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Solitonic generation of the five-dimensional black ring solution
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Using the solitonic solution-generating technique, we rederived the one-rotational five-dimensional
black ring solution found by Emparan and Reall. The seed solution is not the Minkowski metric, which is
the seed of the S2-rotating black ring. The obtained solution has more parameters than Emparan and
Reall’s S1-rotating black ring. We found the conditions of parameters to reduce the solution to the
S1-rotating black ring. In addition, we examined the relation between the expressions of the metric in the
prolate-spheroidal coordinates and in the canonical coordinates.
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One of the most important recent findings of the higher-
dimensional general relativity is a one-rotational black ring
solution by Emparan and Reall [1]. This solution is a
vacuum, axially symmetric and asymptotically flat solution
of the five-dimensional general relativity. The topology of
the event horizon is S1 � S2. The black ring rotates along
the direction of the S1. The extension of this solution to a
two-rotational one has not yet been achieved.

Recently, the present authors found a black ring solution
with S2 rotation by using a solitonic solution-generating
technique [2]. In the analysis we reduced the problem to
the four-dimensional one [3–5] and applied the formula [6]
to obtain the metric functions. The seed solution of this
ring is a simple Minkowski spacetime. Because the effect
of rotation cannot compensate for the gravitational attrac-
tive force, the ring has a kind of strut structure. Figueras
found a C-metric expression of S2-rotating black ring
solution [7]. Tomizawa et al. showed that the same black
ring solution is obtained by using the inverse scattering
method [8].

In this paper we generate the black ring with S1 rotation
by the solitonic solution-generating technique. We find that
the seed solution is not a Minkowski spacetime. The ob-
tained solution has more parameters than Emparan and
Reall’s black ring. It is therefore an extension of the result
of Emparan and Reall and we need some additional con-
ditions to reduce the solution we obtained to the black ring
solution. In this analysis we use prolate-spheroidal coor-
dinates. The relation between this and the canonical coor-
dinates considered by Harmark [9] are analyzed. We also
investigate the correspondence between the seed solutions
and the solitonic ones from the viewpoints of rod structure.
This viewpoint would be helpful to consider seed solutions
for further new five-dimensional solutions. We cannot
generate two-rotational solutions by the solution-
generating technique used here. However, if we use an-
other technique, e.g., inverse scattering method, for the
seed solution used in this analysis or the seed with some
corrections, the two-rotational black ring solution may be
obtained.

At first we briefly explain the procedure to generate
axisymmetric solutions in the five-dimensional general
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relativity. The spacetimes which we considered satisfy
the following conditions: (c1) five dimensions,
(c2) asymptotically flat spacetimes, (c3) the solutions of
vacuum Einstein equations, (c4) having three commuting
Killing vectors including time translational invariance and
(c5) having a single nonzero angular momentum compo-
nent. Under conditions (c1)–(c5), we can employ the
following Weyl-Papapetrou metric form (for example,
see the treatment in [9]):

ds2 � �e2U0�dx0 �!d��2 � e2U1�2�d��2 � e2U2�d �2

� e2���U1��d�2 � dz2�; (1)

where U0, U1, U2, !, and � are functions of � and z. Then
we introduce new functions S :� 2U0 �U2 and T :� U2

so that the metric form (1) is rewritten into

ds2 � e�T��eS�dx0 �!d��2 � eT�2U1�2�d��2

� e2���U1��T�d�2 � dz2�� � e2T�d �2: (2)

Using this metric form, the Einstein equations are reduced
to the following set of equations:

�i� r2T � 0;

�ii�

(
@��T �

3
4���@�T�

2 � �@zT�2�
@z�T �

3
2��@�T@zT�;

�iii� r2ES �
2

ES � �ES
rES 	 rES;

�iv�

(
@��S �

�
2�ES� �ES�

�@�ES@� �ES � @zES@z �ES�

@z�S �
�

2�ES� �ES�
�@�ES@z �ES � @�ES@z �ES�;

�v� �@��; @z�� � ��1e2S��@z!; @�!�;

�vi� � � �S � �T;

