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We compute the energy spectrum of low-lying gluonic excitations in the presence of static quark-
antiquark sources using Coulomb gauge and the quasiparticle representation. Within the valence sector of
the Fock space we reproduce both, the overall normalization and the ordering of the spin-parity multiplets.
We discus how the interactions induced by the nonabelian Coulomb kernel are central in to fine structure
of the spectrum.
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I. INTRODUCTION

Lattice simulations of the energy of static quark-quark
or quark-antiquark (Q �Q) systems have been studied for
various configurations of the gluonic field [1–5]. They
effectively represent the spectrum of gluonic excitations
in the presence of sources. The results of simulations
indicate that the spectrum is quite complex with an unusual
ordering of levels and unexpected behavior for large sep-
arations between the sources. In the following we will
specialize to the spectrum in the presence of Q �Q sources
and in the absence of light quark pairs. The wave function
of the gluon field can be characterized according to its
behavior under the symmetries of the Q �Q system. These
include rotation around the Q �Q axis, hence after chosen to
be in the z direction. The corresponding conserved quan-
tum number, � represents projection of the total gluon
angular momentum on the Q �Q axis and is conventionally
denoted by � � �, �, �, � � � corresponding to projec-
tions, � � 0; 1; 2; � � � , respectively. Other symmetries are
the combined product of parity and charge conjugation,
PC, with eigenvalues denoted by g and u for PC � �1 and
�1, respectively, and reflection in the x� z plane, Y �
�1. The representation space of QCD eigenstates in the
presence of static Q �Q sources is then given by states
labeled as jR;�PC

Y i where R is the distance between the
sources. The corresponding energies will be denoted by
V�PC

Y
�R�.

From lattice simulations the following characteristics of
the spectrum emerge. As expected, the ground state has ��g
quantum numbers and as a function of R is well described
by the ‘‘coulomb� linear’’, Cornell-type potential. The
first excited state has one unit of gluon angular momentum
along the Q �Q axis and negative PC. The state with � � 1
and positive PC has energy higher by 400 MeV at R �
1 fm. This fact alone can be used to discriminate between
various pictures describing the dynamics of gluonic modes.
For example, if the gluon field is thought of as a localized
quasiparticle that interacts with the quark sources [6] in a
way that satisfies Casimir scaling [7], then it would be
expected that the S wave, spherically symmetric gluon
wave function has lower energy than the P-wave with

one unit of orbital angular momentum. Since gluons have
internal spin-parity quantum numbers JPC � 1�� this
would result in �g (PC � 1) state having lower energy
than the �u (PC � �1) contradicting lattice results. A
similar reversed ordering is observed in higher excitations
as well. The �g state has lower energy than �u which in the
constituent picture means that the gluon state with two
units of orbital angular momentum has energy lower than
the state with one unit. The same is true for excited �
states. The ��u state which in the constituent picture has
one unit of orbital angular momentum has lower energy
than the first excited �0�g with vanishing orbital angular
momentum. Higher in the spectrum the ��g corresponding
to two units of orbital angular momentum has lower energy
than ��u with one unit of orbital angular momentum, albeit
the splittings between these higher excitations are smaller
than for the � states. These inconsistencies between lattice
results and the constituent picture have been noticed in [8].
The bag model [9] seems to be doing better in this respect.
The gluons are free inside the bag cavity and boundary
conditions on the gluon field make the TE mode with
pseudovector, JPC � 1��, quantum numbers to have lower
energy than the TM mode with JPC � 1��. This in turn
leads to the energy of �u state to be lower than for the �g

