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We compare the grand-canonical partition function at fixed chemical potential � with the canonical
partition function at fixed baryon number B, formally and by numerical simulations at � � 0 and B � 0
with four flavors of staggered quarks. We verify that the free energy densities are equal in the
thermodynamic limit, and show that they can be well described by the hadron resonance gas at T < Tc
and by the free fermion gas at T > Tc. Small differences between the two ensembles, for thermodynamic
observables characterizing the deconfinement phase transition, vanish with increasing lattice size. These
differences are solely caused by contributions of nonzero baryon density sectors, which are exponentially
suppressed with increasing volume. The Polyakov loop shows a different behavior: for all temperatures
and volumes, its expectation value is exactly zero in the canonical formulation, whereas it is always
nonzero in the commonly used grand-canonical formulation. We clarify this paradoxical difference, and
show that the nonvanishing Polyakov loop expectation value is due to contributions of nonzero triality
states, which are not physical, because they give zero contribution to the partition function.
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I. INTRODUCTION

To simulate QCD thermodynamics on the lattice [1], one
commonly uses the grand-canonical partition function with
respect to the quark number as a function of a chemical
potential �. It is given, after integration over the fermion
fields, by

 ZGC�T;�� �
Z
�DU�e�Sg��;U� detM�U;��: (1)

Recently, another approach using a canonical formalism
has been used [2,3].1 The canonical partition function,
which will be derived in detail in the next section, is

 ZC�T;Q� �
Z 1
�1

d
�
�I

T

�
e�iQ�I=TZGC�T;� � i�I�: (2)

The physics described by both ensembles, grand canonical
and canonical, must be the same in the thermodynamic
limit, i.e. the free energy density should be the same. This
has been shown in Refs. [5,6], and will be confirmed in this
study. It is thus puzzling that the expectation value of the
Polyakov loop (the world line of a static charge) is exactly
zero in the canonical ensemble, while it is nonzero in the
grand-canonical ensemble, for all temperatures and vol-
umes. We will show that this discrepancy is due to con-
tributions from the canonical sectors with a quark number

that is not a multiple of three: the so-called nonzero triality
sectors.2 Discussions on the role of these nonzero triality
sectors have a long history [7] and include speculations
that their influence persists even in the thermodynamic
limit, so that they must be explicitly projected out. It is
our purpose to clarify these issues.

In the following, we discuss properties of the grand-
canonical partition function as a function of an imaginary
chemical potential and construct the canonical partition
function (Sec. II). We then show that the Polyakov loop
vanishes in the canonical ensemble (Sec. III), and resolve
the paradox above (Sec. IV). After presenting our numeri-
cal method to simulate the zero baryon density sector,
which is the first step towards finite density QCD simula-
tions (Sec. V), we elaborate on the results for the free
energy density as a function of the imaginary chemical
potential, which we compare with predictions of the had-
ron resonance gas model [8] and of a free fermion gas
(Sec. VI). We further study the expectation values and
finite-size effects of thermodynamic observables, like the
plaquette and the chiral condensate in both formulations
(Sec. VII). Conclusions follow. Preliminary results of this
study have been presented in Ref. [6].

II. CANONICAL ENSEMBLE

Let us first discuss symmetries of the grand-canonical
partition function ZGC�T;�� as a function of an imaginary
chemical potential � � i�I, following Ref. [9]:

(i) Evenness: ZGC��i�I� � ZGC��i�I�. The transfor-
mation �! �� can be compensated by time re-
versal, i.e. by interchanging particles and

*Electronic address: skratoch@itp.phys.ethz.ch
†Electronic address: forcrand@itp.phys.ethz.ch
1We should mention that a study of QCD thermodynamics in

the canonical ensemble was performed already several years ago
[4], in the heavy mass (quenched) limit. The action in Ref. [4] is
manifestly Z3 symmetric and the Polyakov loop expectation
value vanishes identically. However, the expectation value of
the magnitude of the Polyakov loop can be used to distinguish
the low- and high-temperature phases.

2Triality is defined as the difference between the number of
quarks and the number of antiquarks modulo 3.

PHYSICAL REVIEW D 73, 114512 (2006)

1550-7998=2006=73(11)=114512(11) 114512-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.114512


antiparticles. Time reversal is equivalent to CP sym-
metry (since CPT is always a good symmetry), and
thus does not change the thermodynamics in the
absence of CP violating terms.