�vii� U1 � �
S� T

2
;

where � is defined through equation (v) and the function
ES is defined by ES :� eS � i�. The most nontrivial task to
obtain new metrics is to solve equation (iii) because of its
nonlinearity. To overcome this difficulty here we use the
-1 © 2006 The American Physical Society
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FIG. 1. Schematic pictures of rod structures. The upper panel
shows the rod structure of Minkowski spacetime, which is a seed
of S2-rotating black ring. The lower panel shows the rod struc-
ture of the S2-rotating black ring. The segment ���;�� of semi-
infinite rod in the upper panel is transformed to the finite timelike
rod with �-rotation by the solution-generating transformation.
The eigenvector of the finite timelike rod in the lower panel has a
nonzero � component. Therefore we put this rod between x0 and
� axes.
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method similar to the Neugebauer’s Bäcklund transforma-
tion [10] or the Hoenselaers-Kinnersley-Xanthopoulos
transformation [11].

To write down the exact form of the metric functions, we
follow the procedure given by Castejon-Amenedo and
Manko [6]. In the five-dimensional spacetime we start
from the following form of a seed static metric:

ds2 � e�T
�0�
��eS

�0�
�dx0�2 � e�S

�0�
�2�d��2

� e2��0��S�0� �d�2 � dz2�� � e2T�0� �d �2:

For this static seed solution, eS
�0�

, of the Ernst equation (iii),
a new Ernst potential can be written in the form

E S � eS
�0� x�1� ab� � iy�b� a� � �1� ia��1� ib�
x�1� ab� � iy�b� a� � �1� ia��1� ib�

;

where x and y are the prolate-spheroidal coordinates: � �

�
��������������
x2 � 1
p ��������������

1� y2
p

, z � �xy, with �> 0. The ranges of
these coordinates are 1 
 x and �1 
 y 
 1. The func-
tions a and b satisfy the following simple first-order dif-
ferential equations:

�x� y�@xa � a��xy� 1�@xS�0� � �1� y2�@yS�0��;

�x� y�@ya � a���x2 � 1�@xS
�0� � �xy� 1�@yS

�0��;

�x� y�@xb � �b��xy� 1�@xS
�0� � �1� y2�@yS

�0��;

�x� y�@yb � �b���x
2 � 1�@xS

�0� � �xy� 1�@yS
�0��:

(3)

The metric functions for the five-dimensional metric (2)
are obtained by using the formulas shown by [6],

eS � eS
�0� A
B

(4)

! � 2�e�S
�0� C
A
� C1 (5)

e2� � C2�x2 � 1��1Ae2�0 ; (6)

whereC1 and C2 are constants and A, B, andC are given by

A :� �x2 � 1��1� ab�2 � �1� y2��b� a�2;

B :� ��x� 1� � �x� 1�ab�2 � ��1� y�a� �1� y�b�2;

C :� �x2 � 1��1� ab���1� y�b� �1� y�a�

� �1� y2��b� a��x� 1� �x� 1�ab�:

In addition the �0 in Eq. (6) is a � function corresponding
to the static metric,

ds2 � e�T
�0�
��e2U�BH�0 �S�0� �dx0�2 � e�2U�BH�0 �S�0��2�d��2

� e2��0�U�BH�0 ��S�0� �d�2 � dz2�� � e2T�0� �d �2; (7)

where U�BH�0 � 1
2 ln�x�1

x�1�. Then the function T is equal to
T�0� and U1 is given by the Einstein equation (vii).

Using the solution-generating technique described
above, we construct the S1-rotating black ring solution
121501
obtained by Emparan and Reall. The most important point
is to find the seed metric of the black ring solution. To do
so, it is useful to use the rod structures which were studied
for the higher-dimensional Weyl solutions by Emparan and
Reall [12] and for the nonstatic solutions by Harmark [9].
Using this rod structure analysis, we found the seed metric
of the S1-rotating black ring solution by analogy with the
relations between the S2-rotating black ring and its seed
metric. (See [9] for the definition of the rod structure.)

We show the schematic pictures of rod structures of the
S2-rotating black ring and its seed solution in Fig. 1 [2].
Through the solitonic transformation the segment ���;��
of semi-infinite spacelike rod which corresponds to the
�-axis is changed to the finite timelike rod. To indicate
that the x0 and � components of the eigenvector are not
zero, we put the finite rod between x0 and � axes in Fig. 1.
In the resulting solution this segment corresponds to the
event horizon with �-rotation.

