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Testing gravity against the early time integrated Sachs-Wolfe effect
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A generic prediction of general relativity is that the cosmological linear density growth factor D is scale
independent. But in general, modified gravities do not preserve this signature. A scale dependent D can
cause time variation in gravitational potential at high redshifts and provides a new cosmological test of
gravity, through early time integrated Sachs-Wolfe (ISW) effect-large scale structure (LSS) cross
correlation. We demonstrate the power of this test for a class of f�R� gravity, with the form f�R� �
��1H

2
0 exp��R=�2H

2
0�. Such f�R� gravity, even with degenerate expansion history to �CDM, can

produce detectable ISW effect at z * 3 and l * 20. Null-detection of such effect would constrain �2 to be
�2 > 1000 at >95% confidence level. On the other hand, robust detection of ISW-LSS cross correlation at
high z will severely challenge general relativity.
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I. INTRODUCTION

Cosmological observations provide unique tools to
study gravity at * Mpc scales. General relativity, with
the aid of the cosmological constant, or dark energy with
equation of state w��1, successfully reproduces the
accelerated expansion of the Universe, indicated by SN
Ia observations [1], along with the flatness of the Universe
measured by the cosmic microwave background (CMB)
[2] and distance measured by the baryon oscillations [3].
However, these observational evidences mainly constrain
the mean expansion history of the Universe and can be
reproduced by modified gravity such as brane world DGP
theory [4] and generalized f�R� gravity [5]. Essentially, the
large scale structure (LSS) of the universe, such as weak
gravitational lensing, galaxy clustering and the integrated
Sachs-Wolfe (ISW) effect [6–11], is required to break this
degeneracy.

General relativity imprints a unique signature in the
LSS, which is scale independent linear density growth
factor D at subhorizon scale after matter-radiation equality
epoch [12]. Modifications to general relativity not only
changes the amplitude of D, but in general, causes D to
be scale dependent. This unique feature of modified gravity
has already been noticed in phenomenological theory of
modified Newtonian potential [6,9,10]. It can be detected
by weak gravitational lensing [6], galaxy clustering [9,10]
and late time ISW effect. Counter-intuitively, in this paper,
we show that modified gravity can produce a detectable
early time ISW effect.

We investigate a class of f�R� gravity with action

L �
Z
�R� f�R��

���
g
p
d4x� Lmatter; (1)

and field equation
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�1� fR�Ruv �
guv
2
�R� f� 2�fR� � fR;u;v � 8�GTuv;

(2)

where fR � df=dR. We design f�R� �
��1H

2
0 exp��R=�2H

2
0�, where �1;2 are two positive di-

mensionless constants and H0 is the Hubble constant at
present. To mimic a �CDM universe, �1 � 1 is required.
To reduce to the general relativity in the solar system and
pass the solar system test, f� R is required. In this limit,
we have R! 8�G�solar, where �solar is the local density
where solar system tests are carried out. In this limit,
f�R�=R� 	�c=�solar
 exp	�3�solar=�2�c
. Since
3�solar=�c * 106 [13] (�c is the critical density of the
Universe), models with �2 � 106 can survive all solar
system tests. For example, For �2 � 103, this correction
is of the order �10�400. Given such tiny f�R�, we expect
that f, fR, �fR and fR;�;� in Eq. (2) can all be safely
neglected for any physical purpose.

For the f�R� gravity, the application of Birkhoff theorem
to perturbations of a spherically symmetric region leads to
scale independent D [16]. We reinvestigate this issue by
solving the structure evolution of the fully covariant f�R�
gravity to linear order in the metric perturbation. We find
that D shows nontrivial scale dependence, consistent with
the results based on the Palatini approach [17].

II. THE H-z RELATION OF THE f�R� GRAVITY

Cosmological observations prohibit strong deviation of
f�R� from the cosmological constant. At the limit that
R�z � 0� � �2H2

0 , the H-z relation of f�R� gravity can
have the same asymptotic behavior as that of �CDM. At
low redshift where R�a� � �2H2

0 , f�R� behaves as a cos-
mological constant and the H-z relation resembles that of
�CDM. At high redshifts where R� �2H

2
0 , f�R� ! 0 and

H�z� ! �1=2
0 �1� z�

3=2. Deviation from �CDM happens
at some intermediate redshifts where R�a� � �2H2

0 and
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vanishes toward both higher and lower z. We quantify their
difference by solving Eq. (2) of a flat universe to zero order
H2 �
f
6
�

�a
a
fR �H _fR � H2

0�0a�3: (3)
Here, a � 1=�1� z� is the scale factor. This equation can
be rewritten as y � �0 � C�y�a��, where y � a3H2,
C�y�a�� � 	f=6� �afR=a�H _fR
a3 and �0 is the dimen-
sionless matter density at present. Since C�y�a�� is com-
pletely determined once y as a function of a is given,
Eq. (3) can be solved iteratively by the iteration relation
y�i�1� � �0 � C�y�i��. To mimic a �CDM universe, we fix
�1 by requiring f�R�a � 1�� � �6H2