(ii) 2�T
3 -periodicity in �I: ZGC�i��I �

2�T
3 �� �

ZGC�i�I�. A shift in the imaginary chemical poten-
tial �I ! �I �

2�k
3 T can be exactly compensated

by a Z3 center transformation, also called a non-
periodic gauge transformation �, where the tempo-
ral gauge links, U4� ~x; x4� � exp�igaA4� ~x; x4��, are
changed to ��x4�U4� ~x; x4��

y�x4 � a�, with
��x4 � Nta� � z�k���x4� (Nt is the number of
temporal sites on the lattice and a the lattice spac-
ing) and z�k� � ei�2�k=3�13. As a consequence, the
Polyakov loop, which is given by Pol� ~x� �
1
Nc

Tr
QNt
n4�1 U4� ~x; x4 � n4a� is also rotated:

Pol� ~x� ! e�i�2�k=3�Pol� ~x�. However, since the path
integral sums over all possible gauge fields, the
partition function stays the same.

These properties lead to an expectation for the phase
structure in the T-�I plane, see Ref. [9] and Fig. 1. The
fermion determinant breaks the Z3 symmetry explicitly,
and the Polyakov loop acquires a nonzero expectation
value. The orientation of the Polyakov loop in the complex
plane depends on �I, as indicated in Fig. 1. At high
temperature, the free energy density can be obtained as a
function of �I=T by perturbation theory. It has cusps at
�I
T � �2k� 1� �3 . The derivative with respect to �I is dis-
continuous, indicating first-order transitions, during which
the Polyakov loop ‘‘jumps’’ from one Z3 sector to another.
At low temperature, these Z3 transitions become cross-
overs and the vertical, first-order transition lines in Fig. 1

terminate. Whether or not a genuine phase transition sep-
arates the high-temperature ‘‘ordered’’ regime and the low-
temperature ‘‘disordered’’ one is a dynamical issue de-
pending on the chosen QCD parameters (number of fla-
vors, quark masses).

To obtain the canonical partition function ZC�T;Q�, we
fix to Q the conserved charge N̂ �

R
d3 ~x � � ~x��0 � ~x�,

which represents the net quark number. This is accom-
plished by inserting a �-function in the grand-canonical
partition function:

 

ZC�T;Q� �
Z
�DU��D ����D��e�Sg�U;T��SF�U; ��;�;T�

	 ��N̂ �Q�: (3)

The �-function admits a Fourier representation with the
new variable ��I:

 ZC�T;Q� �N
Z 1
�1

d ��Ie
�iQ ��I 	

Z
�DU��D ���

	 �D��e�Sg�U;���SF�U; � ; ��i ��IN̂

�N
Z 1
�1

d ��Ie
�iQ ��I 	

Z
�DU��D ����D��

	 e�Sg�U;���SF�U; � ; ��i ��I

R
d3 ~x � � ~x��0 � ~x�

�N
Z 1
�1

d ��Ie
�iQ ��I 	

Z
�DU��D ����D��

	 e�Sg�U;���SF�U; � ; ��i ��IT
R

1=T

0
d�
R
d3 ~x � � ~x��0 � ~x�:

(4)

where N is a normalization factor. In the last line, we have
used the fact that Q is conserved.

One recognizes i�I � i ��IT as an imaginary chemical
potential, so that

 ZC�T;Q� �N
Z 1
�1

d ��Ie
�iQ ��IZGC�T; i ��IT�

�
3

2�

Z �=3

��=3
d ��Ie

�iQ ��IZGC�T; i ��IT�; (5)

where we have exploited the 2�T
3 -periodicity in �I of

ZGC�i�I� in the last step.3 From this periodicity, it follows
that ZC�T;Q� � 0 except for Q

3 � B 2 Z, where B is the
baryon number. The canonical partition function vanishes
for noninteger baryon number, i.e. for nonzero triality
sectors. Note that our argument does not rely on particular
spatial boundary conditions (b.c.). The same conclusion
holds for periodic or, for example, C-periodic spatial b.c.,
even though the latter break the Z�3� symmetry. For con-
venience, we write

-2π/3 -π/3 0 π/3 2π/3

T

µI/T

disordered

Tc(µ=0)

ordered, k=0 ordered, k=1ordered, k=2

Z3 transitions

FIG. 1 (color online). Phase diagram of ZGC�i�I� in the (�I ,
T) plane. The arrows indicate the orientation of the Polyakov
loop. The vertical lines mark the ‘‘order-order’’ Z3 transitions,
which are first order. Properties (esp. crossover or genuine phase
transition) of the ‘‘order-disorder’’ (curved) lines depend on the
parameters (number of flavors, quark masses) of the theory.