state [10]. Finally in [8] it was observed that the non-
relativistic flux tube model [11] also predicts the state
with � � 1 and PC � �1 quantum numbers correspond
to the first excited state. This is because in the flux tube
model the gluon degrees of freedom moving in a plane
transverse to the Q �Q axis have negative parity but, unlike
the vector potential have positive internal charge conjuga-
tion. Thus both the bag model and the flux tube model give
the right ordering of the spectrum of low-lying gluonic
excitations, albeit for different reasons. The constituent
gluon picture of [8] was based on the mean-field represen-
tation of the Coulomb gauge QCD, however it did not take
into account the interactions emerging from the nonabelian
Coulomb potential. In [12] it was shown how such inter-
actions affect the ��g potentials. Here we extend that
analysis to gluonic excitations with other symmetries.
The main finding is that the nonabelian Coulomb potential
is responsible for reversing the naive ordering expected
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from two-body quark-gluon interactions. We also find that
the overall scale of gluonic excitations in the mean-field
quasiparticle picture is somewhat higher but consistent
with the lattice results thus making the constituent gluon
model a viable representation of the low energy gluon
dynamics. This representation also explains the degener-
acies in the spectrum seen in the lattice data at small Q �Q
separations. Such degeneracies are expected as the system
becomes more spherically symmetric. At large Q �Q sepa-
rations the gluonic wave function is expected to be quali-
tatively different from that of a single or a few quasiparticle
state [13,14]. As separation between color sources in-
creases the mean-field Coulomb interaction is expected
to rise more rapidly than the true energy of the system
[15–17]. Thus as the separation increases states with a
large number of gluons separated, on average, by a small
fraction of the Q �Q distance R are expected to have lower
energy than states with a small number of gluons separated
by a distance of the order of the Q �Q separation. At what
Q �Q distances the transition from the constituent, few gluon
picture to the flux tube or string like picture takes place is
however still an open question. Analysis of lattice results
for the splitting between gluonic levels at large R does not
conclusively favor the string like picture even for Q �Q
separations as large as a few fermi [18,19]. In [12] we
have shown that if the mean-field Coulomb energy also
rises linearly with the R, as indicated by lattice computa-
tions [15] then it is difficult to generate the constituent
string and the state is dominated by valence constituent
gluons. This is because the Coulomb energy of a state of ng
gluons separated from each other by a distance O�R=n�
does not depend on the number of gluons [20], thus an
increase in the average number of gluons can only origi-
nate from mixing. However as R increases it turns out that
mixing between states with a different number of gluons is
much smaller than the diagonal Coulomb energy [12].
Lattice results of [15] show that the Coulomb energy rises
linearly with theQ �Q separation with a string tension which
is roughly 3 times bigger than that of the true energy,
however, since the lattice Q �Q state used to compute the
Coulomb energy is not the same at the mean-field state
which defines the quasiparticle gluon basis it is possible
that the Coulomb energy of the latter grows with R faster
than linearly, i.e as R� with � > 1. In this case the average
number of gluons at fixed R would roughly correspond to
the minimum with respect to ng of

 Eng�R� � ngmg � ng

�
R
ng

�
�
; (1)

leading to ng � R and energy rising linearly with R. Here
mg represents the average kinetic energy of a quasigluon. It
is thus possible that there is a smooth connection between
the quasiparticle and flux tube representation, but we leave
a more quantitative description for the future. In the fol-
lowing we explore the fine structure of the Coulomb inter-

action and its role in ordering the spectrum of low-lying
gluonic excitations. We will therefore restrict the quasi-
gluon Fock space to contain the single particle sector only
and fit the expectation value of the mean-field Coulomb
interaction to the ground state Q �Q energy [12,21,22].

The paper is organized as follows. In the next section we
summarize the basics of the mean-field Coulomb gauge
approach and describe the relevant interactions. In Sec. III
we present out results for the spectrum. A summary and
outlook are given in Sec. IV.

