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Abundance of cosmological relics in low-temperature scenarios
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We investigate the relic density n� of nonrelativistic long-lived or stable particles � in cosmological
scenarios in which the temperature T is too low for � to achieve full chemical equilibrium. The case with a
heavier particle decaying into � is also investigated. We derive approximate solutions for n��T� which
accurately reproduce numerical results when full thermal equilibrium is not achieved. If full equilibrium is
reached, our ansatz no longer reproduces the correct temperature dependence of the � number density.
However, it does give the correct final relic density, to an accuracy of about 3% or better, for all cross
sections and initial temperatures.
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I. INTRODUCTION

The production of massive, long-lived or stable relic
particles � plays a crucial role in particle cosmology [1].
The perhaps most important example is the production of
massive weakly-interacting particles (WIMPs), which may
constitute most of the dark matter in the universe [2].
Alternatively, WIMPs may only be metastable, and decay
into even more weakly interacting particles (e.g. gravitinos
or axinos) that form the dark matter [3]. Even if WIMP
decays do not produce dark matter particles, the WIMP
density is tightly constrained by analyses of big bang
nucleosynthesis (BBN) [4].

It is usually assumed that the WIMPs were in full
thermal and chemical equilibrium in the radiation-
dominated epoch after the period of last entropy produc-
tion, which in standard cosmology means after the end of
inflation. In this ‘‘standard’’ scenario the � number density
n��T� drops exponentially once the temperature T falls
below the mass m� of the relic particles, until the freeze-
out temperature TF is reached, where the production of �
particles from the thermal bath becomes negligible. In this
case accurate semianalytical expressions for n��T � TF�
have been derived [5,6]; one finds that the � relic density is
essentially inversely proportional to the thermal average of
the effective � annihilation cross section into lighter par-
ticles. The case of additional late entropy production, at
T � TF, can also be treated analytically, by multiplying
the standard result with a ‘‘dilution factor’’ due to the late-
produced entropy [7].

For typical WIMP scenarios, TF ’ m�=20. The standard
treatment can work only if the maximal temperature after
inflation, usually called the reheat temperature TR, is
(much) larger than TF. The assumption TR � TF is not
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implausible, since the scale of inflation has to be quite
high, typically �1013 GeV in simple models, in order to
achieve the right order of magnitude of density perturba-
tions [8]. On the other hand, we have direct observational
evidence (from BBN) only for temperatures T &

�few� MeV [9,10], which is well below TF for most current
WIMP candidates [2]. It is therefore legitimate to inves-
tigate scenarios with TR & TF [11–13].

We should emphasize at this point that TR may not have
been the highest temperature of the thermal plasma after
inflation: given sufficiently fast thermalization, the inflaton
decay products can attain a temperature Tmax � TR while
the total energy density of the universe is still dominated by
inflatons [1]. � particles may therefore have been in ther-
mal equilibrium for some range of temperatures T > TR
[9,11,14–16], even if they never were in equilibrium in the
radiation-dominated epoch. However, an analytical treat-
ment of the reheating epoch where T > TR was possible
faces several complications not present in the radiation-
dominated epoch: the entropy density was not constant,
nonperturbative (and nonexponential) inflaton decays
might have been important [17], and there might have
been significant nonthermal sources of � particles
[15,16,18]. On the other hand, in supersymmetric scenarios
thermalization of the inflaton decay products might be
delayed by large vacuum expectation values of scalar fields
along flat directions of the potential [19]. In this paper we
evade these complications by treating the � number den-
sity at some initial temperature T0 as a free parameter; in
the absence of late entropy production, T0 should be close
to the reheat temperature TR (depending on the exact
definition of TR).

Existing treatments of thermal WIMP production
[5,6,9,11,14–16] assume that n� had either achieved full
equilibrium, or was completely out of equilibrium (i.e.,
annihilation of � particles was always negligible). As al-
ready noted, in the former case one finds that the relic
density is inversely proportional to the thermal average of
-1 © 2006 The American Physical Society
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the � annihilation cross section. Not surprisingly, if �
annihilation can be neglected, one finds that the contribu-
tion to the � relic density from thermal production is
directly proportional to this cross section. Here we provide
an approximate analytic treatment that also works in the
intermediate region, where (for some range of tempera-
tures) both thermal production and annihilation of � par-
ticles were important. It is based on an expansion in the
effective annihilation cross section. To leading order, only
the production term is kept in the Boltzmann equation
describing the evolution of n��T�; this corresponds to the
‘‘completely out of equilibrium’’ scenario analyzed previ-
ously. The first correction includes � annihilation, treating
it as a small perturbation. This still allows an analytic
solution, in terms of the exponential integral of first order
E1, which we only need for large values of its argument. If
n��T0� � 0, the first-order result is linear in the annihila-
tion cross section �, while the correction is O��3�. Our
most important, and (to us) rather surprising, result is that
terms of higher order in � can be ‘‘resummed’’ using a
simple trick. This can be shown to be exact in the simple
case where n��T0�> 0 and thermal production of � parti-
cles is negligible,1 and works numerically also for non-
negligible thermal production. In fact, for T � T0 our
formulas reproduce the exact numerical results to 3% or
better even for combinations of parameters where n�
achieved complete equilibrium, i.e. our new formulas are
also accurate in scenarios where the standard result [5] is
applicable.