0�1��0�. The itera-
tion converges quickly by taking the initial guess y�0� �
�0 � �1��0�a3. For �2 � 100, y�1� is accurate to �1%.
As expected, for �2 � 100, the H�z�-z relation is almost
identical to the corresponding �CDM cosmology (Fig. 1).
Such f�R� gravity can not be distinguished from �CDM by
inflation, big bang nucleosynthesis (BBN), primary CMB,
SN Ias and other measures of H-z relation.
FIG. 1 (color online). The H�z�-z relation and structure growth
in the exponential f�R� gravity. Top left panel: H-z. �2 ! 1
corresponds to �CDM cosmology. Top right panel: Q�k; a� / k2,
which describes the main effect of f�R� gravity to structure
formation. We plot the result of k � 0:01 h=Mpc. Bottom left
panel: fR�a�, which determines the effective Newton’s constant
Geff � G=�1� fR�. For �2 * 100, its effect to structure forma-
tion can be neglected. Bottom right panel: D�k; a�=a (�2 �
1000), where the linear density growth factor D is normalized
such that D! a when a! 0.
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III. THE LARGE SCALE STRUCTURE OF THE f�R�
GRAVITY

We will show that, even with this degeneracy in H-z
relation and solar system behavior, the LSS of the f�R�
gravity could be significantly different to that of �CDM.
We choose the Newtonian gauge

ds2 � ��1� 2 �dt2 � a2�1� 2��
X3

i�1

�dxi�2: (4)

There are four perturbation variables�,  , the matter over-
density � and the (comoving) peculiar velocity conver-
gence �.

In general relativity, � � � , as long as there is no
anisotropic stress. But in modified gravity, this relation
breaks in general. ij (i � j) component of Eq. (2) provides
the relation between � and  . For f�R� gravity, due to
nonvanishing fR;i;j (i � j), ��  relation becomes scale
dependent. Throughout this paper, we neglect time deriva-
tive terms with respect to spatial derivative terms of cor-
responding variables. This simplification holds at scales
k * aH & 10�3 h=Mpc. Since we will focus on the ISW
effect at l * 20 and z * 3 where the relevant k *

5 10�3 h=Mpc, this simplification is sufficiently accu-
rate. We then obtain

��  �
fRRc2

1� fR

2

a2 �r
2 � 2r2��: (5)

In Fourier space, this reads  � ���1� 2Q�=�1�Q�,
where Q�k; a� � �2fRRc

2k2=�1� fR�a
2 and fRR �

d2f=dR2. For clarity, we explicitly show the speed of light
c. We will see that this scale dependent ��  relation has
profound effect on the LSS. Combining Eq. (5) and the tt
component of Eq. (2), we obtain the new Poisson equation

r2���  � � �
3H2

0�0

1� fR
a�1�: (6)

The energy-momentum tensor is still conserved and pro-
vides the remaining two equations:

_�� � � 0; _�� 2H��
1

a2r
2 � 0: (7)

Combining all 4 equations, we obtain the main equation of
this paper:

�00 � �0
�

3

a
�
H0

H

�
�
�

a2

1� 2Q
2� 3Q

3H2
0�0

a3H2�1� fR�
� 0; (8)

where 0 � d=da. In general relativity, Q � 0, so the linear
density growth factor D / ��a�=��ai� is scale independent
at scales k * aH=c, no matter what the form of dark
energy is. Here, ai is the scale factor at some early epoch
and we normalze D such that D! a when a! 0. But in
f�R�, the scale dependent Q�k; a� induces nontrivial scale
dependence to D. This behavior can not be obtained by a
simple change in the effective Newton’s constant.
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FIG. 2 (color online). The ISW effect. �2 � 1000 is adopted.
Top left panel: D=a� dD=da, which determines the sign and
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Furthermore, the correction Q has a nontrivial dependence
on a. This is hard to realize by simply changing the form of
the Newtonian potential (e.g. to Yukawa potential).

Since fRR < 0, there exist one apparent singularityQ �
2=3 in Eq. (8), where only � � 0 solution is accepted and
two at Q � 1=2, 1 in the ��  relation, where only  �
� � 0 solution is accepted. We leave this issue alone until
the discussion section. For the moment, we take a modest
goal by only using regions where Q< 1=2 to constrain
f�R�. For �2 � 1000, this constrains us to region where
k � 0:012 h=Mpc.