II. COULOMB GAUGE QCD HAMILTONIAN IN
THE QUASI-PARTICLE REPRESENTATION

The derivation of QCD in the Coulomb gauge is given in
[23]. The canonical approach is to start from A0;a�x� � 0
the Weyl gauge and using the residual gauge freedom
perform a coordinate transformation to coordinates Aa�x�
constrained to satisfy r �Aa�x� � 0 and N2

C�1 phases
�a�x�, a � 1, � � � , N2

C � 1. In the new coordinates
Gauss’s law can be used to eliminate the dependence on
the gauge phases and in the Shrödinger representation the
QCD spectrum is formally obtained by solving

 H	Aa�x�;�a�x�
�n	Aa
 � En�n	Aa
; (2)

with the canonical momenta, �a � �i@=@Aa�x�, satisfy-
ing 	�a

i �x�; A
b
j �y�
 � �i�ab�

ij
T �r��

3�x� y� where
�ijT �r� � �ij �rirj=r2. The coordinate transformation
from the Weyl gauge to the Coulomb gauge is nonlinear
and leads to the Faddeev-Popov (FP) determinant in the
space of the field configurations, J � det�1� ��, where,
�1����x;a;y;b� � �ab�3�x� y�� �g=4��facbry�1=jx�
yj�Ac�y�. More discussion of the topological properties of
the fundamental domain of the gauge variables can be
found in [24]. The role of FP determinant has been inves-
tigated in [12,25,26] where it was found that it can be
effectively absorbed into the parametrization of the vac-
uum wave functional. In the following we will thus set
J � 1 and use the ansatz for the variational (unnormal-
ized) vacuum wave functional of the form, [22]

 hAj0i � �0	A
 � exp
�
�
Z dk
�2��3

Aa�k�!�k�Aa��k�
�
;

(3)

where Aa�k� �
R
dx exp��ik � x�Aa�x� is the Fourier

transform for the coordinate space.
The variational parameter !�k� is obtained by solving

the Dyson (gap) equation arising from minimizing the
vacuum expectation value (vev) of the Hamiltonian
@h0jHj0i=@!�k� � 0. The solution is well approximated
by !�k� � mg for k � jkj � mg and !�k� � k for k > mg

with mg � 600 MeV [22]. In computing the vev of the
Hamiltonian the Coulomb energy
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 HC �
1

2

Z
dxdy�ag�x�K	A
�x; a; y; b��bg�y�; (4)

contributes the energy of interaction between color charges
�g � �fabc�b�x� �Ac�x�. In Coulomb kernel, K	A
 ap-
pearing in HC the self-interactions between the transverse
gluons

 K	A
�x; a; y; b� �
g2

4�

Z
dz
�1� ���2�x; a; z; b�

jz� yj
; (5)

are evaluated to leading order in NC. This enables to
express the vev of K in terms of a set of two coupled
Dyson equations whose solution can be written as

 h0jK	A
�x; a; y; b�j0i=h0j0i � ��abVC�jx� yj�: (6)

The expectation value of the kernel VC is renormalized in
such a way that the expectation value of the Coulomb
interaction between Q �Q sources in the mean-field gluon
vacuum reproduces the lowest energy of the Q �Q state
[12,22].

The complete spectrum of gluon state can be obtained by
successive application of quasiparticle, gluon creation op-
erators, �a�k; ��, defined with respect to the mean-field
vacuum, through the BCS transformation

 A a�x� �
Z dk
�2��3

1�������������
2!�k�

p 	�a�k; ����k; ��

� �a;y��k; �����k; ��
eik�x;

�a�x� � �i
Z dk
�2��3

����������
!�k�

2

s
	�a�k; ����k; ��

� �a;y��k; �����k; ��
eik�x:

(7)

Here � represent helicity vectors with � � �1. When
describing the spectrum of gluons in the presence of Q �Q
sources, we will truncate the quasiparticle gluon Fock
space to contain a single quasigluon, i.e. the Hamiltonian
will be diagonalized in the basis of states spanned by

 jR;k; �i �
1�������������
NCCF
p QyR

2ẑ�
y;a�k; ��Ta �Qy

�R
2ẑ

j0i

h0j0i
: (8)

