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Characterizing the galactic gravitational wave background with LISA
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We present a Monte Carlo simulation for the response of the Laser Interferometer Space Antenna
(LISA) to the galactic gravitational wave background. The simulated data streams are used to estimate the
number and type of binary systems that will be individually resolved in a 1-year power spectrum. We find
that the background is highly non-Gaussian due to the presence of individual bright sources but, once
these sources are identified and removed, the remaining signal is Gaussian. We also present a new estimate
of the confusion noise caused by unresolved sources that improves on earlier estimates.
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I. INTRODUCTION

Binary star systems are excellent sources of gravita-
tional waves, and with roughly two-thirds of the �1011

stars in our galaxy in binary systems, there will be no
shortage of targets for the proposed Laser Interferometer
Space Antenna (LISA) [1]. Binaries with periods less than
a day may potentially dominate the response of the LISA
observatory. Indeed, it is likely that the main source of
noise for LISA over a portion of its band will be unresolved
gravitational wave signals from galactic and extragalactic
binary star systems. Several studies [2–6] have sought to
model these populations and estimate their contribution to
the gravitational wave power spectrum. In some instances,
these estimates have been combined with data analysis
considerations to make predictions of the confusion noise
caused by unresolved sources. Although a consensus has
not formed on the expected background level, it is gener-
ally accepted that a galactic gravitational wave background
does exist inside the LISA band. The difficulty in devel-
oping strong limits on the background level originates from
the expectation that the background will be dictated by
compact binaries, that is, binary systems that contain white
dwarfs, neutron stars, and stellar mass black holes. Since
the electromagnetic luminosity of compact binaries is low,
not enough sources have been observed yet to build reliable
models for the populations.

If current estimates of compact binary populations rea-
sonably represent the true nature of the galaxy, then the
superposition of gravitational wave signals from these
populations will form a confusion limited background in
the LISA band. That is, there will be enough sources that
the received signals will interfere with each other to the
point where individual binaries cannot be resolved [7].
When this occurs the background becomes a source of
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noise in the detector. However, around ten thousand sys-
tems will be resolvable due to either their isolation in
frequency space (for sources with frequencies above
�3 mHz) or their relative brightness (for sources below
�3 mHz).

Here we present a Monte Carlo model for the galactic
gravitational wave background. Our goal is to better under-
stand the role played by the rare, bright sources that
dominate the observed signal, and to provide a more
realistic level of the confusion background due to unre-
solved compact binaries. Our investigation of the galactic
gravitational wave background is done in two phases. The
first phase is to build a Monte Carlo simulation of the
background by modeling each binary and processing the
corresponding gravitational wave signal through a model
of LISA. To reasonably represent the individual types of
binaries, we follow the population models presented by
Hils, Bender, and Webbink [3], and Nelemans, Yungelson,
and Portegies Zwart [8], which from here on will be
referred to as HBW and NYZ, respectively. Though less
up to date, the HBW model has the advantage of being
expressed in terms of explicit distribution functions, which
allows us to generate multiple realizations. The more
modern NYZ model employs a population synthesis code
that has not been made public, so we were not able to
generate our own realizations. Gils Nelemans was kind
enough to send us a realization of the NYZ model to
work with. The second phase of our study is to statistically
characterize features of the galactic background as they are
observed by LISA.

As part of the modeling phase, the signal from each
source is run through a realistic model of the LISA instru-
ment response to produce simulated interferometry data. In
doing so, it was necessary to develop a new, fast algorithm
for computing the detector response in order to process the
�108 sources modeled in each realization. The algorithm
is based on the frequency domain approach developed by
Cornish and Larson [9], and extended to include the de-
tector transfer functions, arbitrary observation times, and
frequency evolution of the sources. For the current study
-1 © 2006 The American Physical Society
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we set the observation time at Tobs � 1 year. Examples of
our simulated LISA data streams can be found at the Mock
LISA Data Archive [10].

Using the simulated detector data we investigate issues
that are of importance to the development of future data
analysis algorithms. Among the quantities we investigate
are tests of Gaussianity in the distribution of Fourier co-
efficients before and after bright sources are removed, the
number and type of bright sources, and the density (in
frequency space) of bright sources. Our interest in bright
systems stems from the idea that they will be identifiable in
the data streams, and thus removable. They will also be
instrumental in using the real gravitational wave data to
study galactic populations and galaxy evolution.

To model the removal of bright systems we use an
iterative procedure using a running median of co-added
instrument noise and galactic signals as the effective noise
level. Sources were considered bright if they had a signal
noise ratio (SNR) greater than some threshold with respect
to the effective noise level. We considered both optimistic
(SNR � 5) and conservative (SNR � 10) thresholds. As
the bright sources are regressed from the data, the effective
noise level drops, allowing more sources to be resolved.
After several iterations we are left with a residual signal
that is our estimate of the galactic confusion noise.
Previous estimates of the confusion noise were derived
by setting a maximum source density, with the reasoning
that it would be impossible to resolve individual sources
when the number of sources per 1=Tobs frequency bin
exceeded some threshold. Here we took a different ap-
proach that is based primarily on SNR thresholds, but we
also studied the effect of a source density cutoff. Rather
than working with the total source density we based our
cutoff on the density of resolved sources. In other words,
we considered the possibility that there will be a maximum
number of sources that can be resolved per frequency bin.
We studied the effect of a resolved source density cutoff by
performing the iterative removals with and without a cutoff
on the number of sources that could be resolved per fre-
quency bin (we set a limit of one source per four bins). For
some models the source density cutoff had a significant
impact, but for other models the cutoff made very little
difference. Our estimate of the confusion level for the
HBW model differs from that of Bender and Hils [4]
despite the fact that we use the same galactic model. Our
estimate of the confusion level for the NYZ model agrees
fairly well with Barack and Cutler [11] estimate. In both
cases, our estimate is lower at low frequencies (below 1 or
2 mHz, respectively), and higher at high frequencies. The
differences are due to our differing approaches to modeling
the signal identification and regression. We feel that our
approach yields more realistic estimates. All our examples
are for one year of observations, so the frequency bins have
width �f � 3:17� 10�8 Hz. The level of the confusion
background will drop for longer observation times as the
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sidebands get better resolved and the SNR increases. The
reduction in the confusion noise over time means that fits to
transient sources that occur in the first year of operation,
such as a supermassive black hole merger, will continue to
get better with time even though the source disappeared
years ago.

Recently Benacquista et al. [12] and Edlund et al. [13]
simulated LISA time series for a population of galactic
white dwarf binaries. While comparable to our approach,
neither simulation was used to study source identification
and subtraction. The statistical analysis of the background
given in Ref. [13] focuses on the cyclostationary nature of
the signal, whereas our statistical analysis focuses on
simulating data analysis in order to better understand the
galactic gravitational wave background.