The outline of our paper is as follows. In Sec. II we
briefly review the calculation of the relic abundance in the
standard scenario, where it is assumed that the relic parti-
cles attained full thermal equilibrium. In Sec. III we will
discuss our analytic calculation of the � relic abundance in
scenarios where the temperature was too low for � parti-
cles to have been in full equilibrium. In Sec. IV we apply
this method to more complicated scenarios, which include
nonthermal � production from the decay of a heavier
particle, still assuming the universe to be radiation domi-
nated. Finally, Sec. V is devoted to a brief summary and
some conclusions, while some technical details are given
in the appendix.
2Here we assume _g	 � 0. This is usually justified since, as we
II. RELIC ABUNDANCE IN THE STANDARD
COSMOLOGICAL SCENARIO

We briefly review the calculation of the relic density of
long-lived or stable particles � in the standard cosmologi-
cal scenario [5], which assumes that the relic particles were
in thermal equilibrium in the early universe and decoupled
when they were nonrelativistic. The relic density can be
calculated by solving the Boltzmann equation which de-
1In this case the leading order result is trivial, i.e. O��0�, while
the first correction is O���.
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scribes the time evolution of the number density n� in the
expanding universe [1],

dn�
dt
� 3Hn� � �h�vi�n

2
� � n

2
�;eq�; (1)

with n�;eq being the equilibrium number density of the relic
particles, H the Hubble parameter and h�vi the thermal
average of the annihilation cross section � multiplied with
the relative velocity v of the two annihilating � particles.
The first (second) term on the right-hand side (rhs) of
Eq. (1) describes the decrease (increase) of the number
density due to annihilation into (production from) lighter
particles. The equilibrium density in the nonrelativistic
limit is given by

n�;eq � g�

�m�T

2�

�
3=2

e�m�=T; (2)

where m� and g� are the mass and the number of internal
degrees of freedom of �, respectively. In the standard
cosmological scenario, it is assumed that � was in thermal
equilibrium for T * m�. In other words, � rapidly annihi-
lated with its own antiparticle into lighter states and vice
versa. At later times T � m�, the annihilation rate �� �
n�h�vi dropped below the expansion rate H. Therefore �
particles were no longer able to annihilate efficiently and
the number density per comoving volume became con-
stant. The temperature at which the particle decouples
from the thermal bath is called freeze-out temperature TF.

The Boltzmann equation (1) can be rewritten by intro-
ducing the new variables Y� � n�=s and Y�;eq � n�;eq=s,
where the entropy density s � �2�2=45�g	T

3 with g	
being the number of the relativistic degrees of freedom.
Assuming that the universe expands adiabatically, the en-
tropy per comoving volume is conserved. Hence we obtain
_n� � 3Hn� � s _Y�. In the radiation-dominated era the

Hubble parameter is given by

H �
�T2

MPl

������
g	
90

r
; t �

1

2H
; (3)

where MPl is the reduced Planck mass, MPl � 2:4

1018 GeV. By introducing the inverse scaled temperature
x � m=T, the Boltzmann equation (1) becomes2

dY�
dx
� �1:32m�MPl

�����
g	
p
h�vix�2�Y2

� � Y
2
�;eq�: (4)

In most (although not all [6]) cases the cross section is well
approximated by a nonrelativistic expansion:
will see below, n� has nontrivial time dependence only for a
rather narrow range of temperatures; moreover, except during
the QCD phase transition at T ’ 200 MeV, g	 changes slowly,
i.e. dg	=dx� g	.
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3We use natural units, where @ � c � kB � 1, so that both �
and �v have dimensions GeV�2. Numerically, 10�9 GeV�2 �
0:388 pb � 1:16
 10�26 cm3=s.
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h�vi � a� bhv2i �O�hv4i� � a� 6b=x�O�1=x2�:

(5)

Here a is the v! 0 limit of the contribution to �v where
the two annihilating � particles are in an S wave. If S wave
annihilation is suppressed, b describes the P wave contri-
bution to �v. In the following we treat a and b as free
parameters. In terms of the variable � � Y� � Y�;eq, the
Boltzmann equation (4) can be rewritten as

d�

dx
� �

dY�;eq

dx
� ���2Y�;eq � ��; (6)

where

� � 1:32m�MPl
�����
g	
p
�a� 6b=x�x�2: (7)

An analytic solution can be obtained by considering the
equation in two extreme regimes. At early times (x� xF),
Y tracks its equilibrium value Yeq very closely. Therefore �
and d�=dx are small. Ignoring �2 and d�=dx, we obtain

� ’
1

2�
; (8)

where we used dY�;eq=dx ’ �Y�;eq for x� 1. At late
times (x� xF), one can ignore the production term in
the Boltzmann equation:

d�

dx
’ ���2: (9)

Integrating this equation from xF to infinity and using the
fact that ��xF� � ��1�, we have

Y�;1 � Y��x� xF� �
xF

1:32m�MPl

��������������
g	�xF�

p
�a� 3b=xF�

:

(10)

It is useful to express the energy density as �� � ��=�c,
where �c � 3H2

0M
2
Pl is the critical density of the universe.