III. SPECTRUM OF LOW-LYING GLUONIC
EXCITATIONS

From the single quasiparticle state given in Eq. (8) the
states with good �Y

PC quantum numbers can be constructed

 jR;N;�Y
PCi �

Z dk
�2��3

X
jg;�;	;�

 
jg
N �k�


�
	�jR;k; �i

�

����������������
2jg � 1

8�

s
	D

jg
�	�k̂� � �YD

jg
��	�k̂�
; (9)

for � � 0 and

 jR;N; 0PC
Y i �

Z dk
�2��3

X
jg;�;	;�

 
jg
N �k�


�
	�jR;k; �i

�

����������������
2jg � 1

4�

s
D
jg
0	 �k̂�; (10)

for � � 0. Here jg represents the total angular momentum
of the quasigluon. It is a good quantum number only in the
limit R! 0, while for finite R states with different values
of jg can mix, although in our numerical computations we
have found that of a single jg state dominates the energy
eigenstates for all values of R considered. It is only the
projection of the total angular momentum on the Q �Q axis,
�, that is always conserved. The wave function 
�	� rep-
resents the two possibilities for the spin-oribt coupling of
given parity. It is given by �	�=

���
2
p

for � � 1 (jg � Lg �
1) and ��	�=

���
2
p

for � � �1 (jg � Lg, with Lg being the
orbital angular momentum), corresponding to TM (natural
parity) and TE (unnatural parity) gluons, respectively. The
parity under reflection in the x� z plane, Y � �1, for
� � 0 is determined by �Y � �1. The radial wave func-
tions,  

jg
N �k� are labeled by an excitation number N and jg

and are solutions of the Coulomb gauge Hamiltonian pro-
jected onto the single quasigluon basis

 PHPjR;N;�PC
Y i � VN;�PC

Y
�R�jR;N;�PC

Y i: (11)

Here P projects on the jq �qgi states and VN;�PC
Y
�R� are the

energies that will be compared with the lattice spectrum.
The matrix elements of PHP are shown in Fig. 1 and given
explicitly in the Appendix.

In terms of � and �, the PC and Y quantum numbers of
the gluonic field are given by
 

PC � ���1�jg�1 � ��1�Lg ;

Y �
�
��Y��1�� for � � 0

� for � � 0
:

(12)

For � � 0 the two Y � �1 states are degenerate. For
smallQ �Q separations the pattern of the spectrum measured
on he lattice can easily be understood since jg becomes a
good quantum number. In this case the gluon configura-
tions of the eight lowest excitations are given in Table I. By
setting R � 0 in the Hamiltonian matrix elements which
involve gluon-quark interactions (see Appendix) one finds
the following. The interactions become � independent.
This is expected since in the limit R! 0 the system does
not have a preferred direction while � selects one. The
angular momentum barrier pushes states with higher orbi-
tal angular momentum, Lg up in energy. The quark-gluon
and antiquark-gluon interactions are attractive, while the
quark-antiquark interaction in the color octet channel is
repulsive. Thus the Coulomb tail of the quark-antiquark
potential will eventually lead to rising energies as R! 0.
Outside of this short distance Coulomb region, however for
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given jg and � we expect states with different � to be
degenerate. Further, the � � �1 multiplets (which contain
Lg � jg � 1) are expected to be lower in energy than the
� � �1 multiplets which have Lg � jg. This is indeed
seen in the numerical results shown in Figs. 2–4. Com-
pared to the lattice results, however we see that while the
degeneracy between different � states within �-multiplets
indeed occurs the order of the � � �1 and � � �1 mul-
tiplets is reversed.

To obtain the correct ordering it is necessary to include
the irreducible, three-body interaction between quark, an-
tiquark and gluon, shown in Fig. 1(e). This interaction is
attractive and, as can be easily verified using the analytical
expression in Eq. (A7), as R! 0 it pushes up in energy the
� � �1 (Lg � jg) states and has no effect on the � � �1
states. As seen in Figs. 5–7, that show the results of
diagonalization of the full Hamiltonian, this additional
interaction energy is sufficient to change the order of the
� and excited � states, and almost does the job for the
higher energy, � states. The new ordering also agrees with

TABLE I. Spin-orbital wave functions of the lowest single
quasigluon states.

