, with examples,
and its application in general relativity is given in [13].
II. GEOMETRICAL SETUP

We shall consider a similar geometrical setup to that of
paper I. We assume that the dilaton field is only weakly
coupled to gravity, and so its energy density has a negli-
gible effect on the expansion of the background universe.
This allows us to consider the dilaton evolution on a fixed
background spacetime. We will require this background
spacetime to have the same properties as in paper I, but
with the requirement of spherical symmetry removed.
(i) T
-3
he metric is approximately Schwarzschild, with
mass m, inside some closed region of spacetime
outside a surface at r � Rs. The metric for r < Rs
is left unspecified.
(ii) A
symptotically, the metric must approach FRW
and the whole spacetime should tend to the FRW
metric in the limit m! 0.
(iii) W
hen the local inhomogeneous energy density of
asymptotically FRW spacetime tends to zero, the
spacetime metric exterior to r � Rs must tend to a
Schwarzschild metric with mass m.
We will also limit ourselves to considering spacetimes in
which the background matter density satisfies a physically
realistic equation of state, specifically that of pressureless
dust (p � 0). We also allow for the inclusion of a cosmo-
logical constant, �. The set of all nonspherical spacetimes
that satisfy these conditions is too large and complicated
for us to examine fully here, and such an analysis is beyond
the scope of this paper. We can simplify our analysis
greatly, however, by specifying four further requirements:
(1) T
he flow lines of the background matter are geode-
sic and nonrotating. This implies that the flow lines
are orthogonal to a family of spacelike hypersurfa-
ces, St.
(2) E
ach of the surfaces St is conformally flat.

(3) T
he Ricci tensor for the hypersurfaces St, �3�Rab, has

two equal eigenvalues.

(4) T
he shear tensor, as defined for the pressureless dust

background, has two equal eigenvalues.
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The last three of these conditions seem rather artificial;
however, when the deviations from spherical symmetry are
in some sense small we might expect them to hold as a
result of the first condition. In the spherically symmetric
case, condition (1) implies conditions (2)–(4). In the ab-
sence of spherical symmetry, these conditions require the
background spacetime to be of Szekeres-Szafron type,
containing pressureless matter and (possibly) a cosmologi-
cal constant. The conditions (1)–(4) combined with the
background matter being of perfect-fluid type provide an
invariant definition of the Szekeres-Szafron class of met-
rics that is due to Szafron and Collins [23,24].

We have demanded that the ‘‘local’’ or interior region be
approximately Schwarzschild. The intrinsic length scale of
the interior is defined by the curvature invariant there:

LI �
�

1

12
RabcdR

abcd
�
�1=4

�
R3=2
s

�2m�1=2
: (2)

The exterior (or cosmological) region is approximately
FRW, and so its intrinsic length scale is proportional to
the inverse square root of the local energy density:
1=

�����������������
�"��
p

, where " is the matter density. In accordance
with current astronomical observations, we assume that
this FRW region is approximately flat, and so we set our
exterior length scale appropriate for the present epoch, t �
t0, by the inverse Hubble parameter at that time:

LE � 1=H0:

We can now define a small parameter by the ratio of the
interior and exterior length scales:

� � LI=LE:
III. SZEKERES-SZAFRON BACKGROUNDS

In 1975, Szekeres [18] solved the Einstein equations
with a perfect-fluid source by assuming a metric of the
form

d s2 � dt2 � e2�dr2 � e2��dx2 � dy2�;

with � and � being functions of �t; r; x; y�. The coordinates
were assumed to be comoving so that the fluid-flow vector
is of the form u� � ��0 ; this implies p � p�t� and the
acceleration _u� � 0. Szekeres assumed a dust source
with no cosmological constant, p � 0, although his results
were later generalized to arbitrary p�t� by Szafron [19] and
the explicit dust plus � solutions were found by Barrow
and Stein-Schabes [25]. In general, these metrics have no
Killing symmetries [26]. Spherically symmetric solutions
of this type with ��r; t� and ��r; t� were, in fact, first
discussed by Lemaı̂tre [27] and are usually referred to as
the Tolman-Bondi models [28]; much of the analysis of
paper I assumed a Tolman-Bondi background.