Since the study of the galactic gravitational wave back-
ground naturally divides itself into two sections, modeling
and characterization, the outline of the paper follows suite.
Sections II and III are devoted to a description of the
Monte Carlo simulation of the galactic close binary pop-
ulations. It is here that we describe how the individual
sources are modeled and convolved with a LISA response
model. The next three sections calculate a number of
statistical properties associated with the galactic back-
ground. Section IV demonstrates that the galactic back-
ground is non-Gaussian in nature. In Sec. V we present our
estimate of the confusion limited background and compare
it to prior estimates. Section VI describes the character-
istics of the systems that are labeled as bright. The paper
concludes in Sec. VII with a discussion of the various
assumptions used in the simulation and how changes in
these assumptions may alter our results.
II. GALACTIC MODEL

The first step in building a Monte Carlo realization of the
galaxy is to model an individual binary system. In general,
a gravitational wave traveling in the k̂ direction can be
decomposed into two polarization states,

h �ct� k̂ � x� � h��ct� k̂ � x��� � h��ct� k̂ � x���;

(1)

where ��;� are basis tensors used to describe the radia-
tion’s orientation. The scalar coefficients are referred to as
the gravitational waveforms. For a circular binary with
instantaneous angular orbital frequency �, and component
mass M1 and M2, the waveforms measured at the barycen-
ter of the Solar System are

h��t� � A� cos�2 � cos�2�t� ’o�

� A� sin�2 � sin�2�t� ’o� (2a)

h��t� � �A� sin�2 � cos�2�t� ’o�

� A� cos�2 � sin�2�t� ’o�; (2b)

where the polarization amplitudes are given by
-2
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A� �
2G2M1M2

c4r

�
�2

G�M1 �M2�

�
1=3
�1� cos2���� (3a)

A� � �
4G2M1M2

c4r

�
�2

G�M1 �M2�

�
1=3

cos���: (3b)

The angles  and � describe the orientation of the binary as
viewed by an observer in the barycenter frame, while ’o is
the initial phase.

Gravitational waves carry away energy and angular
momentum from the emitting system. Consequently, a
binary will slowly inspiral over time. For stellar mass
galactic sources in the LISA band the period evolution
can be adequately described by

Porb�t� �
�
P8=3
o �

256

5c5
�2��8=3�GM�5=3t

�
3=8
; (4)

where M 	 �M1M2�
3=5�M1 �M2�

�1=5 is the so-called
chirp mass and Po is the initial orbital period.
Equation (4) does make the assumption, which is used
throughout this paper, that no other processes (e.g. mass
transfer) are evolved in the binary evolution besides gravi-
tational wave emission.

Equations (2)–(4) indicate that a circular binary is
uniquely determined by a set of nine parameters: the
component masses �M1;M2�, initial orbital period (Po),
binary orientation � ; ��, initial phase (’o), and the dis-
tance to the source (r). Additionally, two angular variables
��;�� are used to locate the source on the celestial sphere.
To model an individual binary requires an accurate repre-
sentation of these nine parameters.

The list of source parameters are separable into those
that are extrinsic and intrinsic to the system. The extrinsic
variables fr; �; �;  ; �; ’og do not influence the evolution
of the binary. Instead they depend on the time of observa-
tion and on the location of the observer with respect to the
binary. The remaining variables fM1;M2; Pog directly ef-
fect the binary evolution through the emission of gravita-
tional waves via Eq. (4).

A. Extrinsic parameters

For the set of extrinsic variables there is a further sepa-
ration into those that locate the source fr; �;�g and those
that describe the time of observation and orientation as
viewed by a particular observer f ; �; ’og. To derive a
unique location for each source we use a cylindrically
symmetric disk model of the galaxy with an exponential
falloff in both the radial and vertical directions,

� � �oe
�r=roe�jzj=zo : (5)

Here �o is the space density at the galactic center, ro is the
radial scale length, and zo is the vertical scale height of the
galactic disk. The values of ro and zo vary with the differ-
ent types of binaries (i.e. cataclysmic variables, white
dwarf binaries, etc.), but all types are assumed to obey
the above model. The binary positions are simply de-
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scribed in galactocentric-cylindrical coordinates. The natu-
ral coordinate system for the LISA mission is heliocentric-
ecliptic coordinates. Therefore, once the positions for the
binaries are selected using the galactic position distribu-
tions, they are translated to the LISA coordinate system
through a series of standard coordinate transformations.

The observed orientation of a binary system is set by the
principal polarization angle  and the inclination angle �.
The inclination angle is defined as the angle between the
line of sight to the binary n̂ and the angular momentum
vector of the binary ~L. The inner product of n̂ and the
angular momentum directions n̂ � L̂ is taken to be uni-
formly distributed between �1 and 1. The principle polar-
ization angle describes the orientation of the semimajor
axis of the projected binary orbit on the celestial sphere and
is uniformly distributed between 0 and �. The distribution
for ’o, which describes the positions of the binary compo-
nents at time t � 0, is uniformly distributed between 0
and 2�.

B. Intrinsic parameters

The distributions for each intrinsic parameter
fM1;M2; Pog depends on the binary type under considera-
tion. To model each of these parameters, we used the
distributions given in HBW. For this reason our galactic
backgrounds include W UMa (3� 107), cataclysmic var-
iables (1:8� 106), neutron star–neutron star (106), black
hole–neutron star (5:5� 105), and close white dwarf (3�
106) binaries. The quantities in the parentheses indicates
how many systems of that type are included in the simu-
lation. Note that for most of our analyses we use the 10%
reduced population of close white dwarf binaries as de-
scribed in HBW as this allows us to compare directly with
prior results.

We have elected not to include the unevolved binaries.
The reason for this is that they are predominately very low
frequency sources ( & 10�5 Hz). As a result, their signals
will be buried in the instrumental noise and, therefore, will
not contribute to the observed galactic background.

C. Barycentric background

Many of the prior studies of the galactic background
approached the problem by estimating the net gravitational
wave luminosity as a function of frequency in the Solar
System barycenter. From the luminosity they then derive a
gravitational wave strain amplitude using [14]

h �
�

16�G

c3!2
gw

Lgw
4�r2

�
1=2
; (6)

where !gw and Lgw are the gravitational wave angular
frequency and luminosity, respectively.