State � jg Lg

�u, ��u �1 1 1
�g, �0�g �1 1 0,2
�g, ��g �1 2 2
�u, ��u �1 2 1,3

0 1 2 3
r/r

0

-2

0

2

4

6

r 0(V
(r

) 
- 

V
(2

r 0))
Σ

_

g

Σ+
u

Σ+’
g

Σ
_

u

Σ+
gΣ+

u

Σ
_

g

Σ+’
g

Σ
_

u

Σ+
g

FIG. 3. Same as in Fig. 2 for the � � 0, � energies.

0 1 2 3
r/r

0

-2

0

2

4

6

r 0(V
(r

) 
- 

V
(2

r 0))

Π’u

Πg

Πu

Σ+
g

Π’u
Πg

Πu

Σ+
g

FIG. 2. Spectrum of the � � 1, � states compared to the
ground state Q �Q potential without the three-body quark-anti-
quark-gluon interaction corresponding to the diagram e in Fig. 1.
Lattice results are taken from [1]. The energy scale is r0 �
�400 MeV��1.

−R/2
c) d)

e) f)

k,
k’,

a)

λ λ’

R/2
b)

FIG. 1. Matrix elements, hR;k0; �0jHjR;k; �i. Diagrams a)
and b) represent gluon and quark self energies, respectively.
Diagrams c) and d) represent the Coulomb interaction, VC
between the gluon and one of the quarks and between the two
quarks, respectively. In the bottom row, diagrams e) and f)
describe matrix elements of the interaction term resulting from
expansion of the Coulomb kernel K	A
 in up to one power in
gluon field.

0 1 2 3
r/r

0

-2

0

2

4

6

r 0(V
(r

) 
- 

V
(2

r 0))

∆g
∆u

Σ+
g

∆u
∆g

Σ+
g

FIG. 4. Same as in Fig. 2 for the � � 2, � energies.
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the lattice results of Ref. [4] where masses of the glue-
lumps were computed and connected to the R! 0 limit of
the adiabatic potentials.

When studying the large R behavior we first note that the
long-range singularity of the linear potential is canceled
between the three self-energies and the two-body interac-
tions. The three-body interaction between the quark, anti-
quark and gluon is IR finite, which also implies that in the
limit R! 1 it decreases with R. This is due to the gradient
coupling of the transverse gluon to the Coulomb line.
Furthermore, connecting one gluon to the Coulomb line
effectively shortens the Coulomb potential making it less
confining [12]. All this implies that splittings between
excited states with ng � 1 and ng quasigluons at large
Q �Q separations do not increase with R . They are expected
to be roughly constant corresponding to the average kinetic
energy of a gluon in the color singlet state, Eg �!�k�
1=R� � mg � 600 MeV. On the other hand, to leading
order in 1=R, separations of string excitations are expected
to be proportional to �E � EN�1 � EN � N�=R [2]. In
Fig. 8 we plot ��E�=�N�=R� � 1 with �E representing the
energy difference between our ng � 1 excited quasigluon
energies and the ground state Q �Q energy. The correspond-
ing values of N were chosen as in [2]. The agreement with
the lattice results, shown in Fig. 1 of [2] is very good. In the
string model ��E�=�N�=R� � 1 is expected to approach
zero at large separations, while the lattice and our results
seem to indicate a positive slope. As discussed above
this slope can be interpreted in terms of quasiparticle
excitations.

IV. SUMMARY AND OUTLOOK

We computed the lowest excitation energies of the
gluonic field in the presence of static Q �Q sources. The

0 1 2 3
r/r

0

-2

0

2

4

6

r 0(V
(r

) 
- 

V
(2

r 0))

Σ
_

g

Σ+
u

Σ+’
g

Σ
_

u

Σ+
gΣ+

u

Σ
_

g

Σ+’
g

Σ
_

u

Σ+
g

FIG. 6. Same as in Fig. 5 for the � � 0, � energies.