The Szekeres-Szafron models can be divided into two
classes:�;r � 0 and�;r � 0. Both classes include all FRW
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models in their homogeneous and isotropic limit; however,
only the latter ‘‘quasispherical’’ class includes the external
Schwarzschild solution. Since we want to have some part
of our spacetime look Schwarzschild we will only consider
the �;r � 0 quasispherical solutions. We will also limit
ourselves to spacetimes with a cosmological constant
[25], so in effect the total pressure is p � ��. These
universes contain no gravitational radiation as can be
deduced from the existence of a Schwarzschild spacetime
as a special case which ensures a smooth matching to a
Schwarzschild metric, which contains no gravitational ra-
diation. With these restrictions, � and � are given by

e� � ��t; r�e~��r;x;y�; (3)

e� � h�r�e�~��r;x;y��e��;r; (4)

e�~� � ~A�r��x2 � y2� � 2 ~B1�r�x� 2 ~B2�r�y� ~C�r�; (5)

where ��t; r� satisfies

�2
;t � �~k�r� � 2 ~M�r�=�� 1

3��2:

The functions ~A�r�, ~B1�r�, ~B2�r�, ~C�r�, ~M�r�, ~k�r�, and ~h�r�
are arbitrary up to the relations

1
4E�r� :� ~A ~C� ~B2

1 �
~B2

2 �
1
4�

~h�2�r� � ~k�r�	:

The surfaces �t; r� � const have constant curvature E�r�.
We will require that the inhomogeneous region of our
spacetime is localized, so that it is by some measure finite.
This implies that the surfaces of constant curvature must be
closed; we must therefore restrict ourselves to only con-
sidering backgrounds where E> 0. Whenever this is the
case, we can always rescale the arbitrary functions so that
E can be set equal to 1 by the rescalings

A�r� :� ~A�r�=
���������
E�r�

p
; B1�r� :� ~B1�r�=

���������
E�r�

p
;

B2�r� :� ~B2�r�=
���������
E�r�

p
; C�r� :� ~C�r�=

���������
E�r�

p
;

e� :�
����
E
p

e~�; k :� ~k�r�=E�r�;

h�2 :� ~h�r��2=E�r� � 1� k�r�;

R�t; r� :� ��r; t�=
����
E
p

; M�r� � ~M�r�=E3=2:

These transformations can be viewed as the ‘‘gauge fixing’’
of arbitrary functions. In this gauge, R�t; r� is a ‘‘physical’’
radial coordinate, i.e. the surfaces �t; r� � const have sur-
face area 4�R2 and the metric becomes

d s2 � dt2 �
�1� �;RR�

2R2
;rdr

2

1� k�r�
� R2e2��dx2 � dy2�;

where e�� � A�r��x2 � y2� � 2B1�r�x� 2B2�r�y� C�r�
and AC� B2

1 � B
2
2 �

1
4, and �;R :� �;r=R;r and

R2
;t � �k�r� � 2M�r�=R� 1

3�R
2:

In this quasispherically symmetric subcase of the
-4
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Szekeres-Szafron spacetimes the surfaces of constant cur-
vature, �t; r� � const, are 2-spheres [29]; however, they are
not necessarily concentric. In the limit �;r ! 0, the �t; r� �
const spheres become concentric (see Fig. 1). We can make
one further coordinate transformation so that the metric on
the surfaces of constant curvature, �t; r� � const, is the
canonical metric on S2, i.e. d	2 � sin2	d�2:

x! X � 2�A�r�x� B1�r��;

y! Y � 2�A�r�y� B2�r��;

where X� iY � ei’ cot	=2. This yields

��;rjx:y �

z�X2 � Y2 � 1� � 2
xX� 2
yY

X2 � Y2 � 1

� 
z�r� cos	� 
x�r� sin	 cos’� 
y�r�


 sin	 sin’;

where we have defined


z�r� :�
A0

A
; 
x�r� :�

�
2B1

A

�
0
A;


y�r� :�
�
2B2

A

�
0

A:

With this choice of coordinates, the local energy density of
the dust separates uniquely into a spherical symmetric part,
"s, and a nonspherical part, "ns:

" � "s�t; R� � "ns�t; R; 	; ’�;

where

�"s �
2M;R

R2 ; (6)

�"ns � �
R�;R

1� �;RR
�

�
2M

R3

�
;R
: (7)

We define M;R � M;r=R;r. Following the conventions of
FIG. 1. The surfaces �t; r� are spheres, which are concentric to
leading order in � in both the exterior and interior limits.
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our previous paper, we define

M :� m� Z�r�;

where m is the gravitational mass of our star.