The rod structure of the S1-rotating black ring was
investigated by Harmark [9]. There are two semi-infinite
spacelike rods in the directions of @=@ and @=@�. Note
that these two semi-infinite spacelike rods assure the
asymptotic flatness of the spacetime. Also there is a finite
spacelike rod in the @=@ direction. A finite timelike rod
has finite and semi-infinite spacelike rods in the @=@ 
direction on each side. This timelike rod corresponds to
an event horizon with �-rotation.

Now we construct the seed solution for the S1-rotating
black ring. For this purpose we trace back from the rod
structure of the S1-rotating black ring to the seed solution
referring to the analysis of S2-rotating black ring. This can
-2
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be achieved when we change the finite timelike rod to the
finite spacelike rod in the @=@� direction. In Fig. 2 we
show the schematic pictures of these two rod structures.

The seed metric of the S1-rotating black ring is summa-
rized as follows. The  - component of the metric of black
ring and its seed are exactly the same as each other. Also,
the 0-0 component of the seed metric is �1. The seed
functions of the S1-rotating black ring solution are ob-
tained as

S�0� � T�0� � ~U�� � ~U��1� �
~U�2�; (8)

where the function ~Ud is defined as ~Ud :� 1
2 ln�Rd � �z�

d�� and Rd �
�����������������������������
�2 � �z� d�2

p
. We assume that the pa-

rameters �, �1, and �2 should satisfy the following in-
equalities

1
�; �1
�1
1; �1
�2
1; 0
�1��2;

to generate the black ring solution because the timelike rod
appears in the region �� 
 z 
 � after the solitonic
transformation. Under these assumptions, the region of
x � 1 and ��1 < y< �2 of the solitonic solution corre-
sponds to the event horizon. Also the region of x > � and
y � 1 is the fixed points of the � rotation. The regions of
1< x< � and y � 1, x � 1 and �2 < y< 1, x � 1 and
�1< y<��1, and y � �1 become fixed points of  
rotation in the black ring spacetime.

Substituting the seed function (8) into the differential
equations (3), we obtain the solutions of these equations as,

a �
�

2�1=2

e2U� � e2 ~U��

e ~U��

e2U� � e2 ~U��1�

e
~U��1�

e
~U�2�

e2U� � e2 ~U�2�
;

FIG. 2. Schematic pictures of rod structures. The upper panel
shows the rod structure of seed metric of S1-rotating black ring.
The lower panel shows the rod structure of S1-rotating black
ring. The finite spacelike rod ���1�;�2�� in the upper panel is
altered to the finite timelike rod by the solution-generating
transformation.

121501
b � 2�1=2�
e ~U��

e2U�� � e2 ~U��

e
~U��1�

e2U�� � e2 ~U��1�

�
e2U�� � e2 ~U�2�

e
~U�2�

;

where � and � are integration constants and Uc :� 1
2 �

ln�Rc � �z� c��.
Next we reduce the explicit expression for the �0. Read

out the functions S0 and T0 from Eq. (7) as

S0 � 2U�BH�0 � S�0�

� 2� ~U� � ~U��� � ~U�� � ~U��1� �
~U�2�

T0 � T�0� � ~U�� � ~U��1� �
~U�2�;

and substitute them into

@��
0 � 1

4���@�S
0�2 � �@zS

0�2� � 3
4���@�T

0�2 � �@zT
0�2�;

@z�0 �
1
2��@�S

0@zS0� �
3
2��@�T

0@zT0�;

so we can confirm that �0 is divided as

�0 � �0�;� � �
0
��;�� � �

0
��;�� � �

0
��1�;��1� � �

0
�2�;�2�

� 2�0�;�� � �
0
�;�� � �

0
�;��1� � �

0
�;�2� � �

0
��;��

� �0��;��1� � �
0
��;�2� � 2�0��;��1�

� 2�0��;�2�

� 2�0��1�;�2�;

where �0cd satisfies the following equations:

@��0cd � ��@� ~Uc@� ~Ud � @z ~Uc@z ~Ud�; (9)