In order to make comparisons between our results
and prior studies, we must relate the above expression for
the strain amplitude to quantities calculated in our
-3
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FIG. 1. A comparison of our full Monte Carlo simulation
(gray) and a running average of the simulation (white) to those
of HBW (squares). For each binary type we are in agreement. To
ease comparison, the final figure shows a background using the
full realization of white dwarf binaries. However, our simulated
background uses the 10% reduced white dwarf population.
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FIG. 2. A realization of the galactic background as observed in
the barycenter frame. The dark line is the all-sky and polariza-
tion averaged LISA sensitivity curve [25]. The jump at
10�4:6 Hz is due to sudden increase in the number of W UMa
binaries. Had we included a realization of the unevolved bi-
naries, the background levels would be roughly constant below
10�4:6 Hz with a spectral amplitude of hf 
 10�17 Hz�1=2.
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Monte Carlo simulation. To this end, we first note the
relationship between gravitational wave luminosity and
flux [15],

Lgw
4�r2

� Fgw �
c3

16�G
h _h2
� � _h2

�i; (7)

where the angle brackets denote an average over several
gravitational wave periods. Using this relationship the
strain amplitude is rewritten as

h �
�

1

!2
gw
h _h2
� � _h2

�i

�
1=2
: (8)

From the waveforms given in Eq. (2) it follows that

h � �12�A
2
� � A

2
���

1=2: (9)

The polarization amplitudes, A� and A�, are functions of
the binary masses, distance to the source, orbital period,
and inclination angle [see Eq. (3)].

Equation (9) gives the strain amplitude for a single
source. To mimic a power spectrum in the Solar System
barycenter frame, we first bin the sources according to their
frequencies. The bin widths are �f � 1=T, where T is the
total observation time (for our simulations T is set to one
year). Once the sources are sorted the net strain amplitude
per frequency bin is calculated from

hnet �

�
1

2

XNb
i�1

�A2
� � A

2
��i

�
1=2
; (10)

where Nb is the number of sources in the bin. Note that
Eq. (10) accounts for constructive and destructive interfer-
ence in the same way as in standard data analysis uncorre-
lated, random errors add quadratically with the square root
taken after all errors have been included. Similarly for the
background, the net strain amplitude is the square root of
all individual polarization amplitudes added quadratically.

Figure 1 compares our Monte Carlo results to HBW.
(Note that the plots show spectral amplitudes hf, not strain
amplitudes h. For monochromatic binaries the two are
related by hf �

����
T
p

h where T is the observational period.)
The HBW galaxy model includes W Ursae Majoris (W
UMa) contact binaries, Cataclysmic Binaries (CB),
Neutron Star–Neutron Star (NS-NS) binaries, Black
Hole–Neutron Star (BH-NS) binaries, and White Dwarf–
White Dwarf (WD-WD) binaries. For each binary class we
are in agreement. The smearing effect seen at high fre-
quencies is due to empty bins in the spectrum. For the
compact binaries the orbital period distributions have a
small, but finite, probability at short periods. Con-
sequently, it takes a large number of draws against the
period distribution to produce a source with an extremely
short period. In the cases of the neutron star–neutron star
and close white dwarf binaries, the probability in the period
distribution tails becomes small enough that for the num-
ber of sources included in our simulated background one
would not expect a large number of extremely short period
122001
(high frequency) sources. This is why the HBW data ex-
tends beyond our simulated backgrounds.

Figure 2 shows the total galactic background as viewed
in the barycenter frame. The sharp rise in the background at
-4
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CHARACTERIZING THE GALACTIC GRAVITATIONAL . . . PHYSICAL REVIEW D 73, 122001 (2006)
f � 10�4:6 Hz is due to the sudden increase in the number
of W UMa binaries. The signal below f � 10�4:6 Hz is
due to neutron star–neutron star binaries. If the unevolved
binaries had been included, the galactic background would
be approximately constant between 1 and 100 �Hz at a
level of hf 
 10�17 Hz�1=2.

As Nelemans et al. [6] found with their population syn-
thesis models of the galaxy, when the individual sources
are modeled the background appears spiky. The large
fluctuations in the background are due to a small number
of bright sources. As we will show later, when these
sources are removed from the background the spectrum
becomes smooth.

It is generally agreed that a confusion limited back-
ground arises when the average number of source per
frequency bin is larger than unity. (Additionally the net
strain per bin must also be larger than the intrinsic detector
noise.) Figure 3 shows that the peak number of sources per
bin is in excess of 105 near 0.04 mHz. The plot also
demonstrates that for a large portion of LISA’s spectrum
the number of sources per bin is greater than ten.

III. DETECTOR BACKGROUND

The backgrounds presented in the previous section were
not convolved with a model for the instrument response. As
with all fields of astronomy, the act of measuring incident
radiation has to be properly understood in order to cor-
rectly interpret the signals. In this section we first summa-
rize the LISA mission and then describe our models for the
detector response. We then present the simulated galactic
background as measured by the detector.

LISA is a joint ESA/NASA mission planned for launch
around 2015. The mission consists of three identical space-
craft in separate, slightly eccentric, heliocentric orbits in-
clined with respect to the ecliptic plane [16]. The orbits are
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carefully chosen such that the spacecraft constellation will
form, and approximately maintain, an equilateral triangle
with a mean spacecraft separation of 5� 106 km. The
center of the constellation, referred to as the guiding center,
will have an orbital radius of 1 AU and trail the Earth by
20�. During the course of one orbit, the constellation will
cartwheel once with a retrograde motion as seen by an
observer at the Sun. LISA is sensitive to gravitational
radiation in the range of 10�5 to 1 Hz.

The detector’s motion introduces amplitude (AM), fre-
quency (FM), and phase modulations (PM) into the gravi-
tational wave signals [9]. The amplitude modulation
originates from the detector’s motion sweeping the antenna
pattern across the sky. The phase modulation results from
the differing responses to each polarization state. The
frequency (Doppler) modulation is due to the motion of
the detector relative to the source. Since the bulk orbital
and cartwheel motions both have a period of one year, the
resulting modulations appear as sidebands in the power
spectrum separated from the instantaneous carrier fre-
quency by integer values of the modulation frequency,
fm � 1=year.

For our studies the detector response is modeled using a
combination of the Extended Low Frequency Approxi-
mation, which is developed in the appendix, and the
Rigid Adiabatic Approximation as described in Ref. [17].
As explained in the appendix, to save on computational
costs it is advantageous to simulate the detector response
directly in the frequency domain where a quasimonochro-
matic source will only have a small number of sidebands.
At low frequencies, the bandwidth for a slowly evolving
circular binary is

B � 2
�
4�

2�fR
c

sin���
�
fm; (11)

where R � 1 AU is the orbital radius of LISA and � is the
colatitude of the source on the celestial sphere. For sources
with gravitational wave frequencies below a few milli-
hertz, the bandwidth is less than 100fm and we can achieve
a considerable saving in computational cost by working in
the frequency domain. At higher frequencies the sources
have larger bandwidths, more complex modulation pat-
terns, and signals that evolve significantly in frequency,
making them harder to model directly in the frequency
domain.