A. Exterior expansion

As a result of the way that the inhomogeneity is intro-
duced in these models, we want the FRW limit to be
‘‘natural,’’ that is, for the O�3� orbits to become concentric
in this limit; we therefore require �r � o�1� as �! 0 in the
exterior. This follows from the requirement that the whole
spacetime should become homogeneous in a smooth fash-
ion in the limit where the mass of the star vanishes:m! 0.
In other words, the introduction of our star is the only thing
responsible for making the surfaces of constant curvature
nonconcentric. We define, as in the previous paper, dimen-
sionless ‘‘radial’’ and time coordinates appropriate for the
exterior by

� � H0t; � � H0r:

The exterior limit is defined by �! 0 with � and �
fixed. In the exterior region we find asymptotic expansions
in this limit. According to our prescription, we write

H0Z��� �
1
2�m�

3 � �pz1�r� � o��
p�;

and introduce functions li��� so

H�1
0 
i � �sli��� �O��s�:

Since H�2
0 �

2M
R3 �;R �O��p; ��, we have that H�2

0 �"ns �

O��p�s; �1�s� whereas H�2
0 �"s �O��p; ��. Thus, the

nonspherical perturbation to the energy density is always
of subleading order compared to the first order in spherical
perturbation. The first-order, nonspherical, metric pertur-
bation appears at O��s�; however, since this is equivalent
to a coordinate transform on �r; 	; ’� and the dilaton field
� is homogeneous to leading order in the exterior, this
perturbation does not make any corrections to the dilaton
conservation equation at O��s�. Thus, both at leading
order, and at next-to-leading order, both the energy density
and the dilaton field will behave in the same way as in the
spherically symmetric Tolman-Bondi case—with the pos-
sible addition of a nonspherically symmetric vacuum per-
turbation to the dilaton �, i.e. ���s ��ns � o��

p�
where �s is the spherically symmetric solution and
�FRW�ns � 0. As in our previous paper, however, we are
not especially interested in the exterior solution for �
beyond zeroth order, just the effect of any background
variation of � on what is measured on the surface of a
local star.

B. Interior expansion

We define dimensionless coordinates for the interior in
the same way as we did for the spherically symmetric case:

T � L�1
I �t� t0� and  � R=Rs:
-5
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We define the interior limit to be �! 0 with T and 
fixed, and perform out interior asymptotic expansions in
this limit. To lowest order in the interior region, we write
Z� �qRs�1, and 
i :� �q0R�1

s bi, where i � fx; y; zg. The
condition that �" > 0 everywhere requires q0  q, and
then, to next-to-leading order, the interior expansion of �
will be the same as it was in the spherically symmetric
Tolman-Bondi case. We can potentially include a non-
spherical vacuum component for �; however, this will be
entirely determined by a boundary condition on R � Rs
and the need for it to vanish for large R. To find the leading-
order behavior of the �;T , we need to know � at next-to-
leading order. The only new case we need to consider,
therefore, is when q0 � q, i.e. �"ns � �"s. In the spheri-
cally symmetric case, we considered two distinct sub-
classes of the Tolman-Bondi models: the flat, k � 0,
Gautreau-Tolman-Bondi spacetimes [24,30] and the non-
flat, k � 0, Tolman-Bondi models with a simultaneous
initial singularity. In Gautreau-Tolman-Bondi models the
initial singularity is nonsimultaneous from the point of
view of geodesic observers. The latter class is the more
realistic, since in the former the world lines of matter
particles stream out of the surface of our star at R �
RsjR�Rs , i.e. R;t > 0, whereas in the simultaneous big-
bang models we can demand that matter particles fall
onto this surface, i.e. R;tjR�Rs < 0. With this choice, and
if Rs � 2m, the nonflat models properly describe the em-
bedding of a black hole into an expanding universe,
whereas the Gautreau-Tolman-Bondi model technically
describes the embedding of a white hole in the same
universe. In this paper we shall therefore only give the
results explicitly for the nonflat case—however, there is a
simple procedure to transform our results to the flat
Gautreau case.

We define

� � �3=2 � 3T=2�2=3; Rs� � r�O��q; �2=3�:

From the exact solutions we find

k��� � �2=3k0�1� �
q�1��� � o��

q�� �O��5=3�;

where

k0��T� �
2m
Rs

�
�

H0t0 � �T

�
2=3
:

We can remove the O��2=3� metric perturbation by a
redefinition of the T coordinate, T ! T�:

�����������������������
1� �2=3k0

q
T� � T �

Z 

�������
2m
Rs0

q
�1�

���������������������������
1� � �

2=3�0

H0t0��T
�

q
�

1� 2m
Rs0

d0:

To leading order we see that T � T�. The interior expan-
sion of the metric, for q0 � q, is written

ds2
int � R

2
s�j
�0�
ab�� � �

qj�1�sab �; �� � �
qj�1�ns
ab �; ��

� o��q��dxadxb � o��q�;
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where j�0�ab and j�1�sab are given by

j�0�abdxadxb �
Rs
2m

dT�2 � �d� �1=2dT��2

� 2fd	2 � sin2	d’2g; (8)

j�1�sab dxadxb � �
�1���

1=2
ddT� �

�1���


dT�2: (9)

These are the same as in the spherically symmetric case.
The nonspherically symmetric perturbation is given by

j�1�ns
ab dxadyb � 2�bz cos	� bx cos’ sin	

� by sin’ sin	�d�2

� 22�bz sin	� bx cos’�1� cos	�

� by sin’�1� cos	�	d	d�

� 22�1� cos	� sin	�bx sin’

� by cos’�d’d�: (10)

The spherically symmetric part of the local energy density,
�"s, is the same as it was in the Tolman-Bondi cases:

R2
s�"s � �q

2m
Rs

�1;

3=2�1=2
:

The nonspherically symmetric part is

R2
s�"ns � ��q

6m
Rs



�bz cos	� bx sin	 cos�� by sin	 sin��

3=2�1=2
;

and to ensure that the energy density is everywhere positive
we need ��1�;�  3bi.