The present energy density of the relic particle is given by
�� � m�n�;1 � m�s0Y�;1, with s0 ’ 2900 cm�3 being
the present entropy density. Finally, we obtain the standard
approximate formula for the relic density:

��h
2 ’

8:7
 10�11xF GeV�2��������������
g	�xF�

p
�a� 3b=xF�

; (11)

where h is the scaled Hubble constant, h ’ 0:7. Notice that
the relic density of the particle is inversely proportional to
the annihilation cross section and that there is no explicit
dependence on the mass of the particle. Calculating the
cross section and the freeze-out temperature is sufficient
for predicting the relic density. Freeze-out occurs when the
deviation � is of the same order as the equilibrium value:

��xF� � �Y�;eq�xF�; (12)

where � is a numerical constant of order unity. Substituting
the early time solution of Eq. (8) into this equation, xF is
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obtained by iteratively solving

xF � ln
0:382�m�MPlg��a� 6b=xF��������������������

xFg	�xF�
p : (13)

It is known that the choice � �
���
2
p
� 1 gives a good

approximation of exact numerical results for the relic
density (11). The decoupling temperature depends only
logarithmically on the cross section. For WIMPs, we typi-
cally obtain xF ’ 22.

III. RELIC ABUNDANCE IN A LOW-
TEMPERATURE SCENARIO

Equation (11) implies that the relic density predicted in
the standard cosmological scenario, in which � particles
are assumed to have been in full equilibrium, would be
quite high unless the cross section is as large as3

�10�9 GeV�2. Bearing this situation in mind, it is impor-
tant to explore scenarios where the relic density comes out
smaller than the standard calculation and find a useful
formula which properly describes the behavior of the relic
abundance.

For later convenience we first rewrite the Boltzmann
equation (4), using Eq. (2):

dY�
dx
� �f

�
a�

6b
x

�
1

x2 �Y
2
� � cx3e�2x�; (14)

where

f � 1:32
�����
g	
p

m�MPl; c � 0:0210g2
�=g

2
	 (15)

are constants. Equations (4) and (14) assume that � re-
mains in kinetic equilibrium through the entire period with
non-negligible time dependence of Y�. This is reasonable,
since kinetic equilibrium can be maintained through elastic
scattering of � particles on particles in the thermal plasma.
The rate for such reactions exceeds the � annihilation rate
by a factor / Y�1

� * 107 for temperatures of interest. For
our numerical examples, we consider a Majorana fermion
with m� � 100 GeV and g� � 2 as the relic particle. We
choose the relativistic degrees of freedom to be g	 � 90;
this approximates the prediction of the standard model of
particle physics for temperatures around 10 GeV.

Figure 1 shows that the relic density can be reduced if
the particles never reach thermal equilibrium because of
the low reheat temperature after inflation. The solid red
curves depict the predicted present relic density ��h

2 as
function of a (a) and b (b) defined in Eq. (5). Here we
assume that the relic abundance vanished at the initial
temperature of x0 � 22, which is around the typical
WIMP decoupling temperature. Here, as well as in the
subsequent figures, the ‘‘exact’’ numerical solution of the
-3
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FIG. 1 (color online). Predicted present relic density ��h
2 as a function of the a and b contributions to the total cross section, see

Eq. (5); in frame (a), b � 0 whereas in (b), a � 0. We consider two extreme cases: � particles were in full thermal equilibrium (dotted
blue line) or the number density of � vanished (solid red line) at x0 � 22. The two horizontal double-dotted black lines correspond to
the 1� upper and lower bounds of the dark matter abundance [20].
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Boltzmann equation (14) has been obtained using the
Runge-Kutta algorithm, with a step size that increases
quickly with increasing x� x0. For large cross section
we observe ��h

2 / 1=h�vi, in accord with the standard
prediction (11). However, when the cross section is re-
duced, the relic density reaches a maximum, and then
decreases / h�vi. For the given choice of initial condi-
tions, there are therefore two distinct ranges in h�vi where
the relic density comes out in the desired range [20].

In the following we attempt to find a convenient analytic
formula applicable even to low temperature scenarios. As
zeroth order solution of Eq. (14) we consider the case
where � annihilation is completely negligible,

dY0

dx
� fc�ax� 6b�e�2x: (16)

This equation can easily be integrated, giving

Y0�x��fc
�
a
2
�x0e�2x0�xe�2x��

�
a
4
�3b

�
�e�2x0�e�2x�

�

�Y��x0�: (17)

For x� x0, the relic abundance of the particles becomes
constant,

Y0;1 � Y0�x� x0�

� fc
�
a
2
x0e�2x0 �

�
a
4
� 3b

�
e�2x0

�
� Y��x0�: (18)

The corresponding prediction for the present relic density
is given by

��h2 � 2:8
 108m�Y0;1 GeV�1: (19)

Notice that the relic density is proportional to the cross
section, although the coefficient of proportionality depends
on whether a or b is dominant.

So far no analytic solution has been known for the in-
between case where both annihilation and production play
a crucial role in determining the relic abundance while
123502
thermal equilibrium is not fully achieved. We now attempt
to connect the standard scenario (TR > TF) and the low
reheat temperature scenario (TR < TF) using some analytic
method.