In the appendix it is shown that the Extended Low
Frequency Approximation, which is applied in the fre-
quency domain, is only valid for frequencies below
7 mHz. For the few hundred signals with a carrier fre-
quency above this cutoff, we use the more accurate time
domain response model, the Rigid Adiabatic Approxi-
mation. To combine the results from each approximation,
we first simulate the response for the signals that are above
7 mHz using the more detailed Rigid Adiabatic Approxi-
mation and add them linearly in the time domain. We then
perform a fast Fourier transform. For the sources that are
-5
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simulated directly in the frequency domain, we coherently
add the signals by summing the real and imaginary parts of
their respective Fourier coefficients at each frequency. By
adding the coefficients we maintain the phase information
which dictates the constructive and destructive interference
of the gravitational waves. The final detector response is
the sum of the Fourier coefficients from the extended low
frequency and adiabatic results. It is also at this time that
we add in a detector noise realization using the prescription
given in Ref. [17]. Figure 4 shows a particular realization
for a Michelson signal in the frequency domain. Figure 5
shows the same signal in the time domain.

In comparing the background as observed in the detector
frame (Fig. 4) versus in the barycentric frame (Fig. 2), a
striking feature is that it is lower by roughly a full decade
across the entire spectrum. The reduction is due to two
effects. The first effect is the detector efficiency, which
relates the total signal power in the detector to the total
signal power at the barycenter. The all-sky and polarization
averaged detector efficiency is equal to

�����������
3=20

p
at low

frequencies, and gets progressively worse at high frequen-
cies. (This is immediately evident by comparing the sensi-
tivity curve in Fig. 2 to the average Michelson noise in
Fig. 4.) The second effect is due to the orbital motion of the
detector. In the barycentric frame, most galactic binaries
are well approximated as monochromatic. As LISA moves
in its orbit the monochromatic signals are modulated
across multiple frequency bins. At high frequencies the
spreading effects are evident by spectral power showing up
in bins that were previously empty in the barycenter frame.
At low frequencies the expectation is that the spreading
from adjacent bins will cancel out due to the numerous
sources found in each bin (see Fig. 3). However, as will be
shown in the next two sections, the galactic background is
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FIG. 4. A realization of the HBW 10% galactic background as
measured in the detector’s frame. The dark line is the average
Michelson noise associated with the detector. The galactic
gravitational wave background is evident in the spiky structure
between 0.1 and 10 mHz.
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dominated by a few bright sources. When the bright
sources are modulated there is not a compensating bright
source in the adjacent bin. As a result, the galactic back-
ground is also reduced at lower frequencies.

IV. STATISTICAL CHARACTER OF THE
GALACTIC BACKGROUND

Of great interest to the LISA mission is to broadly
characterize the galactic gravitational background in a
statistical sense. Such a characterization is essential to
the development and implementation of data analysis algo-
rithms which often make assumptions about the character
of the noise.

In the spectral regions of LISA’s band where the galactic
background dominates the detector response, the back-
ground becomes a source of noise. By inspection of the
spectrum in Fig. 4, the galaxy is evident by the jaggedness
between 0.1 and 10 mHz. Outside this region the galactic
binary signals are weaker than the intrinsic detector noise.
This is evident in the plot by the relative smoothness of the
spectrum from bin-to-bin. One way to characterize the
background is to statistically study the Fourier coefficient
distributions in different regions of the spectrum. Of spe-
cific interest is finding out if the galactic background is
characterized by a Gaussian distribution.

Tests for Gaussianity are done using independent �2 and
Kolmogorov-Smirnov tests. The Gauss tests are performed
over a window of 512 bins and done at each frequency.
Figure 6 shows the results of the Kolmogorov-Smirnov test
performed on the real coefficients for the spectrum shown
in Fig. 4. The p values plotted along the ordinate axis are
the probabilities that the set of measured deviates are
Gaussian distributed. While it is impossible to say with
certainty that a set of measured deviates are necessarily
distributed with a specific distribution, they can be shown
-6
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FIG. 6. The Kolmogorov-Smirnov Gaussianity test applied to
the real Fourier coefficients for the detector output shown in
Fig. 4. The presence of the galactic background is apparent by
the low p values about f � 10�3 Hz. Similar results are found
for the imaginary coefficients, for the other data channels, and
when using a �2 test.
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not to agree. Values for p above a hundredth are usually
accepted as agreeing with the tested distribution function.
Values of p below a hundredth, which are seen in the
millihertz region, indicate that the measured data are not
Gaussian distributed.

Comparing the results of the Gaussian test (Fig. 6) and
the original LISA output (Fig. 4) indicates that the detector
response is non-Gaussian for frequencies in which the
background is above the intrinsic detector noise level.
Outside these regions, where the detector’s noise domi-
nates the output, the returned p values are consistent with a
Gaussian distribution, as they should since the simulation
of the noise is based on Gaussian distributions. Similar
results are found for the imaginary coefficients, other
channels of data, and when calculated using a �2 test.

A common misconception is that the galactic back-
ground should be Gaussian distributed. This assumption
is based on the Central Limit Theorem, which states that
for a large sample of random deviates, regardless of their
parent distribution, the distribution of average values will
be approximately Gaussian. However, the Central Limit
Theorem is not directly applicable to the galactic back-
ground since the net power in a single frequency bin may
be dictated by a single bright source.
V. CONFUSION LIMITED BACKGROUND

A. Gaussian nature of the confusion limited
background

Large fluctuations originating from bright sources cause
the tails of the expected Gaussian distributions to be en-
larged. If the bright sources were removed from the data
streams, then the remaining background would be
122001
Gaussian. To demonstrate this we first identify the bright
sources, subtract them, and then retest the remaining back-
ground for Gaussianity.

Identifying all the bright sources in the actual LISA data
streams is a difficult problem not yet fully solved. The
modulation effects caused by LISA’s orbital motion spread
a source’s spectral power across multiple frequency bins.
Although the bandwidth over which a signal will spread is
a known function of the gravitational wave frequency and
sky position, if multiple signals are overlapping in a small
region of frequency space, the true number of signals in the
region may not be clearly identifiable. For our Monte Carlo
models, when we generate each binary, the parameter
values for each system are known. With this extra infor-
mation we can quickly and accurately identify bright
sources and remove them from the data streams.

Our approach to identifying bright sources is to catego-
rize them according to their signal-to-noise (SNR) ratio
using the standard formula,

�SNR�2 � 4
Z 1

0

j~h�f�j2

Sn�f�
df; (12)

where ~h�f� is the Fourier transform of the noiseless re-
sponse to a single gravitational wave signal, and Sn�f� is
the one-sided noise power spectral density. A source is
labeled as ‘‘bright’’ if its SNR is greater than 5 (optimistic)
or 10 (conservative). The proper use of Eq. (12) requires a
clear interpretation of the noise. We are interested in
removing sources that are bright relative to the local power
spectrum level. Therefore, the Sn�f� curve must be a
composite of the intrinsic detector noise and the galactic
background. It is an effective noise for the detector, which
we will emphasize by denoting it as Seff

n �f�.
To approximate the effective noise we calculate the

median detector output. While representing the effective
noise by the median response (as opposed to the mean
response) is somewhat stable against bright sources, in
regions near an extremely large SNR signal or where the
density of bright sources is large, the median will still be
influenced by these few signals. To account for the influ-
ence of the bright sources in calculating the Seff

n �f� curve,
we perform our calculations iteratively. We start with the
median response of the initial output and calculate the
number of bright sources with reference to this curve. We
then remove the bright sources exactly using the same
detector response approximation that generated them.
The justification for using the exact parameters is a matter
of simplicity, since data analysis algorithms are still being
developed. Moreover, with a SNR threshold of 10 the
errors in the recovered parameters will be small. The result
of removing the bright sources is a new background from
which we can calculate a new median response. From the
new median response we calculate the number of bright
sources with respect to the new Seff

n �f� curve. We iterate
this procedure until there are no new bright sources being
-7



TABLE II. Number of new bright sources identified at each
iteration with a source density cutoff applied.