3Note that the evenness of ZGC�i�I� in �I implies ZC�T;Q� �
Z
C�T;�Q�. In particular the ZC�T;Q�’s are real as expected.
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 ZC�T; B� �
1

2�

Z �

��
d
�
�I

T

�
e�i3B�I=TZGC�T; i�I�: (6)

Now, the fugacity expansion allows us to go back from
the canonical partition functions to the grand-canonical
one:

 ZGC�T;�� �
X�1

Q��1

eQ�=TZC�T;Q�: (7)

This expression is identical to Eq. (1), as can be seen by
substituting (5) for ZC�T;Q� above and summing over Q
first. However, we can remove from the sum the nonzero
triality (fractional B) sectors, since each of them gives a
zero contribution, thus obtaining:

 ZGC�T;�� �
X1

B��1

e3B�=TZC�T; B�: (8)

Let us stress again that this grand-canonical partition
function is identical with the one given in Eq. (1). The two
expressions differ by the inclusion of nonzero triality sec-
tors, which we just showed are zero. However, these zero
contributions are explicitly projected out in (8) [7]. In the
following, we will come back to this and consider the effect
of this projecting out on the Z3-sensitive Polyakov loop.

III. POLYAKOV LOOP IN THE CANONICAL
ENSEMBLE

The expectation value of the Polyakov loop in the ca-
nonical ensemble is zero for all temperatures and volumes.
We show this explicitly as follows. The chemical potential
is introduced on the lattice as the temporal component of

an external imaginary gauge field

 U4� ~x; x4� ! e��aU4� ~x; x4�; (9)

 Uy4 � ~x; x4� ! e��aUy4 � ~x; x4�; (10)

or equivalently as

 U4� ~x; x4 � x40
� ! e�Nt�aU4� ~x; x4 � x40

�; (11)

 Uy4 � ~x; x4 � x40
� ! e�Nt�aUy4 � ~x; x4 � x40

�; (12)

on a given temporal hyperplane x40
. An imaginary chemi-

cal potential i�I � i 2�Tk
3 can then be absorbed in a Z3

center transformation
 

U4� ~x; x4 � x40
� ! eiNta2�Tk=3U4� ~x; x4�

� z�k�U4� ~x; x4 � x40
� (13)

with z�k� � ei2�k=313. As a consequence, the two configu-
rations fU, �Ig and fz�k�U, �I �

2�Tk
3 g have the same

value for the Dirac determinant detM�U;�I� �

detM�z�k�U;�I �
2�Tk

3 �, but the Polyakov loop is center-
rotated. We can then group the configurations of a canoni-
cal ensemble in triplets having Z3-rotated Polyakov loop:
 

ZC�T; B� �
1

2�

Z �

��
d
�
�I

T

�
e�i3B�I=T

Z
�DU�e�Sg�U;��

	
1

3

X2

k�0

detM�z�k�U4�x4 � x40
�; �I�: (14)

The three members of a triplet give identical contributions

FIG. 2 (color online). Distribution of the complex Polyakov loop trace in the grand-canonical (top) and canonical (bottom)
ensembles. Left: 43 	 4, right: 63 	 4. In the thermodynamic limit, the distributions agree for both ensembles, up to two additional
Z3-rotations in the canonical ensemble.
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to ZC�T; B�, since detM�z�k�U;�I� � detM�U;�I �
2�Tk

3 �

and e�i3B��I=T��2�Tk=3� � 1 for B 2 Z. In Fig. 2, we show
the distribution of the Polyakov loop, where the Z3 sym-
metry (and hence the triplets) is clearly visible in the
canonical ensemble (bottom). In each triplet, the average
of the Polyakov loops is Poli 	 �1� e�i2�=3 � ei2�=3� �
0, and therefore the ensemble average also vanishes:

 hPoliZC�T;B� � 0 (15)

for any integer baryon number and temperature. Note again
that the argument does not depend on a particular choice of
spatial boundary conditions.