IV. EXTENSION TO QUASISPHERICAL
SITUATIONS

A. Boundary conditions

We demand the same boundary conditions as before: as
the physical radius tends to infinity, R! 1, we demand
that the dilaton tends to its homogeneous cosmological
value: ��R; t� ! �c�t�. This can be applied to the exterior
approximation. In the interior, we demand that the dilaton
flux passing out from the surface of our star at R � Rs is, at
leading order, parametrized by

�R2
s

�
1�

2m
Rs

�
@�0j�Rs � 2mF� ��0�

�
Z Rs

0
dR0R02B;���0�̂

0���"�R0�;

(11)

where ��0 � �0�R � Rs�. The function F��� can be found
by solving the dilaton field equations to leading order in the
R< Rs region. For black holes F� ��0� � 0, whereas for
objects much larger than their Schwarzschild radius
-6
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F� ��0� � B;���c�. Without considering the subleading-
order dilaton evolution inside our star, i.e. at R< Rs, we
cannot rigorously specify any boundary conditions beyond
leading order. Despite this, we can guess at a general
boundary condition by perturbing Eq. (11):

�R2
s

�
1�

2m
Rs

�
@R ~����j�Rs � �

~��
�������
�g
p

gRR�@R�0jR�Rs

� 2 ~��M�F� ��0�

� 2mF;�� ��0�~�� ��0�

� smaller terms; (12)

where ~��X� is the first subleading-order term in the interior
expansion of X; M is the total mass contained inside  <
Rs and is found by requiring the conservation of energy;
and at t � t0 we have M � m. Only ~�� ��0� remains un-
known; however, we shall assume it to be the same order as
~���� and see that this unknown term is usually suppressed
by a factor of 2m=Rs relative to the other terms in Eq. (12).
We make two, relatively unrestrictive, assumptions about
the form of the arbitrary functions, V��� and B���:

B;����E�F� ��0�
2m
Rs

B;���E�
� 1; (13)

V;����E�F� ��0�
2m
Rs

V;���E�
� 1; (14)

and also that V��� is the same order of magnitude for the
local value of � as it is for the cosmological one. For
physically acceptable theories, this assumption will only
fail for special choices of V���, such as those required
when one considers chameleon scalar-field theories [31].

B. Interior expansion

In the spherically symmetric case, we found that ��
��0�I � �

q��1�I � o��
q�. In the nonspherical case, where

q0 � q, we relabel ��1�I ! ��1�sI and we have additional
nonspherical modes:

����0�I �; T� � �
q��1�sI �; T� � �

q��1�zI �; T� cos	

� �q��1�xI �; T� sin	 cos’

� �q��1�yI �; T� sin	 sin’� o��q�

where

�
2m
Rs

�
3=2��1�iI;TT�

3

2
��1�iI;T

�
�

1

�1=2

�
5=2

�1=2
��1�iI;�

�
;�
�

2

1=2
��1�iI

�
6m
Rs
B;���

0
I �
bi���

�1=2
�

�
2m
Rs

�
1

�1=2
F� ��0�




��
bi���

�1� 2m
Rs

1� 2m
Rs

��
;�
�2bi���

�
: (15)
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We can solve this order by order in 2m=Rs, and to lowest
order we find

��1�iI �
2m
Rs
B;���

0
I �

Z �
d�0

bi��0�

02
�

2m
Rs
B;���

0
I �

1

2



Z �

�1
d�00bi��

0� �
2m
Rs
F� ��0�

1

2



Z �

�1
d�0bi��0�0 �

Ci
2 �Di�O��2m=Rs�2�:

(16)

Since we are interested in finding when and where the local
time variation of � deviates from its cosmological value,
we are chiefly concerned with the case q � 1. The match-
ing condition then requires that we fix Di so that in the
intermediate limit we have ��1�iI � n with n < 1. The
value of Ci should be set by a boundary condition on R �
Rs. We cannot specify Ci exactly without further informa-
tion about the interior of our star in R< Rs. If we assume
that the prescription for the subleading-order boundary
condition given above is correct, then we find