Iteration 10% 100% 10% (SNR � 5) NYZ

1 6795 10 736 14 346 8583
2 3751 7850 4898 4803
3 1669 4440 194 2007
4 724 1531 20 732
5 271 463 1 325
6 79 157 � � � 186
7 30 66 � � � 79
8 12 1 � � � 48
9 7 � � � � � � 27

Total 13 338 25 244 19 459 16 788
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identified. In some examples, such as with the 100% HBW
model, the procedure does not appear to converge, so the
subtraction was stopped after 10 iterations.

Previous estimates [4,11] of the confusion background
ignored the relative brightness of the sources and focused
instead on the source density. These estimates defined the
confusion regime in terms of the number of sources per
frequency bin. Outside of the confusion regime sources
could be resolved and removed, while inside the confusion
regime the sources acted as a source of noise. This notion
of source confusion is based on linear algebra: The signal
from each galactic binary is described by 7 or 8 parameters
[18], and there are 4 data points per frequency bin (two
independent channels, each with a real and imaginary
part). Thus, one needs at least 2 frequency bins per source
to have as many data points as there are unknowns. While
this estimate is very crude, it is unlikely that a data analysis
algorithm can be found that beats the 0.5 source per bin
saturation point by very much (methods such as maximum
entropy [19] introduce priors that can help tame under
constrained systems, but they can only do so much). In
order to study the effect of a source density cutoff, we
repeat the SNR based source subtraction procedure with a
maximum resolved source density of 0.25 sources per bin
using a 100 bin average. The density of one source per four
bins was chosen as intermediate between the capabilities of
existing algorithms [20] and the saturation point described
above.

Table I lists the number of bright sources removed at
each iteration and the total number of bright sources re-
moved for several different realizations of the galactic
background if no source density cutoff is applied. In each
of the three HBW 10% realizations, the total number of
sources was fixed at 3:635� 107. All three realizations
gave similar results. The results of a HBW background
using the full 100% of the white dwarves, along with the
NYZ white dwarf background (2:6� 107 sources) are also
TABLE I. Number of new bright sources identified at each
iteration.

Iteration 10%(1) 10%(2) 10%(3) 100%
10%

(SNR � 5) NYZ

1 6795 6848 6793 10 736 14 346 8583
2 3806 3723 3712 8084 10 620 4803
3 1693 1803 1846 5340 5480 2090
4 817 929 866 3550 2577 866
5 395 457 456 2597 1129 473
6 226 250 225 2014 525 266
7 114 172 123 1628 278 191
8 59 97 76 1400 144 125
9 � � � � � � � � � 1264 72 � � �

10 � � � � � � � � � 1136 38 � � �

Total 13 905 14 279 14 097 37 749 35 209 17 396
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shown. For comparison we also include the optimistic case
of using a subtraction threshold of SNR � 5.

Table II lists the number of bright sources removed at
each iteration and the total number of bright sources re-
moved for several different realizations of the galactic
background when a maximum density of 0.25 resolved
sources per bin is applied. The HBW 10% and NYZ
models are only slightly affected by the cutoff, while the
HBW 100% and SNR> 5 version of the HBW 10% model
are significantly affected. The impact of the cutoff is
evident in Fig. 7, where the effective noise levels for the
HBW 100% (SNR> 10) and HBW 10% (SNR> 5) mod-
els are shown with and without the source density cutoff
applied.

Shown in Fig. 8 is the same Michelson signal as before
(Fig. 4), but with the bright sources removed. Visual in-
spection of the spectrum shows that without the bright
sources the bin-to-bin fluctuations are much smaller; an
indication that the Fourier coefficients may be Gaussian
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FIG. 8. The same Michelson signal from before, but after the
�104 bright sources have been removed from the data streams.
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FIG. 9. A running Gauss test applied to the detector output
after the bright sources have been removed. Unlike before, all
returned p values are consistent with a Gaussian distribution.
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distributed. Figure 9 confirms this hypothesis. When the
bright sources are removed from the data streams the
galactic background is Gaussian in nature.

B. Confusion limited background estimate

The sources that are not flagged as bright will give rise to
a confusion limited background that acts as an effective
noise source for LISA. Taking the list of unresolved
sources that remain after the simulated data analysis pro-
cedure described in the previous section, we can generate
estimates of the confusion noise in either the barycentric
frame or in the instrument data channels. The former is
useful for making comparisons with earlier work, while the
latter is better suited to studying the effect of the confusion
background on LISA’s ability to resolve other types of
gravitational wave signals.

Figure 10 compares our barycenter and detector frame
confusion noise estimates to the barycenter estimate of
122001
Ref. [4]. We have multiplied our detector frame result by
a factor of

�����������
20=3

p
to account for the average detector

efficiency. Our estimate is lower than the estimate in
Ref. [4] at low frequencies and higher at high frequencies.
It is important to note that both estimates use exactly the
same HBW model for the compact galactic binaries. The
differences in the confusion noise estimates are due to the
different way in which we modeled the data analysis
procedure. Note that our results can only be compared
below �1:3 mHz. Above this frequency the Ref. [4] esti-
mate is dominated by extragalactic sources, which we did
not include in our simulation.

A simple piecewise fit to our confusion noise estimate of
the HBW 10% background in the detector frame is given
by
Sconf�f� �

8>>>>><
>>>>>:

10�45:9f�2:6 10�4:4 < f � 10�3:2

10�50:38f�4:0 10�3:2 < f � 10�2:8

10�78:38f�14:0 10�2:8 < f � 10�2:65

10�126:08f�32:0 10�2:65 < f � 10�2:55

10�62:33f�7:0 10�2:55 < f � 10�2:1

m2 Hz�1: (13)

Similarly, for the NYZ white dwarf binary background we found

Sconf�f� �

8>>><
>>>:

10�44:62f�2:3 10�4:0 < f � 10�3:0

10�50:92f�4:4 10�3:0 < f � 10�2:7

10�62:8f�8:8 10�2:7 < f � 10�2:4

10�89:68f�20:0 10�2:4 < f � 10�2:0

m2 Hz�1: (14)
These fits do not include instrument noise, and have been
quoted in terms of position noise in order to avoid ambi-
guities in the path length scaling. (Our simulations nor-
malize by the round-trip path length, while other studies
normalize by the detector arm length.) For comparison, our
simulations of the Michelson response used an instrument
-9
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FIG. 11. Estimates of the effective noise level for the HBW
10% model (dotted line), and the NYZ model (solid line). The
effective noise curve used by Barack-Cutler Curve (dashed line)
is also shown.
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FIG. 10. Our estimates for the HBW 10% barycenter (solid
line) and detector frame (dot-dashed line) confusion noise levels
compared to the Ref. [4] estimate (dotted line). Our detector
frame confusion noise has been multiplied by a factor of

�����������
20=3

p
to account for the average detector efficiency.