IV. POLYAKOV LOOP IN THE
GRAND-CANONICAL ENSEMBLE

In the ensemble generated by the grand-canonical parti-
tion function Eq. (1)

 ZGC�T;�� �
Z
�DU�e�Sg�U;�� detM�U;��; (16)

the fermion determinant explicitly breaks the Z3 symmetry,
so that the expectation value of the Polyakov loop

 hPoliZGC�T;�� � 0 (17)

is nonzero for any chemical potential, temperature, and
volume. In the following, we show that this nonvanishing
value is caused by canonical sectors with quark numbers
which are not a multiple of three.

We express the grand-canonical partition function via
the fugacity expansion in the quark number Q (we take
� � 0 for notational simplicity only; the argument holds
for any �):

 

ZGC�T;� � 0� �
X
Q

ZC�T;Q� with ZC�T;Q� � 0 if Q � 0 mod3

� . . .� ZC�0� � 6ZC�1� � 6ZC�2� � ZC�3� � 6ZC�4� � . . . ; (18)

where 6ZC��� indicates ZC��� � 0. The canonical partition functions can be written as ZC�T;Q� �
P
iWi�Q�, where i labels

each configuration, andWi�Q� is the corresponding Boltzmann weight. The expectation value of the Polyakov loop is then
generically given by

 hPoliGC �

P
Q

Num�Q�

ZGC�T;� � 0�
�

. . .� Num�0� � Num�1� � Num�2� � Num�3� � Num�4� � ::
. . .� ZC�0� � 6ZC�1� � 6ZC�2� � ZC�3� � 6ZC�4� � . . .

� 0; (19)

where Num�Q� �
P
iPoliWi�Q�, which vanishes if Q is a

multiple of 3 due to Eq. (15). It follows that the contribu-
tions of canonical sectors with fractional baryon number to
the Polyakov loop are unphysical, since the corresponding
canonical expectation value is infinite:
 

hPoliZC�T;Q�0mod3� �
Num�Q � 0 mod 3�

6ZC�Q � 0 mod 3�
�

nonzero

0
� 1:

(20)

This argument makes it clear that the expectation value
of the Polyakov loop is nonzero for all temperatures and
volumes, if we use the grand-canonical partition function
with respect to the quark number, see Eq. (1) and Fig. 2,
top row. However, if we use the grand-canonical partition
function with respect to the baryon number, see Eq. (8), the
expectation value of the Polyakov loop will be exactly zero
even in this equivalent grand-canonical formulation.

Thus, the physical meaning of the Z3-sensitive Polyakov
loop expectation value is rather limited. It is the

Z3-invariant correlator hPol�0�Pol�x�yi which is physical,
and indicates confinement or deconfinement by its jxj !
1 limit. In the canonical ensemble, this limit is not equal to
jhPolij2, which is identically zero: the clustering property is
not satisfied. This is evidence of spontaneous breaking of
the center symmetry4 in the presence of fermions. The
symmetry is broken spontaneously at all temperatures
and densities, rather than explicitly as in the usual grand-
canonical ensemble.

V. NUMERICAL APPROACH TO ZERO BARYON
DENSITY

In order to design an algorithm that is able to measure an
observable as a function of the quark, or rather baryon
number, we need to understand how the expectation value
of an observable Ô can be evaluated in the canonical

4We are grateful to L. Yaffe for pointing this out to us.
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ensemble. It is given by

 hÔiB �
1

2�

R
�
�� d ��Ie

�i3B ��I
R
�DU�e�Sg�U;�� detM�U; i�I � i ��IT�Ô�U�

ZC�T; B�
: (21)

We recognize the following numerical description. We
treat ��I as a dynamical degree of freedom, and supplement
the ordinary Monte Carlo (Hybrid MC, R-algorithm,
PHMC, RHMC, . . . ) at fixed ��I with a noisy Metropolis
update of ��I ! ��0I keeping the configuration fUg fixed.
Thus, we alternate two kinds of Metropolis steps.

(i) Update of the links by standard Hybrid Monte Carlo
[10]: Keeping the imaginary chemical potential �I
fixed, we propose a new configuration fU0g, obtained
by leapfrog integration of Hamilton’s equations, as a
Metropolis candidate. It is then accepted with the
ordinary Metropolis probability

 Prob �U ! U0� � min�1; e��S�; (22)

where �S is the difference between the action of fU0g
and that of fUg.