Since we already have the solution only including the
production term, the most natural extension is to add a
correction term which describes the effect of annihilation
on the solution for the pure production case:

Y1 � Y0 � �: (20)

By definition � vanishes at the initial temperature. Since it
describes the effect of � annihilation, it is negative for x >
x0. As long as j�j is small compared to Y0, the evolution
equation for � is given by

d�
dx
� �f

�
a�

6b
x

�
Y0�x�

2

x2 : (21)

Using Eq. (17) for Y0�x�, this can again be integrated:

��x� � �f3c2�14a
3F4

0�x; x0� �
1
4a

2�a� 18b�F4
1�x; x0�

� 1
16a�a� 12b��a� 36b�F4

2�x; x0�

� 3
8b�a� 12b�2F4

3�x; x0� � Y0;1f
2c�a2F2

1�x; x0�

� 1
2a�a� 24b�F2

2�x; x0� � 3b�a� 12b�F2
3�x; x0�

� Y2
0;1f�aF

0
2�x; x0� � 6bF0

3�x; x0�; (22)

where

Fmn �x;x0� �
Z x

x0

dt
e�mt

tn
; m� 0;2;4; n� 1;2;3:

(23)

The functions Fmn �x; x0� can be expressed analytically in
terms of the exponential integral of first order E1�x�; a
complete list of the relevant Fmn is given in the appendix,
Eqs. (A6). At late times, x! 1, this simplifies to
-4
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��x!1� � �f3c2e�4x0

�
a3

4
x0�

a2�a� 60b�
16

�
9ab�a� 16b�

8x0
�

9b�5a2� 56ab� 96b2�

32x2
0

�

� f2ce�2x0Y��x0�

�
a2 �

9ab
x0
�

9b�a� 4b�

2x2
0

�

� f�Y��x0��
2

�
a
x0
�

3b

x2
0

�
; (24)

where we omit higher order terms than O�1=x2
0�. Notice

that we discard O�1=x2� and O�1=x3� terms in h�vi, which
also contribute to higher order terms in Eq. (24). If a � 0
we therefore expect additional terms O�1=x0� from terms
not included in Eq. (5); if a � 0, higher order terms in the
expansion of the cross section only contribute at O�1=x3

0�
in Eq. (24).

Since, for vanishing initial abundance, Y0 is proportional
to the cross section �, � is proportional to �3. On the other
hand, for sufficiently large cross section we want to recover
the standard expression, where Y��x! 1� / 1=h�vi. This
suggests to rewrite our ansatz (20) as

Y1 � Y0 � � � Y0

�
1�

�
Y0

�
’

Y0

1� �=Y0
� Y1;r: (25)

Although the final approximate equality in Eq. (25) only
holds for j�j � Y0, we note that the resulting expression
has the right behavior, Y1;r / 1=�, for large cross section.
In the following we will show that this ‘‘resummation’’ of
the correction � is indeed able to describe the relic density
for a wide range of cross sections and temperatures, in-
cluding scenarios where the standard treatment is
applicable.

In fact, this ansatz solves the Boltzmann equation (14)
exactly in the simple case where thermal � production can
be ignored, but Y��x0� is sizable, leading to significant �
annihilation. In this case Eq. (14) reduces to

dY�
dx
� �f

�
a�

6b
x

�Y2
�

x2 : (26)

This equation can easily be solved analytically. The solu-
tion decreases monotonically from its initial value Y��x0�:

Y� �
Y��x0�

1� fY��x0��a�1=x0 � 1=x� � 3b�1=x2
0 � 1=x2�

:

(27)

In order to treat this case using the formalism of Eqs. (16)–
(25), we simply drop all terms which depend exponentially
on x or x0; these terms come from thermal � production,
and are obviously very small for sufficiently small initial
temperature. The zeroth order solution (17) then obviously
reduces to the constant Y��x0�, and the correction � of
Eq. (22) simplifies to
123502
��x� ! �f�Y��x0��
2�aF0

2�x; x0� � 6bF0
3�x; x0�

� �f�Y��x0��
2

�
a
�

1

x0
�

1

x

�
� 3b

�
1

x2
0

�
1

x2

��
; (28)

in the last step we have used the last two equations (A6).
Inserting this in the last expression in Eq. (25), we indeed
recover the exact solution (27), as advertised.

In principle, we can add further correction terms to the
first order approximation of Eq. (20),

Y� � Y0 � �� �2 � �3 � � � � : (29)

The above discussion shows that this corresponds to an
expansion in powers of h�vi. Since Y0 > 0 and � < 0 by
definition, the systematic expansion will lead to an alter-
nating series which possesses good convergence proper-
ties. However, this type of expansion is quite cumbersome
because j�j often dominates over Y0 for not very small
cross sections, as we will explicitly see later. Therefore the
resummed ansatz Y1;r of Eq. (25) is much more convenient.
We will see that it often provides a good approximation to
the exact solution even if thermal � production is not
negligible.

In Fig. 2 we present the evolution of the exact, numerical
solution Y� (solid red), Y1;r (dotted blue), Y�;eq (double-
dotted black) and j�j (short-dashed violet) as function of
x� x0. Here we consider vanishing initial � density,
Y��x0 � 22� � 0: Clearly the first order approximation
Y1 of Eq. (20) fails to reproduce the exact result once j�j
becomes comparable to Y0. On the contrary, frames (a) and
(c) show that the resummed ansatz Y1;r of Eq. (25) repro-
duces the numerical solution very well for all x > x0 if a &

10�9 GeV�2 and b & 10�8 GeV�2. However, for inter-
mediate values of x� x0, the disagreement between Y1;r

and the exact solution becomes large as the cross section
increases. In frames (b) and (d) of Fig. 2 sizable deviations
from the exact value are observed at x� x0 � 1 for a �
10�8 GeV�2 or b � 10�7 GeV�2. For larger x the devia-
tion becomes smaller again, and for x� x0 the difference
is insignificant even for these large cross sections.