Hereafter, we fix �2 � 1000. At z� 1,H / a�3=2,D /
a1�	 when 	 � 3Q=5�2� 3Q� � 1. Thus gravitational
potential decays at high redshifts with rate / a�	 and
causes an observable integrated Sachs-Wolfe (ISW) effect.
At later time when R & �2H2

0 , Q! 0 (Fig. 1), the evolu-
tion of D approaches that of �CDM. For the exponential
f�R�, Q�a� peaks at z� 1 (Fig. 1), so the resulting ISW
effect peaks at z� 1, as contrast to that of �CDM cos-
mology or dark energy models withw��1. This provides
us a unique way to test this form of f�R�. We solve Eq. (8)
numerically. Initial condition is set to normalize D! a
when a! 0.
amplitude of the ISW effect. D is normalized such that D! a
when a! 0. Bottom left panel: the ISW effect. Bottom right
panel: Cumulative S=N of the ISW-LSS cross correlation mea-
surements.
IV. THE INTEGRATED SACHS-WOLFE EFFECT

Time variation in  �� causes a fractional CMB tem-
perature variation [18]

�T
TCMB

�
Z
	 _ � _�
ad
: (9)

Here, 
 is the comoving angular diameter distance. Since
both  �� and the LSS trace the underlying matter
distribution, there exists an ISW-LSS cross correlation,
with power spectrum

l2

2�
CISW�LSS
l �

�
l

Z
�2
� _ � _���LSS

�
l



�
WLSS�
�a2
d
:

(10)

Here, �LSS is the density fluctuation of the LSS tracers,
WLSS is the corresponding weighting function and
�2
� _ � _���LSS

is the corresponding 3D power spectrum(var-

iance). The above formula adopts the Limber’s approxi-
mation, which is sufficiently accurate to serve for our
interest at l � 20. The amplitude and sign of the ISW
effect is determined by AISW � D=a� dD=da. Positive
AISW means positive correlation between ISW and LSS.
For k * 0:007 h=Mpc, AISW has a bump at z� 6, whose
amplitude increases towards small scales (large k). This
boosts early time small scale ISW signal (Fig. 2).

The S=N of the ISW-LSS cross correlation measurement
of each l mode is
123504
�
S
N

�
2
�

�2l� 1�fskyC
2
ISW�LSS

�CCMB � CISW � Cshot
CMB��Cg � C

shot
g � � C2

ISW�LSS

(11)

Here, CCMB, CISW, Cg are the power spectra of primary
CMB, ISW, and galaxies, respectively, while Cshot

CMB and
Cshot
g are the power spectra of associated shot noises,

respectively. Since the exponential f�R� does not affect
physics at z * 100, we adopt the same primordial power
spectrum with power index n � 1, the same transfer func-
tion BBKS [19] and the same amplitude at ai � 0:01, as
that of the �CDM cosmology. The LSS tracers we choose
are 21 cm emitting galaxies at 3< z< 5, which will be
measured by proposed 21 cm experiments such as Square
Kilometer Array [20]. Singularities presented in the per-
turbation equations limit us to l < 60, where one can
neglect shot noises of CMB. For the estimations of LSS
clustering signal and shot noise, biggest uncertainties are
(i) HI (neutral hydrogen) mass function at 3< z < 5,
(ii) 21 cm emitting galaxy bias and (iii) specifications of
21 cm experiments. If one adopts HI mass functions cali-
brated against observations of damped Lyman-� systems
and Lyman limit systems, SKA can detect * 109 galaxies
at z > 3 in five years across the whole sky, for a field of
view * 10 deg2 at �300 Mhz (for details of the calcula-
tion, see, e.g. [21]). Detection thresholds of HI mass at z *

3 are * 109M�, so detected galaxies are likely having
-3
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biases bigger than one. Then, one can neglect the shot
noise term Cshot

g with respect to Cg. Taking the fact that
CCMB � CISW (Fig. 2), the S=N of each l is simplified to

�
S
N

�
2
’
�2l� 1�fskyr2

CCMB
l =CISW

l

: (12)

Here r is the cross correlation coefficient between ISW and
LSS. Since r has very weak dependence on galaxy bias, the
estimation presented here is weakly model dependent. We
disregard signals from l < 20, to reduce confusions of
�CDM cosmology or dark energy models. For sparse
galaxy sampling which is sufficient for our purpose, SKA
is able to cover the whole sky. So we assume that fsky � 1.

The cumulative
Plmax

20 �S=N�
2 is shown in Fig. 2.