FIG. 12. The accumulated number of bright sources per fre-
quency bin using a 100 bin average, both with (black) and
without ( gray) a bright source density cutoff. Starting in the
upper left and going clockwise we have: HBW 10% with SNR �
10, HBW 10% with SNR � 5, HBW 100% with SNR � 10, and
NYZ with SNR � 10.
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noise spectral density

Sn�f� �
1

4L2

�
4Spos � 8�1� cos2�f=f��

Saccl

�2�f�4

�
(15)

with position noise Spos � 4� 10�22 m2 Hz�1 and accel-
eration noise Saccl � 9� 10�30 m 2 s�4 Hz�1. The choice
of instrument noise level only has a weak effect on our
results as the unresolved galactic background is the main
source of noise from 0.1 mHz to roughly 3 mHz.

A true confusion limited background is what remains
after a full data analysis procedure has removed all iden-
tifiable signals. At present such an algorithm has not been
fully implemented, though good candidates now exist
[20,21]. Our method of removal, by which we remove a
source using the same response approximation that in-
cluded it, mimics a true data analysis procedure, but it fails
to include some of the subtle nuances associated with
signal and noise confusion [21]. Though we did not use a
true source removal algorithm, we expect that Fig. 8 rep-
resents a good approximation to how the confusion limited
background will appear in the LISA output. The best
estimates of the confusion noise may ultimately come
from Bayesian methods which treat the effective noise
level as another model parameter to be estimated [22].

Figure 11 shows the effective noise levels (confusion�
instrument noise) for the HBW 10% and the NYZ models.
These estimates were produced using the conservative
SNR � 10 criteria for bright source subtraction, and a
maximum density of 0.25 resolved sources per bin. In
contrast to what we found with the HBW 100% and
HBW 10% (SNR � 5) models, the effective noise levels
are little changed by the source density cutoff. Also shown
is the effective noise estimate used by Barack and Cutler
[11]. The Barack-Cutler curve agrees quite well with our
122001
NYZ curve, though it does slightly overestimate the noise
level between 0.5 and 2 mHz.
VI. BRIGHT SOURCE STATISTICS

The bright sources represent signals that are identifiable
in LISA’s output. By understanding their location and
separation (in the frequency domain) proper data analysis
tools can be developed and applied in the search for their
signals in the detector output. Also of interest are the
-10
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FIG. 13. Distribution of outlier distances as a function of their
frequency. Filled squares are white dwarf binaries, open circles
are black hole–neutron star binaries, asterisks are neutron star
binaries, and open squares are cataclysmic binaries.

CHARACTERIZING THE GALACTIC GRAVITATIONAL . . . PHYSICAL REVIEW D 73, 122001 (2006)
properties of the bright sources. Are they near to us or
distributed throughout the galaxy? Can we identify the type
of binary system? The next two sections address these
issues.

A. Bright source density

For issues concerning data analysis, an interesting quan-
tity to know is the number of bright sources per frequency
bin. Figure 12 is a plot of the average number of bright
sources per frequency bin using a 100 bin window to
calculate the average. The peak densities occur at
�2 mHz for the HBW 10% and NYZ models, whereas
the HBW 100% model has a maximum at�3 mHz. For the
HBW 100% (SNR � 10) model and the HBW 10%
(SNR � 5) model the maximum bright source density
reached one source per bin. This is why the resolved source
density cutoff of 0.25 made such a big difference in those
cases. The bandwidth of a typical source at this frequency
is approximately 20 frequency bins (for one year of ob-
servation). As a result, in the peak density region there are
bright sources whose power at least partially overlaps.
TABLE III. Number of sub

Realization 1
Type Included Removed Evolving

W UMa 3� 107 0 0
CB 1:8� 106 1 0
NS-NS 106 11 0
BH-NS 5:5� 105 591 10
WD-WD 3� 106 13 302 346

Total 3:635� 107 13 905 356

122001
B. Bright source characteristics

An interesting question to ask is what property makes a
particular binary bright. At high frequencies, where the
number of sources per bin is less than unity, a source is
considered bright if its signal is greater than the intrinsic
detector noise. However, at low frequencies, where the
number of sources per bin can be in the thousands (see
Fig. 3), each source must compete against the other sources
in the bin to become detectable.

To see what makes a source bright at low frequencies,
recall the functional form of the intrinsic amplitude,

A �
2G2M1M2

c4r

�
4�2f2

orb

G�M1 �M2�

�
1=3
: (16)

Given a particular frequency bin the orbital frequency does
not vary by more than a bin width, leaving only the masses
and the distance to the source to determine if a signal is
bright.

Figure 13 shows the distance versus frequency for each
bright binary coded by the type of system it is. Evident
from this figure is the mass segregation associated with the
bright systems. At low frequencies, where the number of
sources per bin peaks, the more massive black hole–neu-
tron stars are detectable. At higher frequencies the black
hole neutron star binaries are less numerous (see Fig. 1)
and the white dwarf binaries dominate the list of bright
sources.

To associate a binary to a particular type requires esti-
mating the component masses. Unfortunately for sources
whose frequency evolution is too small to detect, there is a
mass-distance degeneracy that prevents direct mass mea-
surements [23]. Table III shows the number of the bright
sources that evolve by a measurable amount. The fre-
quency evolution is considered measurable if the change
in gravitational wave frequency during the time of obser-
vation Tobs is greater than the width of a frequency bin
(1=Tobs).

It is interesting to note that very few sources will have a
measurable frequency evolution during one year of obser-
vation. The two main reasons for this is that the frequency
evolution is dictated by mass and initial frequency [see
Eq. (4)]. The massive black hole–neutron star binaries are
tracted binaries by type.

Realization 2 Realization 3
Removed Evolving Removed Evolving

0 0 0 0
2 0 1 0

11 2 7 0
585 12 550 8

13 681 353 13 539 337

14 279 367 14 097 345
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located at low frequencies, while the higher frequency
white dwarf binaries have smaller chirp masses.