We also analyzed scenarios with sizable initial � abun-
dance, Y��x0� � 0. Figure 3 shows that the resummed
ansatz again matches the numerical result very well for
all values of x if a & 10�9 GeV�2. This is not surprising
since, as we saw in the discussion of Eq. (28), it reproduces
the exact solution if Y��x0� dominates over the thermal
contribution. For a � 10�8 GeV�2, Y1;r again starts to
deviate from the exact numerical solution at x� 0:1, but
approaches it for x� x0. Note also that already for the
smaller cross section chosen in this figure, the final relic
density is almost independent of Y��x0�.

Let us take a closer look at the difference between the
exact solution and the resummed ansatz. To this end, we
define the deviation � by
-5
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FIG. 3 (color online). Evolution of Y� (solid red curves), Y1;r (dotted blue), Y�;eq (double-dotted black) and j�j (short-dashed violet)
as a function of x� x0. Here we take (a) a � 10�9 GeV�2, Y��x0� � 10�8, (b) a � 10�9 GeV�2, Y��x0� � 10�10,
(c) a � 10�8 GeV�2, Y��x0� � 10�7 and (d) a � 10�8 GeV�2, Y��x0� � 10�10. The other parameters are as in Fig. 2.
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FIG. 2 (color online). Evolution of the exact solution Y� (solid red curves), Y1;r of Eq. (25) (dotted blue), the equilibrium density
Y�;eq of Eq. (2) (double-dotted black), and j�j of Eq. (22) (short-dashed violet) as a function of x� x0. The initial abundance is
assumed to be Y��x0 � 22� � 0. We take (a) a � 10�9 GeV�2, b � 0, (b) a � 10�8 GeV�2, b � 0, (c) a � 0, b � 10�8 GeV�2, and
(d) a � 0, b � 10�7 GeV�2. In frames (a) and (c) the curves for Y1;r practically coincide with the solid lines.
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and a � 3
 10�9 GeV�2 (double-dotted black). Here we
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4For x0 � xF, our expressions predict ��h
2 / x0.
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Y� �
Y0

1� �=Y0
� �: (30)

Inserting this ansatz into the Boltzmann equation (4) leads
to the evolution equation for �:

d�
dx
� �

fh�vi

x2

�
�2 � 2�

Y0

1� �=Y0
�

��=Y0�
2

�1� �=Y0�
2 Y

2
�;eq

�
;

(31)

which again resembles the Boltzmann equation. Since
initially � � 0, our resummed ansatz works very well as
long as �=Y0 remains suppressed. Note that the inhomoge-
neous term on the rhs of Eq. (31) is of order ��=Y0�

2. The
analogous correction to our original first order solution Y1

of Eq. (20) would start at O��=Y0�. Since this inhomoge-
neous term is positive, ��x�> 0 for all x > x0, i.e. Y1;r, like
Y1, always underestimates the exact solution. As j�j=Y0

grows, the last term in Eq. (31) can become sizable. Note,
however, that it is multiplied with �Y�;eq�

2, which drops /
exp��2x� with increasing x. Therefore � becomes large
only if j�j reaches values of order of Y0 for x� x0 & 1.
The homogeneous terms in Eq. (31) imply that for large
x� x0 the deviation � decreases again, similar to the
WIMP relic abundance Y�. This situation is depicted in
Fig. 4, which shows the evolutions of j�j=Y� (upper
curves) and �=Y� (lower curves) as function of x� x0

for a � 3
 10�8 GeV�2 (solid red), a � 10�8 GeV�2

(dotted blue) and a � 3
 10�9 GeV�2 (double-dotted
black). Here we choose b � 0 and Y��x0 � 22� � 0.
Even in the case where � becomes sizable for intermediate
values of x, it eventually diminishes and hence our ana-
lytical formula succeeds in reproducing the present relic
abundance Y��x! 1� fairly well.
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Let us turn to a discussion of the dependence of the
present relic abundance on the initial temperature. In Fig. 5
we plot the present relic density evaluated numerically
(solid red curves), the old standard approximation (dotted
blue) and our new approximation (double-dotted black) as
function of x0. Here we take (a) a � 10�8 GeV�2, b � 0
and (b) a � 10�9 GeV�2, b � 0. We find that our approxi-
mation agrees with the exact result very well for x0 > xF.
On the other hand, for x0 < xF, our approximation gives
too small an abundance4 while the old approximation
works very well. The transition between the two regimes
is very sharp. For x0 � xF � 2, the old approximation
overestimates the relic abundance by as much as an order
of magnitude, while for x0 � xF both the old and the new
approximation work well.