@�
�1�i
I j�1 �

2m
Rs

bi
�1=2

���������1
F� ��0� �O��2m=Rs�2� ) Ci

�
m
Rs
B;���

0
I �
Z �1

d�0
bi��0�

02
�

1

2
D:

From now on, we setCi � 0, for simplicity; even when this
is not the case we do not expect the magnitude of Ci or Ci;T
to be larger than any of the other terms in ��1�iI or ��1�iI;T ,

respectively. The time derivative of ��1�iI for fixed R is

��1�iI;T �
4m
Rs
B;���

0
I �

Z �
d0

bi��0�

05=2
�

2m
Rs
B;���

0
I �

1

2



Z �

�1
d0

bi��
0�

1=2
�

2m
Rs
F� ��0�

1

2



Z �

�1
d�0

bi��
0�

1=2
�D;T: (17)

In the next section we shall discuss what we require of the
bi for the matching procedure to be valid. In Sec. VI we
will then use the matching conditions to find D and D;T .

We could also relax the requirement that the leading-
order mode in � be spherically symmetric. At next-to-
leading order these new modes would generate extra terms
in ��1�I . In general, an l pole at leading order becomes an
�l� 1� pole at next-to-leading order. The magnitude of the
extra time dependence that is picked up is, however, the
same each time. Hence, we restrict ourselves by taking the
leading-order mode to be spherically symmetric for the
time being. Note also that we can pass from the simulta-
neous big-bang case to the spatially flat, ‘‘Gautreau’’ case
by setting k � 0 and making the transform �! � �
�3=2 � 3T=2�2=3. This will also mean that �I;T ! ��I;T .
-7
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V. VALIDITY OF APPROXIMATIONS

All of the conditions found in paper I for the matching of
the spherically symmetric parts of � to be possible still
apply here. However, we must now satisfy some extra
conditions that come from the requirement that the non-
spherical parts should also be matchable.

We assume that bi��� / �di as �! 1 for some di > 0.
At order �q, the growing mode in the nonspherically
symmetric part of the interior approximation will then
grow like �q�di�1=. In the intermediate, or matching,
region we have that �; � ��� for some � 2 �0; 1�. We
require �I to have a valid asymptotic expansion in this
region. This implies that there exists some � 2 �0; 1� such
that, for each i, we have �� q=di > 0.

In the exterior we shall write H�1
0 
i � �

p0i li���, where
p0i > 0 comes from the requirement that the 2-spheres of
constant curvature become concentric in the exterior limit.
As �! 0 we assume that li��� / ��fi . We previously
stated that Z� 1

2 �m�
3 � �pz1 � o��

p� in the exterior.
We assume that, as �! 0, we have z1 / ��m. Although
we did not explicitly consider the exterior expansion of �
we can now examine the behavior of the leading-order
nonspherically symmetric mode in the intermediate limit
of that exterior expansion. We noted above that there will
be no O��p

0
i� correction resulting from the li. The leading-

order mode will therefore either go like
maxi��

p�p0i z1���li���� if p < 1 or maxi��
1�p0i���li����

otherwise, and ��O��1��� in the intermediate region.
For the exterior expansion to be valid in the intermediate
region, we therefore require

max
i
�p0i � �1� ���fi �m��>�p if p � 1;

max
i
�p0i � �1� ��fi�>�1 if p  1:

These conditions on � are equivalent to the following:
there exists � such that the interior expansion of R2�"ns is
o�1� as �! 0 for all 0<�0 <� where ; T �O�����,
and the exterior expansion of R2�"ns is also o�1� as �! 0
for all 0<�00 <� where �; �� �0 �O��1���. This sug-
gests that the condition for the matching procedure to
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work, as far as the spherically nonsymmetric modes are
concerned, is simply that

R2�"ns � 1 everywhere:

We can also rephrase and generalize the conditions for the
matching procedure to be possible with respect to the
spherically symmetric modes (as found in [13]) in a similar
fashion: for all � 2 �0; 1�, and keeping L�I L

1��
E �t� t0�,

L�I L
1��
E R fixed, we have lim�!0R

2��"s � o�1� and
lim�!02�m� Z�=R � o�1�. We can combine our two con-
ditions by simply replacing �"s by �" in the above
expression. Strictly speaking, since � 2 �0; 1� (as opposed
to [0, 1), (0, 1] or [0, 1]) we can also replace �" by just "
since R2�"FRW is small everywhere outside the exterior
region. For Szekeres backgrounds, the first of these con-
ditions implies the second everywhere outside the interior
region. Therefore, the matching procedure is certainly
possible to zeroth order, if