(ii) Metropolis update of the imaginary chemical poten-
tial by a noisy estimator: Keeping the gauge field
configuration fUg fixed, we propose a new imagi-
nary chemical potential �0I, obtained from �I by a
random step drawn from an even distribution. The
update is based on the acceptance
 

Prob��I ! �0I�

� min
�
1;
e�i3B�

0
I=TdetNf � 6D��0I� �m�

e�i3B�I=TdetNf � 6D��I� �m�

�
: (23)

The ratio of determinants is evaluated with a sto-
chastic estimator (see the appendix), namely
 

detNf � 6D��0I� �m�
detNf � 6D��I� �m�

� he�j� 6D��
0
I��m�

�Nf=2
� 6D��I��m�

Nf=2�j2�j�j2i�; (24)

where � is a Gaussian complex vector. Since one
Gaussian vector is sufficient, the computational
overhead is negligible.

The algorithm above allows the sampling of any positive
measure in �I. However, the oscillatory part e�i3B ��I in the
sampling weight causes a sign problem for nonzero baryon
number B. One can use j cos�3B ��I�j as a sampling measure
and fold the remaining sign in the observable. But such an
approach breaks down for rather small B already [11].
Nevertheless, at B � 0, e�i3B ��I jB�0 � 1 and thus, the
Boltzmann weight is real and positive. Thus, this simple
algorithm suits our purpose here. To help ergodicity, we
can also perform a ‘‘Z3-move’’ at any time:

 

�I ! �I �
2�T

3
;

U4� ~x; x4 � x40
� ! U4� ~x; x4 � x40

�ei2�=3; 8 ~x; (25)

where U4� ~x; x4 � x40
� are the temporal links at a given

time slice x40
. Such a ‘‘Z3-move’’ is always accepted, since

the configuration fU, �Ig and the one with a center-rotated
Polyakov loop, but shifted imaginary chemical potential,
fU	 e�i��2��=3�, �I �

2�T
3 g have the same Dirac determi-

nant, and thus the same sampling weight, as discussed at
length in Sec. III.

A computational detail: For T > Tc, the �I-distribution
is sharply peaked around 0, � 2�T

3 . To sample this distri-
bution accurately in the whole interval, we apply a multi-
canonical algorithm in the T > Tc regime for the larger
lattices (63 	 4 and 83 	 4) [12]. For this, we bias the
sampling of the imaginary chemical potential by modify-
ing the acceptance probability
 

Probmulti��I ! �0I�

� min
�
1;

detNf � 6D��0I� �m�
detNf � 6D��I� �m�

e�bias��0I��bias��I��

�
; (26)

with bias��I� chosen such that the sampled histogram
becomes flat for all �I.

5 The expectation value of an
observable Ô is then given by

 hÔi �
1P

fU;�Ig

e�bias�U;�I�

X
fU;�Ig

Ô�U;�I�e
�bias�U;�I�; (27)

where fU; �Ig labels the configurations fUg sampled at
imaginary chemical potential �I.

We focus on four flavors of Kogut-Susskind fermions
with degenerate mass am � 0:05 and lattices with Nt � 4
time slices, i.e. mT � 0:2. With these parameters, the zero-
temperature pion mass is about 350 MeV [13]. Simulations
are performed on lattices with spatial extents 43, 63, and 83

at seven temperatures,6 ranging from T
Tc
� 0:85 to 1.1, with

good overlap between the ‘‘neighboring’’ ensembles. We
analyze the results using Ferrenberg-Swendsen reweight-
ing [14].

5A simple way to get an estimate of the function bias��I� is the
following: One starts by sampling with no bias to produce a
histogram hist��I� of the sampled �I . One then fits bias��I� to
� log�hist��I�� with a suitable Ansatz like a�2

I � b�
4
I , or uses a

table.
6We relate the coupling � to the temperature T via T � 1

a���Nt
and the perturbative two-loop �-function.
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VI. FREE ENERGY DENSITY

In the grand-canonical ensemble, the change of the free
energy density with chemical potential � (as a dimension-
less quantity) is given in terms of the partition function

 

�F�T;��

VT4
� �

1

VT3 log
ZGC�T;��
ZGC�T; 0�

: (28)

A standard approach [15,16] is to perform a Taylor expan-
sion in � about � � 0, where the derivatives entering the
series may be expressed as complicated expectation values
evaluated at � � 0. Remember that this expansion is in
even powers of �, since ZGC��� � ZGC����. In our ap-
proach, the free energy density as a function of imaginary
chemical potential comes for free from the�I-histogram in
the canonical simulation, and moreover, to all orders. This
information can then be used for analytic continuation to
real chemical potential.