We found that for vanishing initial � density, Y��x0� �

0, different values of the cross section lead to a universal
behavior when the present relic density is expressed as
function of x0 � xF and in units of the relic density for
x0 � xF. This can be seen from the analytic solution we
have obtained. For x0 � xF it is obvious that
���x0�=���x0 � xF� is nothing but unity and indepen-
dent of the cross section. For x0 � xF, the exact solution is
roughly given by the zeroth order approximation Y0, which
scales like ae�2x0 if a dominates and the initial abundance
vanishes. Meanwhile, Eq. (13) shows that xF is roughly
proportional to lna. Therefore we obtain the relation

���x0�

���x0 � xF�
/
ae�2x0

1=a
/ e�2�x0�xF�; (32)

which has no explicit dependence on the cross section. The
same argument is applicable to the case where b is domi-
nant. In Fig. 6 we plot the ratio of the exact present relic
density to the value for x0 � xF, ���x0�=���x0 � xF�, as
function of x0 � xF for various values of a and b. These
figures clearly show the expected scaling behavior both for
a � 0, b � 0 (left frame) and for a � 0, b � 0 (right
frame). However, for Y��x0� � 0, no such scaling exists,
apart from the fairly obvious result that Y��x� x0� be-
comes independent of Y��x0� if x0 � xF.

Figure 5 shows that Y1;r�x0; x! 1� has a well defined
maximum when x0 is varied. This maximum occurs at a
value x0;max which is close, but not identical, to the decou-
pling temperature xF of Eq. (13). From the asymptotic
expressions for Y0, Eq. (18), and �, Eq. (24), we find for
Y��x0� � 0:

x0;max ’
1

2
ln
f2c�a� 6b=x0;max�

2

4x0;max

� ln
0:096m�MPlg��a� 6b=x0;max������������������

x0;maxg	
p : (33)
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In deriving this equation, we neglect nonleading terms in
1=x0;max in each combination of a and b.5 Notice that x0;max
5The next-to-leading correction to the pure a-term would have
been relevant, but it cancels. The nonleading corrections to terms
that require both a and b to be nonzero are numerically insig-
nificant, and of the same order as terms omitted in the expansion
(5) of the annihilation cross section.

123502
coincides with xF of Eq. (13), if one chooses � � 1=4
(rather than � �

���
2
p
� 1).

Since the actual relic density is already practically in-
dependent of x0 for x0 < x0;max we can construct a new
semianalytic solution which describes the relic density for
the whole range of x0: for x0 > x0;max, compute the relic
density from Y1;r�x0�, but for x0 < x0;max, use Y1;r�x0;max�
instead.
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The ratio of this semianalytic result �1;r to the exact
value �� is depicted in Fig. 7. As noted earlier, our
approximation becomes exact for x0 * xF. For smaller x0

the new approximation still slightly underestimates the
correct answer, but the deviation is at most 1.7% for b �
0 (left frame), and 3.0% for a � 0 (right frame). On the
other hand, in the same region the old standard approxi-
mation reproduces the present relic abundance within 1%
error. We thus see that for x0 < xF, this new expression
works nearly as well as the old standard result;6 of course,
the old result fails badly for x0 > xF. Finally, since by
definition Y1;r depends only weakly on x0 for x0 � x0;max,
the latter quantity need not be calculated very precisely; in
practice, setting x0;max � 20 in the rhs of Eq. (33) is often
sufficient. In contrast, the standard approximation (11)
depends linearly (for b � 0) or even quadratically (for a �
0) on xF; several iterations are therefore required to solve
Eq. (13) to sufficient accuracy. Altogether, our new semi-
analytic formula is evidently a quite powerful tool in
calculating the density of cold relics.
IV. RELIC ABUNDANCE INCLUDING THE DECAY
OF HEAVIER PARTICLES

In this section we investigate a scenario where unstable
heavy particles 	 decay into long-lived or stable particles
�. We assume that 	 decays out of thermal equilibrium, so
that 	 production is negligible; however, we include both
thermal and nonthermal production of � particles. For
example in some supersymmetric models neutralinos,
which are stable due to R-parity, can be produced non-
thermally through the decay of moduli [21] or gravitinos
after the end of inflation. The number densities of � and 	
obey the following coupled Boltzmann equations:

dn�
dt
� 3Hn� � �h�vi�n2

� � n2
�;eq� � N�	n	;

dn	
dt
� 3Hn	 � ��	n	;

(34)

where N is the average number of � particles produced in a
	 decay, and �	 and n	 are the decay rate and the number
density of the heavier particle. In contrast to Refs. [12] we
assume that 	 does not dominate the total energy density,
so that the comoving entropy density remains approxi-
mately constant throughout. The Boltzmann equation for
n	 can then easily be solved analytically, using the fact that
t / T�2 / x2 in the radiation-dominated era. Inserting this
solution into the equation for n�, and again switching
variables to Y� � n�=s, Y	 � n	=s and x, the
Boltzmann equation for � becomes
6However, if a � 0, we should expect O�10%� corrections to
the relic density from higher order terms in the expansion (5) of
the cross section; if a � 0, these higher order terms should only
contribute O�1%�.
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dY�
dx
� �

h�vis
Hx

�Y2
� � Y2

�;eq�

� NrxY	�x0� exp
�
�
r
2
�x2 � x2

0�

�
; (35)

where r � �	=Hx2 � ��	MPl=�m2
��

�������������
90=g	

p
is constant.