@z�
0
cd � ��@� ~Uc@z ~Ud � @� ~Ud@z ~Uc�: (10)

These equations (9) and (10) have the solution

�0cd �
1
2

~Uc �
1
2

~Ud �
1
4 lnYcd;

where Ycd :� RcRd � �z� c��z� d� � �2.
Now the functions which are needed to express the full

metric are completely obtained. The full metric is ex-
pressed as

ds2 � �
A
B

�
dx0 �

�
2�e�S

�0� C
A
� C1

�
d�

�
2

�
B
A
e�2S�0��2�d��2 � e2S�0� �d �2

� C2�2 x
2 � y2

x2 � 1
Be2��0�S�0��

�
dx2

x2 � 1
�

dy2

1� y2

�
:

(11)

In the following the constants C1 and C2 are fixed as

C1 �
2�1=2�
1� ��

; C2 �
1���

2
p
�1� ���2

;

to assure that the spacetime asymptotes to a five-
dimensional Minkowski spacetime globally. We can con-
-3
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firm this by taking the asymptotic limit, x! 1, of the
metric.

The above solution is an extension of the S1-rotating
black ring solution because it contains singular cases. In
general, the spacetime described by the metric (11) in-
cludes some harmful regions, for example, the region
where closed timelike curves exist. In fact, the metric
component g�� becomes negative around �x; y� � �1; 1�
and �1;�1�. These singular behaviors are cured by setting
the parameters � and � as

� �

����������������������������������
2�1� �2�

��� 1��1� �1�

s
; � �

����������������������������������
��� 1��1� �1�

2�1� �2�

s
:

(12)

The asymptotic form of ES near the infinity ~r � 1
becomes

E S � ~r cos	
�

1�
�

~r2

P��;�; ��

�1� ���2
� 	 	 	

�

� 2i�1=2

�
�

1� ��
�

2�cos2	

~r2

Q��;�; ��

�1� ���3
� 	 	 	

�
;

where we introduced the new coordinates ~r and 	 through
the relations

x �
~r2

2�
� �� �1 � �2; y � cos2	;

and

P��;�; �� � 4�1� �2 � �2�2�

Q��;�; �� � ��2�2 � �1 � �2 � �� 3� � 2�2�3

� ��2�2��� 1���2 � 1� � ��1 � �2 � �

� 1��2���� 2��:

From the asymptotic behavior of the Ernst potential, we
can compute the mass parameterm2 and rotational parame-
ter m2a0 as

m2 � �
P��;�; ��

�1� ���2
; m2a0 � 4�3=2 Q��;�; ��

�1� ���3
:

For the black ring solution we obtain

m2 �
8���1 � �2���� �2�

��� 1��1� �1��1� �2��1� ���
2 ; (13)

m2a0 � m2

����
�
p
���1� ��1� � 2��2�

1� ��
; (14)

where we use Eq. (12). From Eqs. (13) and (14) we can
obtain the useful relation

a2
0

m2
�
��1� ��1�

���������������
1� �2

2

q
� �2

������������������������������������
��2 � 1��1� �2

1�
q

�2

4��� �2���1 � �2�
:

(15)

When �1 � �2 � 1 the black ring becomes static because
121501
� � � � 0 from Eq. (12). The one-rotational black hole
limit [13] of the black ring is realized when we set

� � 1� 
; �2 � 1� k
;

where k > 0 is constant, and then, take the limit 
! 0.
The periods of � and  are defined as

�� � 2�lim
�!0

�������������
�2g��
g��

vuut and � � 2�lim
�!0

�������������
�2g��
g  

vuut
to avoid a conical singularity. We see that the period of� is
�� � 2� and the period of  is � � 2� outside the ring
and

� � 2�
����2

���1
��1�

��������������������������������
���1��1��1��1��2�
���1��1��1��1��2�

q
��������

��1
��1

q
�

�����������������������
�1��1��1��2�
�1��1��1��2�

q ;

inside the ring. In general, there is a conical singularity
inside or outside the ring. This conical singularity is cured
by setting the parameters �, �1, and �2 to satisfy the
relation�

�� �2

�� �1

��
1�

����������������������������������������������������
��� 1��1� �1��1� �2�

��� 1��1� �1��1� �2�

s �

�

�������������
�� 1

�� 1

s
�

������������������������������������
�1� �1��1� �2�

�1� �1��1� �2�

s
: (16)

Finally, we consider the coordinate transformation be-
tween the prolate-spheroidal coordinates used here and the
canonical coordinates analyzed by Harmark [9]. See [9] for
the notation and the exact expression of the metric in the
canonical coordinates. We however use ~� and ~z for � and z
of [9].