Figure 13 also demonstrates that we should be able to
see individual binaries distributed throughout the galaxy.
This introduces the tantalizing prospect of using gravita-
tional wave data to map galactic populations. However,
since there is a mass-distance degeneracy for systems that
do not evolve appreciable during the lifetime of the detec-
tor, only a small fraction of the identifiable sources can be
used for such an analysis.

VII. SUMMARY AND CONCLUSIONS

In this paper we have presented a Monte Carlo simula-
tion of the galactic gravitational wave background as it
would be detected by the proposed LISA mission after one
year of operation. For the intrinsic binary properties we
used the distributions given in Hils et al. [3] and Nelemans
et al. [8]. Our key findings are: the galactic background
levels will be reduced in the detector frame as compared to
the barycenter frame, prior to the removal of the bright
sources the background is not characterized by a Gaussian
distribution, and of the �104 identifiable sources only
�102 are evolving and thus identifiable by type. We have
also derived a new estimate for the confusion limited
background that differs from other estimates given in the
literature. Below 1 mHz our estimate is lower than pre-
vious estimates, while above 1 mHz our estimate is higher
than previous findings. Our calculation of the bright source
density (in frequency space) suggests that data analysis
algorithms can be developed that are capable of resolving
�10 000 galactic binaries from a one year LISA data
stream. Of these, roughly 300 will be measurably chirping,
allowing the determination of the chirp mass and the
distance to these sources. The number of resolvable galac-
tic sources, especially the number of measurably evolving
systems, will increase significantly after several years of
observation (the resolution of the frequency derivative
improves with observation time, Tobs, as T5=2

obs ).
An important point to keep in mind about the results

presented here is that they assumed particular descriptions
for the galactic distribution, total number, and source char-
acteristics of each binary population. A different collection
of models of the extrinsic parameters may return a slightly
different set of results as is seen in the NYZ backgrounds.
However, the main conclusions drawn here are largely
dictated by three quantities, the total number of binary
systems, their period distributions, and the component
masses.

The number of binary sources in the galaxy can impart a
noticeable difference in the background levels. As radia-
tion from the binaries converges on the detector, the ran-
dom phase differences will cause constructive and
destructive interference. Statistically the problem is analo-
gous to a random walk. As a result, the net spectral
amplitude per frequency bin will grow as

����
N
p

. For every
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factor of 100 difference in the number of sources, the
background levels raise or lower by a decade, respectively.
For electromagnetically visible binaries (W UMa, une-
volved, and cataclysmic binaries), galactic surveys have
placed stringent constraints on the total number of such
binaries. However, for the compact binaries (neutron star–
neutron star, black hole–neutron star, and white dwarf
binaries) equivalent surveys have failed to place strict
bounds on the total numbers. One return of the LISA
mission will be to place limits on the populations by
measuring the galactic background median levels and the
number of bright sources from each population.

While the overall level for the galactic background level
is partially influenced by the total number of systems, the
background level is also dictated by the component masses
via Eq. (16). By comparing our HBW based simulations to
the population synthesis approach of NYZ [8], we have
found that relatively small changes in the component
masses can lead to significant changes in the background
levels. Current uncertainties in the true mass distributions
arise from a lack of observational data and a theoretical
understanding of mass transferring stages during forma-
tion. The NYZ white dwarf binaries are typically com-
posed of two light components, M< 0:5M�, whereas the
HBW white dwarf binaries are typically composed of one
light component and one heavy component,M>M�. This
results in the HBW systems having mean chirp masses,
M � �M1M2�

3=5=�M1 �M2�
1=5, almost a factor of 2

higher than the NYZ systems. Since the amplitude of
signals scales as M5=3, the difference in component
masses translates into a factor of �3:2 increase in the
HBW background relative to the NYZ background for
the same source density. It is an interesting numerical
coincidence that the 10% reduction in source density pro-
posed by HBW yields a

������
10
p

� 3:2 reduction in the ampli-
tude of the background, resulting in a background level
comparable to the NYZ model. Despite this fortuitous
cancellation, the HBW 10% and the NYZ models yield
different confusion noise estimates due to the reduced
number of sources in the HBW 10% model.

The period distributions will also impart a noticeable
change in the background. If, for example, there is a
mechanism that suppresses low period white dwarfs, the
values in Table III and Fig. 13 would change. Conversely,
we can invert the problem and ask questions such as what
would the high frequency end of the galactic background
look like if certain physics are included in the models for
close white dwarf binary production?
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APPENDIX: DETECTOR RESPONSE

For a gravitational wave traveling in the k̂ direction we
can express a single channel LISA response as a linear sum
of responses for each polarization state,

s�t� � A�F
��t� cos��t� � A�F

��t� sin��t�; (A1)

where the wave phase is given by

��t� � 2�fo � � _fot
2 � ’o ��D�t�: (A2)

Here fo is the initial gravitational wave frequency, _fo is the
initial frequency derivative, and A�;� are the polarization
amplitudes given in Eq. (3). The Doppler modulation of the
signal is given by

�D�t� ’
2�fo
c

k̂ � xi�t�; (A3)

where we have neglected the small correction due to the
frequency evolution _fo. The antenna beam pattern func-
tions F�;��t� describe LISA’s time varying sensitivity to
each polarization and are given by

F��t� � 1
2�cos�2 �D��t� � sin�2 �D��t�� (A4a)

F��t� � 1
2�sin�2 �D��t� � cos�2 �D��t��; (A4b)

where the two-arm detector response functions are defined
as

D��t� 	 d�ijT ij�t; fgw� � d�ikT ik�t; fgw� (A5a)

D��t� 	 d�ijT ij�t; fgw� � d
�
ikT ik�t; fgw� (A5b)

with

d�ij �t� 	 �r̂ij�t� � r̂ij�t��: e� (A6a)

d�ij �t� 	 �r̂ij�t� � r̂ij�t��: e�: (A6b)

The colon denotes a double contraction, x: y � xabyab,
with repeated indices implying a summation, r̂ij�t� is a
unit vector that points from spacecraft i to spacecraft j, and
T ij�t; fgw� is the round-trip transfer function for the arm
connecting the i and j spacecraft,
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T ij�t; f� �
1

2
�sinc

�
f

2f
�1� k̂ � r̂ij�t��

�

� exp
�
�i

f
2f
�3� k̂ � r̂ij�t��

�

� sinc
�
f

2f
�1� k̂ � r̂ij�t��

�

� exp
�
�i

f
2f
�1� k̂ � r̂ij�t��

��
: (A7)

The quantity f 	 c=2�L is referred to as the transfer
frequency, which for LISA (L � 5� 106 km) has a value
of 9.54 mHz. The transfer frequency is approximately the
point at which a gravitational wave will ‘‘fit inside’’ the
detector arms.