0 1 2 3
r/r

0
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0

2

4

6
r 0(V

(r
) 

- 
V

(2
r 0))

Πg

Πu

Σ+
g

Πg

Πu

Σ+
g

FIG. 5. Spectrum if the � � 1, � states compared to the
ground state Q �Q potential using the complete Hamiltonian,
which includes the three-body quark-antiquark-gluon interac-
tions.
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(2
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∆u
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FIG. 7. Same as in Fig. 5 for the � � 2, � energies.
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FIG. 8. Splittings between the excited energies of quasigluons
and the ground state Q �Q energy. The values N expected from the
string model are, N � 1 for �u, N � 2 for �g and �0g and N �
4 for ��g (a � 0:2 fm).
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gluons were described using single, quasiparticle states
built above a mean-field variational ansatz for the ground
state. The variational approach is expected to produce
energy levels which are systematically higher than the
true energies. Indeed the computed energies are above
the lattice data by about one unit of r�1

0 , i.e. 400 MeV.
The nontrivial level ordering is however correctly repro-
duced once the full effect of the Coulomb kernel is taken
into account. In particular the irreducible three-body force
is the one which is responsible of reversing the naive
ordering expected in any constituent gluon model. The
quasigluon gluon description also reproduces the degener-
acies in the energy levels for small separations, as well as
the trends in the level splittings for intermediate separa-
tions of the order of a few fm. At larger separations,
multigluon effects are expected and those can be incorpo-
rated into this picture by renormalizing the bare Q �Q
potential. A quantitative analysis is currently being per-
formed.
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APPENDIX

For each jg, the wave functions  N;jg�k� are expanded in
a complete orthonormal basis of functions �m;jg�k�

  N;jg�k� �
Xmmax

m�1

amN;jg�m;jg�k�; (A1)

with normalization,

 

Z dkk2

�2��3
�m0;j0g�k��m;jg�k� � �m0;m�j0g;jg : (A2)

The expansion coefficients are computed by diagonalizing
the �mmaxjg;max� � �mmaxjg;max� matrix, ~Hm0j0g;m;jg , ob-
tained by evaluating the diagrams in Fig. 1

 

~H3 � H3a �H3b � � � � �H3f; (A3)

evaluated in the basis of functions �m;jg . In numerical
computations for each jg, we used a momentum grid as
the basis functions. The numerical results presented were
for a single jg determined from Eq. (12) after verifying that
increasing jg changes the computed spectrum by at most a
few percent. For arbitrary �Y

PC the Hamiltonian matrix
elements are given by

 H3a �
�j0g;jg

2

Z dkk2

�2��3
�m0;jg�k�Eg�k��m;jg�k�: (A4)

The single gluon energy, Eg�k� is given in [12,22].

 H3b � �CFVC�0��m0;m�j0g;jg

� �4�CF
Z dkk2

�2��3
VC�k��m0;m�j0g;jg ; (A5)

with VC�R� fitted to the ground state Q �Q potential [12,22].

 

H3c �
NC
2

X
�;�0;�;�0;	

Z dq
�2��3

Z dk
�2��3

�m0;j0g�q��m;jg�k�
Z
dx
�
VC

�
x�

R
2

�
� VC

�
x�

R
2

��
eix��k�q�

���������������������������������������
�2j0g � 1��2jg � 1�

q
16�

� 	D
j0g
�;�0 �q̂�D

jg;
��0 �k̂�


�0

��0

�
��0D

1
	��q̂�D1

	��k̂� � �Y�
0
Y��! ���


� �����������
!�k�
!�q�

s
�
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and �Y and � related to jg and �Y
PC through Eq. (12).
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where the sum is over 	, , �, �0, �, �0 and the kernel is given by

 K�x; z; y� �
Z dk
�2��3

dp
�2��3

dq
�2��3

K�k; q; p�eix�keiy�peiz�q; (A9)

and the kernel K�k; q; p� is given in [12,22].
Finally,

 