Comparing the functional forms of  - components, we
obtain the relations between these two coordinates. These
two coordinates can be transformed into each other
through the relation

~� � �

~z � z�
�1 � �2

2
� � �

�
xy�

�1 � �2

2

�
:

In addition, the parameters should satisfy the following
relations,

�2 � �
�
��

�1 � �2

2

�
; (17)

c �
�1 � �2

2�� �1 � �2
; (18)

b �
��� 1� ��� 1����2 � ��2 � 1��1� ���2

��� 1� ��� 1����2 � ��2 � 1��1� ���2
; (19)

to assure the equivalence of these two expressions. Here
the parameters � and� satisfy the conditions (12). Also we
-4
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have to rescale the �-z part of the metric as

e2 �
1� b

�1� c�2
e2���U1�:

Note that b � c when � � 1, �1 
 1, and �2 
 1. From
the static black ring condition b � c [9], we can derive the
following relation:

1� �2

1� �2
�

�
1� �1

1� �1

��
�� 1

�� 1

�
;

which holds when �1 � �2 � 1. Indeed the black ring is
static in this case because � � � � 0 from Eq. (12). The
black ring solution becomes a one-rotational black hole
when we take the limits b, c! 1 [9]. These limits surely
correspond to the limits �, �2 ! 1.

There are six parameters ��;�1; �2; �; �; �� in the met-
ric (11) with two relations (12). While there are three
parameters �b; c; �� in the canonical coordinates. The pa-
rameter � appears only in the relation of �2, Eq. (17), and
contributes to the scaling of the coordinates. Thus we can
freely fix one of the parameters ��;�1; �2�. Here we set
�1 � 1 because the relations obtained above become sim-
ple. In this case we can inversely solve Eqs. (17)–(19). The
results are

�1�1; �2�
2c�cb�b
�1�c�b

; ��
1

b
; ��

1�c
1�b

b�2:

When the black ring does not have a conical singularity,
these relations become

�1 � 1; �2 � c; ��
1� c2

2c
; ��

2c
1� c

�2;

and the parameter �2 lies in the range 0<�2 
 1.
Next we consider the relations between physical varia-

bles. The ADM mass and angular momentum of the black
ring were derived by Emparan and Reall [1] as

M �
3��2b

2�1� c�
; J1 �

���
2
p
��3

����������������������������������
b�b� c��1� b�

p
�1� c�2

:

121501
These two variables are related to the mass and rotational
parameters as

m2 �
8�1� c�2

3��1� b�
M; m2a0 �

4

�
�1� c�3

�1� b�3=2
J1:

Using the balanced black ring conditions (16) with�1 � 1,
the right-hand side of Eq. (15) can be reduced to the
following form:

a2
0

m2
�
�1� �2�

3

8�2
�

27�
32

J2
1

M3 :

This agrees with the previous results [1].
In this paper we rederived the S1-rotating black ring

solution by the solitonic solution-generating technique.
Using the rod structure analysis we found the seed solution
of the black ring on the analogy of the relation between the
S2-rotating black ring and its seed solution. The relations
between the seed and obtained solitonic solutions can be
easily understood through the analysis of their rod struc-
tures. Thus the rod structure analysis is expected to be a
useful guide to construct seed solutions for new solutions.
In addition, we obtained the relations between the prolate-
spheroidal coordinates and the canonical coordinates. This
means that, using the coordinate transformation between
canonical and C-metric coordinates obtained by Harmark
[9], the prolate-spheroidal coordinates also can be trans-
formed into the C-metric coordinates.

As is the S2-rotating black ring [8], the S1-rotating black
ring solution would be generated from the seed solution
obtained here by the inverse scattering method. Also, it
might be expected that the two-rotational black ring is
obtained from the seed solution or the seed with some
deformations by this method.
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