The polarization basis tensors are expressed in terms of
two orthonormal unit vectors,

e� � û � û� v̂ � v̂ (A8a)

e� � û � v̂� v̂ � û: (A8b)

The unit vectors û and v̂, along with the propagation
direction of the gravitational wave, k̂, form an orthonormal
triad, which may be expressed as functions of the source
location on the celestial sphere ��;��,

û � cos��� cos���x̂� cos��� sin���ŷ� sin���ẑ (A9a)

v̂ � sin���x̂� cos���ŷ (A9b)

k̂ � � sin��� cos���x̂� sin��� sin���ŷ� cos���ẑ: (A9c)

To calculate the unit vectors r̂ij�t�, we use the spacecraft
coordinates given by [24],

x�t� � R cos�	� � 1
2"R�cos�2	� 
� � 3 cos�
�� (A10a)

y�t� � R sin�	� � 1
2"R�sin�2	� 
� � 3 sin�
�� (A10b)

z�t� � �
���
3
p
"R cos�	� 
�: (A10c)

In the above R � 1 AU is the orbital radius of the guiding
center, " is the orbital eccentricity, 	 	 2�fmt� � is the
orbital phase of the guiding center, fm � 1=year is the
modulation frequency, and 
 	 2��n� 1�=3� � (n �
1; 2; 3) is the relative phase of the spacecraft within the
constellation. The parameters � and � give the initial
ecliptic longitude and orientation of the constellation, re-
spectively. Note that to linear order in the eccentricity,
which is the order we work to, the triangular formation is
rigid with arm lengths given by L � 2

���
3
p
"R.

Equation (A1), and the relationships that follow it, rep-
resent the Rigid Adiabatic Approximation described in
[17]. An important property of the approximation is that
it is implemented in the time domain. To properly model
sources with frequencies up to 10 mHz requires a mini-
mum of �106 data points for an observational period of
-13
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one year. The computational cost of simulating the re-
sponse for over 107 sources in the time domain is
prohibitive.

A desirable alternative is to work directly in the fre-
quency domain. The advantage of doing so is that the
number of relevant Fourier coefficients is small. Here the
concept of ‘‘relevant’’ are those coefficients that contain a
high percentage (� 98%) of the spectral power. For refer-
ence, a moderate signal-to-noise ratio source at 10 mHz,
observed for one year, will spread across 65 frequency
bins. It is possible to derive an analytic expression for the
Fourier transform of the time domain signal, Eq. (A1). The
calculation has four steps. First, the amplitude and fre-
quency modulations are decomposed into harmonics of
the detector’s orbital frequency fm. Second, the frequency
evolution term, exp��i _fot2�, is Fourier transformed. Third,
the product of the orbital harmonics and the barycenter
wave function exp�2�ifot� are Fourier transformed, yield-
ing a Fourier series whose coefficients are products of the
harmonic amplitudes and the cardinal sine function.
Finally, the Fourier series from steps two and three are
convolved to give the complete finite time Fourier trans-
form of the time domain signal. Our calculation general-
izes the expression derived by [9] to allow for arbitrary
observation times, chirping sources, and the effect of the
instrument transfer functions.

The first step in the calculation relies on the fact that the
functions F��t�, F��t�, and �D�t� owe their time variation
to the orbital motion of the detector. Thus we may decom-
pose each of these functions into harmonics of the orbital
frequency fm,
F��t� �
X
n

pne2�infmt (A11a)

F��t� �
X
n

cne2�infmt (A11b)

ei�D�t� �
X
n

dne
2�infmt: (A11c)
 0.5

 0.75

 1
The coefficients dn are given by the Jacobi-Anger expan-
sion,
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-1

-0.75

-0.5

-0.25

 1e-05  0.0001  0.001  0.01  0.1

f  Hz

 0.96

 0.001  0.01

FIG. 14. The correlation between the Extended Low Frequency
Approximation and the Rigid Adiabatic Approximation.
where Jn is the Bessel function of the first kind of order n.
Deriving expressions for pn and cn is complicated by the
transfer functions that appear in Eq. (A5). While it is
possible to perform the harmonic decomposition exactly
using the Jacobi-Anger expansion, a simpler approach is to
Taylor expand the transfer functions in powers of f=f
then decompose each term into orbital harmonics. For our
current needs a second order expansion is sufficient,
122001
T ij�t; f� � 1� i�2� k̂ � r̂ij�t��
�
f

2f

�

�
1

2
�4� 3�2� k̂ � r̂ij�t�� � �2� k̂ � r̂ij�t��2�

�

�
f

2f

�
2
�O

�
f

2f

�
3
: (A13)

We can now reexpress T ij, d�ij , and d�ij in terms of orbital
harmonics:

T ij�t; f� �
X4

n��4

~T ij;ne
2�infmt

d�ij �t; f� �
X4

n��4

~d�ij;ne
2�infmt

d�ij �t; f� �
X4

n��4

~d�ij;ne
2�infmt:

(A14)

Convolving these expansions yields

pn �
X4

l��4

X4

m��4

�~d�ij;l
~T ij;m � ~d�ik;l

~T ik;m� (A15a)

cn �
X4

l��4

X4

m��4

�~d�ij;l
~T ij;m � ~d�ik;l

~T ik;m�; (A15b)

where n � l�m. The range of the sums in the above
harmonic decomposition can be traced to the functional
form of the r̂ij�t� unit vectors. From Eq. (A10) we see that
the harmonic decomposition of r̂ij�t� involves a sum from
�2 to 2. The one-arm detector response functions and the
expanded transfer functions are each a function of r̂2 and,
therefore, their decompositions range from �4 to 4.

The second step is to Fourier transform the frequency
evolution term, which yields Fourier coefficients qn that
can be expressed in terms of error functions of a complex
-14
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argument. The third step is to Fourier transform the re-
maining terms over the finite observation time T which has
the effect of introducing the cardinal sine function,
sinc�x� 	 sin�x�=x. Putting everything together we have

sj �
1

2
ei’0

X
k

qk
X
l

sinc�xlm�eixlm
X
n

�A�pn � ei3�=2A�cn�

�
X
p

dp; (A16)

where xlm � ��lfm � f0T �m�, j � k� l and m � n�
p.

To test the range of validity for the new approximation,
referred to as the Extended Low Frequency Approximation
(ELF), we calculated a normalized correlation between the
new approximation and the Rigid Adiabatic Approximation
(RA),
122001
r�f� �
hsRA�f�jsELF�f�i����������������������������������
hs2

RA�f�ihs
2
ELF�f�

q
i
: (A17)

The rigid adiabatic adequately describes LISA’s response
up to �0:3 Hz [17] making it a valid benchmark to com-
pare the new approximation against. Figure 14 shows the
correlation between the two approximations for a ran-
domly selected binary whose masses, sky location,
etc. were held fixed while the correlation was tested at
different frequencies. To safely apply the Extended Low
Frequency Approximation, in our analysis we use a cutoff
of 7 mHz as the trigger point for where we switched to the
slower Rigid Adiabatic Approximation. This allows for
quick and accurate frequency domain modeling for all
but �100 sources in our galactic simulations.
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