8� 2 �0; 1�: lim
�!0
�R2�"�R; t�� � o�1� and

lim
�!0
�M�R; t�=R� � o�1� with

fL�I L
1��
E �t� t0�;L

�
I L

1��
E Rg fixed;

where M�R; t� is the gravitational mass inside the surface
�t; R� � const. Equivalently, in any intermediate region,
the background spacetime is asymptotically Minkowski
as �! 0: everywhere that is not in either the interior or
exterior regions can be considered to be a weak-field
perturbation of Minkowski spacetime. The power of our
method is that we do not require this to be true of the
interior and exterior regions. So long as this condition
holds in the intermediate region, we can match the
zeroth-order approximations in some region and find the
circumstances under which condition (1) holds by compar-
ing the relative sizes of the derivatives �c;t and ��1�I;t .

VI. MATCHING

We rewrite the expression for the ��1�iI in terms of the
nonspherical part of local density
�q��1�ns
I � �q���1�zI;t cos	���1�xI;t sin	 cos’���1�yI;t sin	 sin’� � �

1

3
B;���

0
I �R

Z r
dr0R;r�"ns�r

0; t� �
R
Rs
D̂�T; 	; ��

�
1

3
B;���

0
I �

1

R2

Z r

R�Rs
dr0R;rR3�"ns�r0; t� �

1

3
F� ��0�

1

R2

Z r

R�Rs
dr0R;rR3�"ns�r0; t�
where D̂�T; 	;�� :� Dz cos	�Dx sin	 cos’�
Dy sin	 sin’. By examining the dilaton equations of mo-
tion in the FRW region, we can see that there is a compo-
nent of the leading-order �	; ’�-dependent term in the
exterior expansion or � behaves like

�
1

3
B;���c�R

Z r

1
dr0R;r�"ns�r0; t�
for R� H�1
0 and t fixed. Therefore, matching requires

that we choose D̂ such that
�q��1�ns
I � �q���1�zI;t cos	���1�xI;t sin	 cos’

���1�yI;t sin	 sin’�; (18)
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��
1

3
B;���

0
I �R

Z r

1
dr0R;r�"ns�r0; t� �

1

3
B;���

0
I �

1

R2



Z r

R�Rs
dr0R;rR

3�"ns�r
0; t� �

1

3
F� ��0�

1

R2



Z r

R�Rs
dr0R;rR

3�"ns�r
0; t�: (19)

The interior expansion is now fully specified to order
O��p�. We are interested in the behavior of�I;t and we find

�q��1�ns
I;t �

2

3
B;���

0
I �R

Z r

1
dr0R;rR;t

�"ns�r
0; t�

R

�
1

3
B;���

0
I �

1

R2

Z r

R�Rs
dr0R;rR;tR

2�"ns�r
0; t�

�
1

3
F� ��0�

1

R2

Z r

R�Rs
dr0R;rR;tR3�"ns�r0; t�

�
1

3
F� ��0�RR;t�"ns�r; t�: (20)

This expression is valid whenever Rs � 2m, and the re-
quirements for matching are satisfied. In these cases we
expect F� ��0� � B;���

0
I � �O�2m=Rs�; so, approximately,

we have

�q��1�ns
I;t �

2

3
B;���c�R

Z r

1
dr0R;rR;t

�"ns�r0; t�
R

�
1

3
B;���c�RR;t�"ns�r; t�:

In this case, where Rs � 2m, and our star is actually a
black hole, we require F� ��0� to ensure that the � is well
defined as R! 2m. Even so, in this case, Eq. (17) will not
be strictly valid, since it was derived under the assumption
of Rs � 2m. By inspection of the dilaton evolution equa-
tion in the interior [Eq. (15)], however, we expect �q��1�ns

I;t
near the black-hole horizon to be of similar magnitude to
the right-hand side of Eq. (17).

Combining the results of this paper with those for the
spherically symmetric case, we find

�I;t ��c;t � B;���c�
Z r

1
dr0R;rR;t��"s�r0; t�

�
2

3
B;���c�R

Z r

1
dr0R;rR;t

�"ns�r0; t�
R

�
1

3
B;���c�RR;t�"ns�r; t�:

We require that j��I;t ��c;t�=�c;tj � 1 for (1) to hold and
so we ensure that local observations will detect variations
of � occurring on cosmological scales.
VII. GENERALIZATION: A CONJECTURE

So far, we have found an analytic approximation to the
values of � and �c;t in the interior. More succinctly
(although less explicitly) we can say that, to leading order
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in �, the values of �, �;t, and �;r can all be found every-
where outside the exterior region from the approximation:

� � �hom�t� ��l� ~x; t�; (21)

where �l is the solution to

�sch�l � B;���"

with �" � "� ~x; t� � "c�t�, �sch is the wave operator in a
Schwarzschild background, and t is the proper time of a
comoving observer. This is solved with the boundary con-
ditions�l ! 0 asR! 1 (where R � 0 is the center of our
star) and the flux out of the star is as given by Eqs. (11) and
(12). The homogeneous term is

�hom�t� � �c�t��t� ~x; x��

where the lag, �t� ~x; t�, is defined by

~r 2�t� ~v� � ~r� ~v� � ~r�t�� ~v� � ~r�t� ~r� ~v���� ~r�� ~v;

with ri � @i, i � f1; 2; 3g, and �v � ~v�H~x, where ~v is
the velocity of the dust particles relative to R � k ~xk � 0.
The velocity ~v� has the following properties: ~v� � ~v in
some region that includes all the interior and excludes all
of the exterior; ~v� � � ~v everywhere else. In a general
sense, the interior and exterior are two disjoint regions of
total spacetimes where general-relativistic effects are non-
negligible at leading order (e.g. such as when k ~vk � 1).
The interior region should be closed, and in the exterior
region k� ~vk is small. So, ~v� should be defined in such a
way that it respects all the symmetries of the spacetime and
so that k ~v�k � 1 everywhere outside the interior region.
This is required to ensure that �t, as defined above, is
finite. It can be seen to come out of the matching proce-
dure. When the background spacetime satisfies the con-
ditions given below, the precise way in which ~v� is defined
does not affect the leading-order behavior of �t. For
boundary conditions, we must require the flux in �t going
out of the star to vanish, and require �t! 0 as �v! 0,
i.e. as R! 1. This is the natural generalization of what
has been seen in the Szekeres-Szafron backgrounds, ~vi �
R;t�R; t��iR. In these cases, the equation is just an ordinary
differential equation in R with the solution

�t �
Z A

R
dR0
�R;t�R0; t� �HR0 � R;t�Rs; t� �HRs�

1� R2
;t�R0; t�

�
Z 1
A

dR0
�R;t�R

0; t� �HR0 � R;t�Rs; t� �HRs�

1� �R;t�R
0; t� �HR�2

;

where A is some arbitrary value of A in the intermediate
region, and each A represents a particular choice of defi-
nition for ~v�. This expression is only valid to leading order
in the interior and intermediate regions. To this order, all
choices for A are equivalent. Near R � Rs, to leading order
in � � LI=LE, this ensures that d�t� �t� � dv, where
v � tsch � R� 2m ln�R=2m� 1� is the advanced time co-
ordinate and tsch is the standard, curvature-defined,
-9
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Schwarzschild time coordinate. The solution for �hom is
then, to leading order in �, just the particular one given by
Jacobson in [32]. We have assumed that the generalizations
of the Szekeres-Szafron result for � hold. We have only
proved that this assumption holds for the subset of
Szekeres-Szafron spacetimes for which the matching pro-
cedure works. Nonetheless, based on this analysis, we
conjecture that (21) provides a good numerical approxi-
mation to the value of�, and by differentiating once, to�;t

and @i�, i � f1; 2; 3g, near the surface of our star, for any
dust plus � spacetime that can be everywhere considered
to be a weak-field perturbation of either Schwarzschild,
Minkowski, or FRW spacetime; that is,

R2��"�R; t� � 1; 2�M�R; t� �m�=R� 1

where M�R; t� is the gravitational mass contained inside
the surface �R; t� � const. One could seek to motivate our
conjecture as some sort of analytical continuation from the
Szekeres-Szafron spacetimes to more general back-
grounds, but such arguments would, we believe, be hard
to frame in any rigorous context and are beyond the scope
of the analysis in this paper.
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VIII. DISCUSSION

In this paper we have extended the analysis of [13] to
include a class of dust-filled spacetimes without any sym-
metries provided by the Szekeres-Szafron metrics. Again,
we have used the method of matched asymptotic expan-
sions to link the evolution of the dilaton field, �, in an
approximately Schwarzschild region of spacetime to its
evolution in the cosmological background. By these meth-
ods, we have provided a rigorous construction of what has
been simply assumed about the matching procedures in
earlier studies [33]. We have also analyzed, more fully, the
conditions that we need the background spacetime to sat-
isfy for the matching procedure to be valid, and we have
interpreted these conditions in terms of their requirements
on the local energy density. Finally, we have conjectured a
generalization of our result to more general spacetime
backgrounds than those considered here.