The zeroth order solution of Eq. (35) is again obtained by
neglecting � annihilation. Using the expansion (5) of the
annihilation cross section, we have

dY0

dx
� f

�
a�

6b
x

�
cxe�2x

� NrxY	�x0� exp
�
�
r
2
�x2 � x2

0�

�
: (36)

This equation can be integrated, giving

Y0� fc
�
a
2
�x0e�2x0� xe�2x��

�
a
4
� 3b

�
�e�2x0� e�2x�

�

�NY	�x0�

�
1� exp

�
�
r
2
�x2� x2

0�

��
�Y��x0�: (37)

For x� x0, Y0 becomes constant,

Y0;1 � fc
�
a
2
x0e�2x0 �

�
a
4
� 3b

�
e�2x0

�
� NY	�x0�

� Y��x0�: (38)

For sufficiently large Y0 the annihilation term in Eq. (35)
becomes significant. We add a correction term to include
this effect, as in Eq. (20). Since the new, nonthermal
contribution to � production is already fully included in
Y0, the Boltzmann equation for � is again given by
Eq. (21). Using now Eq. (37) for Y0, we can integrate
Eq. (21), giving

� �
�
�f3c2

�
1

4
a3F4

0�x; x0� �
1

4
a2�a� 18b�F4

1�x; x0�

�
1

16
a�a� 12b��a� 36b�F4

2�x; x0�

�
3

8
b�a� 12b�2F4

3�x; x0�

�
� Y0;1f2c

�
a2F2

1�x; x0�

�
1

2
a�a� 24b�F2

2�x; x0� � 3b�a� 12b�F2
3�x; x0�

�

� Y2
0;1f�aF

0
2�x; x0� � 6bF0

3�x; x0�

�

� N2Y2
	�x0�e

rx2
0f�aGr

2�x; x0� � 6bGr
3�x; x0�

� 2NY	�x0�e
rx2

0=2Y0;1f�aG
r=2
2 �x; x0�

� 6bGr=2
3 �x; x0� � NY	�x0�e

rx2
0=2f2c

�
a2Gc

1�x; x0�

�
1

2
a�a� 24b�Gc

2�x; x0� � 3b�a� 12b�Gc
3�x; x0�

�
:

(39)
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The functions Gr
n�x; x0�, G

r=2
n �x; x0� and Gc

n�x; x0� are de-
fined by

Gr
n�x; x0� �

Z x

x0

dt
e�rt

2

tn
; n � 2; 3;

Gr=2
n �x; x0� �

Z x

x0

dt
e�rt

2=2

tn
; n � 2; 3;

Gc
n�x; x0� �

Z x

x0

dt
e�2t�rt2=2

tn
; n � 1; 2; 3:

(40)

Explicit expressions for these functions are given in the
appendix, Eqs. (A8). Notice that the expression in curly
brackets f. . .g in Eq. (39) has the same form as in Eq. (22).

Results for this scenario with b � 0 are shown in Fig. 8.
We choose r � 0:1 so that rx2

0 � x0, which leads to the
most difficult situation where thermal and nonthermal
production occur simultaneously. We see that even for
the smaller cross section considered, a � 10�9 GeV�2

(top frames), the simple first-order solution (20) soon fails,
since j�j exceeds Y0. However, the resummed ansatz Y1;r of
Eq. (25) describes the exact temperature dependence very
well for this cross section, both for large (top left frame)
and moderate (top right) nonthermal � production. For
a � 10�8 GeV�2 (bottom frames) we again observe siz-
able deviations for intermediate values of x� x0.
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FIG. 8 (color online). Evolution of Y� (solid red curves), Y1;r (d
thermal � production Y�;tp (short-dashed violet) and Yeq (triple-dotte
N � 1 and b � 0. The S-wave cross section and the initial 	 density
Y	�x0� � 10�11, (c) a � 10�8 GeV�2, Y	�x0� � 10�9 and (d) a �
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In fact, comparison with Fig. 2 shows that nonthermal �
production leads to faster growth of j�j, and hence to
earlier and larger deviation between Y1;r and the exact
solution of the Boltzmann equation (35). However, com-
parison with the curves labeled Y�;tp, where nonthermal �
production is neglected, show that for this rather large
cross section and short 	 lifetime, the nonthermal produc-
tion mechanism does not affect the final � relic density any
more. This agrees with the result of Fig. 3, where we saw
that for the same values of a and x0, the relic density is
independent of the initial value Y��x0�. As before, Y1;r

approaches the exact result again for x� x0 � 1. We
therefore conclude that our resummed ansatz describes
scenarios with additional nonthermal � production as
well as the simpler case with only thermal production.
V. SUMMARY AND CONCLUSIONS

In this paper we investigated the relic abundance of
nonrelativistic long-lived or stable particles � using ana-
lytical as well as numerical methods. Our emphasis was on
scenarios with low reheat temperature, so that �may never
have been in full thermal equilibrium after the end of
inflation. Such scenarios are interesting because they lower
the predicted relic abundance and therefore open the pa-
rameter space of particle physics models, allowing combi-
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otted blue), j�j (double-dotted black), the prediction for purely
d orange) as a function of x� x0, for Y��x0 � 22� � 0, r � 0:1,
are (a) a � 10�9 GeV�2, Y	�x0� � 10�10, (b) a � 10�9 GeV�2,
10�8 GeV�2, Y	�x0� � 10�10.
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nations of parameters which are cosmologically disfavored
in the standard high temperature scenario.