H3f �
XZ dk

�2��3
dp
�2��3

dq
�2��3

�m0;j0g�p��������������
2!�p�

p �m;jg�k��������������
2!�k�

p Z
dxdydz

�
K
�

x�
R
2
; z� y � x; y �

R
2

�
� �R! �R�

�

� eix�keiz�qe�iy�p

���������������������������������������
�2j0g � 1��2jg � 1�

q
8�

	D
j0g
�;�0 �p̂�D

1;
	;��p̂�


�0

�0�D
1
	;0�q̂�D

jg;
�;�0 �k̂�D

1
;��k̂�


�
�0�D

1;
;0�q̂�

� �Y�0Y��! ���


�
XZ dk

�2��3
dp
�2��3

dq
�2��3

�m0;j0g�p��������������
2!�p�

p �m;jg�k��������������
2!�k�

p K�k� q;q;p� q�	eiR=2��k�p� � �R! �R�


���������������������������������������
�2j0g � 1��2jg � 1�

q
8�

� 	D
j0g
�;�0 �p̂�D

1;
	;��p̂�


�0

�0�D
1
	;0�q̂�D

jg;
�;�0 �k̂�D

1
;��k̂�


�
�0�D

1;
;0�q̂� � �Y�

0
Y��! ���
: (A10)

[1] K. J. Juge, J. Kuti, and C. J. Morningstar, Nucl. Phys. B,
Proc. Suppl. 63, 326 (1998).

[2] K. J. Juge, J. Kuti, and C. Morningstar, Phys. Rev. Lett. 90,
161601 (2003).

[3] G. S. Bali, H. Neff, T. Duessel, T. Lippert, and K. Schilling
(SESAM Collaboration), Phys. Rev. D 71, 114513 (2005).

[4] M. Foster and C. Michael (UKQCD Collaboration), Phys.
Rev. D 59, 094509 (1999).

[5] T. T. Takahashi and H. Suganuma, Phys. Rev. D 70,
074506 (2004).

[6] D. Horn and J. Mandula, Phys. Rev. D 17, 898 (1978).
[7] G. S. Bali, Phys. Rev. D 62, 114503 (2000).

[8] E. S. Swanson and A. P. Szczepaniak, Phys. Rev. D 59,
014035 (1999).

[9] P. Hasenfratz, R. R. Horgan, J. Kuti, and J. M. Richard,
Phys. Lett. B 95, 299 (1980).

[10] K. J. Juge, J. Kuti, and C. J. Morningstar, Nucl. Phys. B,
Proc. Suppl. 63, 543 (1998).

[11] N. Isgur and J. Paton, Phys. Rev. D 31, 2910 (1985).
[12] A. P. Szczepaniak and P. Krupinski, Phys. Rev. D 73,

034022 (2006).
[13] C. B. Thorn, Phys. Rev. D 20, 1435 (1979).
[14] J. Greensite and C. B. Thorn, J. High Energy Phys. 02

(2002) 014.

ENERGY SPECTRUM OF THE LOW-LYING GLUON . . . PHYSICAL REVIEW D 73, 116002 (2006)

116002-7



[15] J. Greensite, S. Olejnik, and D. Zwanziger, Phys. Rev. D
69, 074506 (2004).

[16] D. Zwanziger, Phys. Rev. Lett. 90, 102001 (2003).
[17] Y. Nakagawa, A. Nakamura, T. Saito, H. Toki, and

D. Zwanziger (unpublished).
[18] K. J. Juge, J. Kuti, and C. Morningstar, hep-lat/0401032.
[19] C. J. Morningstar (private communication).
[20] We thank J. Greensite for discussion on this point.
[21] A. P. Szczepaniak, Phys. Rev. D 69, 074031 (2004).

[22] A. P. Szczepaniak and E. S. Swanson, Phys. Rev. D 65,
025012 (2002).

[23] N. H. Christ and T. D. Lee, Phys. Rev. D 22, 939 (1980).
[24] P. van Baal, hep-th/9711070.
[25] H. Reinhardt and C. Feuchter, Phys. Rev. D 71, 105002

(2005).
[26] C. Feuchter and H. Reinhardt, Phys. Rev. D 70, 105021

(2004).

ADAM P. SZCZEPANIAK AND PAWEL KRUPINSKI PHYSICAL REVIEW D 73, 116002 (2006)

116002-8