By combining the results found here with those of the
previous paper, we conclude that, in the class of quasi-
spherical Szekeres spacetimes in which the matching pro-
cedure is valid, the local time variation of the dilaton field
will track its cosmological value whenever
��������
B;���c�

R
r
1 dr0R;r���R;t"s�r0; t�� �

2
3B;���c�R

R
r
1 dr0R;rR;t

�"ns�r0;t�
R � 1

3B;���c�RR;t�"ns�r; t�
_�c

��������� 1: (22)
When the cosmological evolution of � is dominated by its
matter coupling, _�c �O�B;�H�1

0 �"c�, this condition is
equivalent to��������H0

Z r

1
dr0R;r

��R;t"s�r
0; t��

"c�t�

�
2

3
H0R

Z r

1
dr0R;rR;tR�1 "ns�r

0; t�
"c�t�

�
1

3
H0R;t

"ns�r; t�
"c�t�

��������� 1:

In the other extreme, when the potential term dominates
the cosmic dilaton evolution, the left-hand side of the
above condition is further suppressed by a factor of
B;���c�=V;���c� � 1. As in our previous paper [13], we
can see that for a given evolution of the background matter
density, condition (1) is more likely to hold (or will hold
more strongly) when jB;���c��"c=V;���c�j � 1. We re-
iterate our previous statement that domination by the po-
tential term in the cosmic evolution of the dilaton has a
homogenizing effect on the time variation of �.

The nonspherically symmetric parts of energy density
enter into the expression differently. The magnitude of the
terms on the left-hand side of Eq. (22) is, as in the spheri-
cally symmetric case, still hH0R�R;t"="i�R; t� where h�i

�R; t� represents some ‘‘average’’ over the region outside
the surface �R; t� � const. We should note that, given the
condition on �" that has been required for matching, the
leading-order contribution to �"ns is everywhere of dipole
form and this is responsible for the special form of the
average over the nonspherically symmetric terms. We can
also see that, as a result of the form of Eq. (22), peaks in
�"ns that occur outside of the interior region will, in the
interior, produce a weaker contribution to the left-hand side
of Eq. (22) than a peak of similar amplitude in a spherically
symmetric energy density �"s. This behavior would con-
tinue if we were also to account for higher multipole terms
in �"ns. The higher the multipole, the more ‘‘massive’’ the
mode, and the faster it dissipates.

If we are interested in finding a sufficient condition (as
opposed to a necessary and sufficient one) for (1) to hold
locally, then in most circumstances we will be justified in
averaging over the nonspherically symmetric modes in the
same way as we average over the spherically symmetric
ones. In most cases, this will overestimate rather than
underestimate the magnitude of the left-hand side of our
condition, (22). This reasoning leads us to the statement
that for _��x; t� � _�c�t� to hold locally it is sufficient that

I :�
Z
��R�

dlH0R0
��v"�
"c

� 1; (23)

where dl :� drR;r, v � R;t is the velocity of the dust
particles, limR!1v � H0R. We make the same general-
ization that we did in paper I by taking ��R� to run from R
-10
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to spatial infinity along a past, radially directed light ray. In
this way, we incorporate the limitations imposed by cau-
sality. We should also assume that the above expression
includes some sort of average over angular directions; to be
safe we could replace " by its maximum value for fixed R
and t. This sufficient condition, (23), is precisely the
generalized condition proposed in our first paper on this
issue. The inclusion of deviations from spherical symme-
try, therefore, has little effect on the qualitative nature of
the conclusions that were found in [13]. If anything, we
have seen that the nonspherical modes dissipate faster and,
as a result, will produce smaller than otherwise expected
deviations in the local time derivative of � from the
cosmological ones.

On Earth we should expect, as before, that the leading-
order deviation of _� from _�c is produced by the galaxy
cluster in which we sit, and that for a dilaton evolution that
is dominated by its coupling to matter, this effect gives I �
6
 10�3��1

m h� 1, where �m � 0:27 and h � 0:71. If
the cosmic dilaton evolution is potential dominated then I
is even smaller. We conclude, as before, that irrespective of
the value of the dilaton-to-matter coupling, and what domi-
nates the cosmic dilaton evolution,

_��x; t� � _�c�t�
123506
will hold in the solar system in general, and on Earth in
particular, to a precision determined by our calculable
constant I . We also conclude, as before, that whenever
I � 1 near the horizon of a black hole, there will be no
significant gravitational memory effect for physically rea-
sonable values of the parameters [32,34].

Our result relies on one major assumption: the physi-
cally realistic condition that the scalar field should be
weakly coupled to matter and gravity—in effect, the var-
iations of constants on large scales must occur more slowly
than the universe is expanding and so their dynamics have
a negligible backreaction on the cosmological background
metric. In this paper we have removed the previous condi-
tion of spherical symmetry at least in as far as the space-
time background is well described by the Szekeres-Szafron
solution. We have therefore extended the domain of appli-
cability our general proof: that terrestrial and solar-system
based observations can legitimately be used to constrain
the cosmological time variation of supposed constants of
nature and other light scalar fields.
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