The case of small � annihilation cross section or very
low temperature can easily be treated analytically, since in
this case � annihilation can either be ignored completely,
leading to our zeroth order solution Y0 of Eq. (17), or can
be treated as small perturbation, as in our first order solu-
tion Y1 of Eq. (20). Unfortunately this approximation
breaks down well before � attains full thermal equilibrium.
On the other hand, we found that the simple trick of
‘‘resumming’’ the correction due to � annihilation, as in
Eq. (25), allows us to describe the full temperature depen-
dence of the � number density as long as � does not reach
full equilibrium. We saw in Sec. IV that this remains true
even if a nonthermal source of � production is added. Our
ansatz therefore provides a first analytical description of
the ‘‘in-between’’ situation, where � annihilation is very
significant but not large enough to establish full chemical
equilibrium with the thermal plasma.

For yet higher cross sections or temperatures even the
resummed ansatz fails to describe the temperature depen-
dence of the � number density at intermediate tempera-
tures. However, by replacing the initial scaled inverse
temperature x0 with the quantity x0;max of Eq. (33) our
ansatz succeeds in predicting the final relic density about
as well as the standard semianalytical high temperature
treatment does, with comparable numerical effort.

In this paper we have used the nonrelativistic expansion
of the � annihilation cross section. This expansion is
known to fail in certain cases even for nonrelativistic
WIMPs [6]. We expect our methods to be applicable to
these situations as well. However, a full analytical treat-
ment will be possible only if the product of thermally
averaged cross section and squared � equilibrium number
density, expressed as function of the scaled inverse tem-
perature x, can be integrated analytically over x.

From the particle physics point of view, the main effect
of a low reheat temperature is that it allows us to reproduce
the correct relic density in scenarios with low annihilation
cross section, e.g. for bino-like neutralinos and large sfer-
mion masses. Conversely, the nonthermal production
mechanism studied in Sec. IV allows us to reproduce the
correct relic density for WIMPs with large annihilation
cross section, e.g. wino-like neutralinos [21]. As noticed
in [13], the combination of these effects in principle allows
us to completely decouple the WIMP relic density from its
annihilation cross section. In many studies of expected
WIMP detection rates, scenarios yielding too high a relic
density under the standard assumptions were not consid-
ered; such scenarios typically also lead to low detection
rates. Conversely, in scenarios leading to too low a thermal
WIMP density, which typically predict large detection
rates for fixed WIMP density, the predicted detection rates
were often rescaled by the ratio of the predicted to the
observed relic density. If one allows lower reheat tempera-
123502
tures and/or nonthermal WIMP sources the possible range
of signals for WIMP detection can therefore be enlarged
towards both larger and smaller values.

In summary, we found analytical or semianalytical so-
lutions of the Boltzmann equation describing the density of
nonrelativistic relics which are valid for a wide range of
initial conditions. In particular, they allow a complete
description of the temperature dependence for small or
moderate cross sections, and correctly reproduce the final
relic density for all combinations of initial temperature and
cross section. This should be a powerful tool for exploring
the physics of nonrelativistic relics, especially in scenarios
with low reheat temperature.
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APPENDIX

In this appendix, we give explicit expressions for the
functions Fmn �x; x0�, Gr

n�x; x0�, G
r=2
n �x; x0� and Gc

n�x; x0�
which appear in Secs. III and IV. These functions are
analytically expressed in terms of the exponential integral
of the first order E1�x� and the error function erfc�x�.

First we review the exponential integral and the error
function. The exponential integral of the first order is
defined by

E 1�x� �
Z 1

1
dt

e�xt

t
�
Z 1
x
dt

e�t

t
: (A1)

We need this function only for x > x0 � 1. We can then
use the asymptotic large x expansion,

E 1�x� �
e�x

x

X1
n�0

��1�nn!

xn
: (A2)

The error function is defined by

erfc �x� �
2����
�
p

Z 1
x
dte�t

2
; (A3)

with asymptotic large x expansion

erfc �x� �
e�x

2

����
�
p

x

X1
n�0

��1�n�2n� 1�!!

�2x2�n
: (A4)

The functions Fmn �x; x0� are defined by

Fmn �x; x0� �
Z x

x0

dt
e�mt

tn
: (A5)

These integrals can be reduced to the form (A1). The
resulting expressions and corresponding asymptotic expan-
sions, computed from Eq. (A2), are:
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F4
0�x; x0� �

1

4
�e�4x0 � e�4x�;

F4
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The functions Gr
n�x; x0� and Gr=2

n �x; x0� are defined by
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Using Eqs. (A3) and (A4), we find the following explicit expressions and corresponding asymptotic expansions:
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In the expansion we assume that rx2
0 � x0, so that the effect of nonthermal � production is comparable to that of thermal

production.
Finally, the functions Gc

n�x; x0� are defined by

Gc
n�x; x0� �

Z x

x0

dt
e�2t�rt2=2

tn
; n � 1; 2; 3: (A9)

They appear in the ‘‘interference terms’’ in Eq. (39), which are important only if thermal and nonthermal contributions to
Y0 in Eq. (37) are comparable in size. Since the overall t-dependence of the integrand in Eq. (A9) is dominated by the
numerator, we can, to good approximation, evaluate these functions by replacing t in the denominator by some appropriate
constant xc:
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In our calculations in Sec. V we set xc � x0; this overestimates Gc
n by a few percent, with negligible error in Y1;r.
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