The ISW signal peaks at z * 3 and increases toward
high l. This is hard to mimic by �CDM, dark energy or
many forms of modified gravity. (i) For �CDM or dark
energy models with w & �1, at z * 3, the ISW effect
effectively vanishes. Figure 2 shows that �CDM can be
distinguished from the �2 � 1000 f�R� gravity with >2�
confidence by the ISW-21 cm emitting galaxy cross corre-
lation. (ii) For dark energy models with w * �1, AISW

does not decrease as fast as that of �CDM. But the ISW
signal (including contributions from dark energy fluctua-
tions) decreases toward high l [22] and one does not expect
a detectable ISW effect. (iii) DGP preserves the property of
scale independent D [8,23], so the ISW signal decreases
toward high l, like the dark energy case. Therefore we do
not expect a detectable signal at l > 20 and z > 3. (iv) For
generalized f / ��R2 � RabR

ab � �RabcdR
abcd��n (n >

0), the ISW effect vanishes at high z because the f correc-
tion decreases much faster than the exponential f�R�. So
we expect that null detection of ISW-LSS cross correlation
at l � 20 and z � 3 would constrain �2 to �2 > 1000 at
>2� confidence level. On the other hand, a detection of
such cross correlation would present as a severe challenge
to general relativity.
V. DISCUSSION

The scale dependence of D, as an unambiguous signa-
ture of modified gravity, can in principle be measured from
weak gravitational lensing by the mean of lensing tomog-
raphy. Since � is no longer equal to � , we provide the
general form of the lensing transformation matrix Aij

Aij � �ij �
Z 
s

0
d
���  �;ijW�
; 
s�; (13)

where W�
; 
s� � 
�1� 
=
s� is the usual lensing ker-
nel. All basic lensing theorems remain unchanged. For
example, lensing shear field is still curl free (if neglecting
second order corrections such as Born correction). For
f�R� gravity, relation between the lensing convergence
� � 1� �A11 � A22�=2 and the matter over-density resem-
bles that of the general relativity, with
123504
� �
3

2
H2

0�0

Z
�a�1W�
;
s��1� fR��1d
: (14)

It is interesting to see how well weak lensing alone can
constrain modified gravity. For the exponential f�R�, one
complexity is that lensing mainly probes LSS at z & 1,
where Q is small and the deviation from a scale indepen-
dent D is small, so the constraints may be weak. This can
be significantly improved by gravitational potential recon-
structed from primary CMB. Combining lensing and CMB
measurements, it is very promising to measure the evolu-
tion of the gravitational potential between z � 1100 and
z� 0 robustly. This will put strong constraints on the
nature of gravity. Unfortunately, due to singularities in
the perturbation equations, we are limited to scales k &

0:012 h=Mpc or l & 20 at z & 1 (for �2 � 1000).
Information contained in this region is very limited and
could be contaminated by other physics such as dark
energy fluctuations. Solving the field equation crossing
those singularities consistently is nontrivial. We leave
this work for future study.

The Q � 1=2; 2=3; 1 singularities may be caused by
awkward gauge choice, the neglecting of time derivative
terms with respect to corresponding spatial derivative
terms, or the failure of the perturbation approach. For
example, for Q � 2=3, the only solution � � 0 does not
depend on initial conditions. This could be caused by
neglecting time derivative terms, which erases some de-
grees of freedom. These issues require detailed study. But
if these singularities in LSS equations are physical, they
can be applied to rule out many forms of modified gravities
as alternatives to dark energy or general relativity. To
produce a similar expansion history as those of dark energy
model, (i) R should increase when a decreases and
(ii) f�R�a � 1�� should be negative in order to mimic
positive dark energy. Furthermore, in order not to affect
inflation, BBN and primary CMB, f�R�a! 0�� must be
sufficiently small. A sufficient (but not necessary) condi-
tion satisfying the BBN constraint is that f�R�a! 0�� !
0. The exponential f�R� and 1=Rn f�R� all fall into this
class. This results in fR > 0 at least at some early epoch
a�. As we have seen from previous discussions, fRR < 0 is
a sufficient condition for the existence of singularities. To
avoid singularities, fRR � 0 must be satisfied at all epochs.
However, we will see that this requirement contradicts with
(i) and (ii). fRR � 0 results in fR�a < a�� � fR�a��> 0,
because R�a < a��>R�a��. So, f increases toward high
redshift, crosses over zero at some epoch and then in-
creases more quickly than R. Since when a! 0, R /
a�3, f increases more quickly than a�3 and thus more
quickly than the matter density. This violates condition (ii).
It could have non-negligible effect on BBN and contradicts
our expectation. On the other hand, only for those f�R�
gravities in which f�R�a! 0�� does not vanish, singular-
ities in LSS equations can be avoided. A logR f�R� gravity
is such an example.
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To demonstrate the power of LSS to constrain gravity,
we adopt a conservative requirement to avoid singularities
at k < ks. At the limit that �2 � 1, Q peaks at a �
�2�2=9�0�

�1=3 and the peak amplitude is ’ 12�1��0�

�2=9�0e�
2=3��4=3

2 �ck=H0�
2, where we show the speed of

light c explicitly. To avoid singularities at k < ks,

�2 � 2:5 105

�
ks

h=Mpc

�
3=2

(15)

should be satisfied.
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