At low temperature, however, the histograms are quite
noisy. Therefore we will, when needed, use results from the
more sophisticated method [3], where we can calculate the
grand-canonical partition function for an arbitrary imagi-

nary chemical potential as a consequence of the reweight-
ing method that we apply.

In Fig. 3 we show the free energy divided by VT4 versus
�I
T for T

Tc
< 1, T

Tc
’ 1 and T

Tc
> 1. In all cases, we observe a

minimum at �I
T � 0. Therefore, in the thermodynamic

limit, only �I
T � 0 mod 2�

3 will survive. This establishes
numerically the expected equivalence of ZC�T; B � 0�
with ZGC�T;� � 0�.

For T
Tc
� 0:9, no singularities develop at �I

T � �
�
3 in the

thermodynamic limit, thus indicating a crossover, as ex-
pected from the phase diagram T-�I, Fig. 1. In Fig. 4 (left),
we show the free energy density, determined by the histo-
gram method, which is very flat and noisy unfortunately.
The periodicity of the free energy density is 2�T

3 , and we
exploit it by a Fourier expansion in 3k �I

T using the Ansatz

 

�F�T;�I�

VT4
� c

�
1� cos

�
3
�I

T

��
� d cos

�
6
�I

T

�
� . . . :

(29)

In order to improve the determination of the coefficients
c; d; . . . , we use results based on the reweighting method
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FIG. 4 (color online). �F�T;�I�

VT4 as a function of �I
T for T

Tc
� 0:9. The histogram method is very noisy. We show (left) a rescaled version

of the leftmost plot in Fig. 3. We also present (right) results based on a reweighting method with variance reduction [3]. The results are
in agreement with the histogram method, but allow for a more reliable description by a Fourier expansion. One Fourier coefficient
suffices to describe the data points. The reweighting method [3] calculation is computationally demanding and has not been performed
yet for the 83 	 4 lattice. We thus only draw the fit, which is based on histogram data.
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FIG. 3 (color online). �F�T;�I�

VT4 as a function of �I
T , at temperatures T

Tc
� 0:9, 1.0, 1.1 from left to right. The free energy density varies

much more upon entering the high-temperature phase, and the Z3 first-order transitions become visible (right).
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described in Ref. [3]. Within errors, the free energy density
is in agreement with the histogram method, but with much
smaller statistical uncertainty. The fit is excellent already
with one Fourier coefficient, with no indication for higher
Fourier components, at least on the small lattices we
consider.

In the hadron resonance gas model (see Ref. [17] for a
detailed discussion), the partition function can be split into
mesonic and baryonic contributions. Since we are inter-
ested in the dependency on a baryon chemical potential
�B � 3�, it is sufficient to study the baryonic part only. In
the limit mB � T, �B, where mB corresponds to the bar-
yonic resonance mass, the Ansatz for the free energy
density as a function of an imaginary chemical potential
is

 

F�T;�I�

VT4
�
F�T; 0�

VT4 �
�F�T;�I�

VT4

� f�T�
�
1� cos

�
3�I

T

��
; (30)

where f�T� � 1
�2

P
i2Baryons�

mi
T �

2K2�
mi
T �. We thus have a

mean to measure the sum of resonances f�T�. For ex-
ample in the case of a 63 	 4 lattice, we find
f�T � 0:9Tc� � 0:048�1�.7 Our data can be well described
by this Ansatz. This confirms our expectation that the
relevant degrees of freedom in the low-temperature phase
are hadrons. The masses of these hadrons are much larger
than the scale given by the temperature, since the free
energy density changes only slightly when varying the
imaginary chemical potential, thus mH � �I � Tc �
160 MeV.

For T
Tc
� 1:1 we expect a cusp at �I � �

�T
3

(Z3-transitions) to develop in the thermodynamic limit,

due to the first-order phase transition. Indeed, it appears
clearly as the volume increases, see Fig. 5 for a comparison
of the histogram results (left) versus the reweighting ap-
proach8 (right).

We can try to describe these results by a generic Taylor
series in �I

T as an Ansatz, which can be compared with a
simple model at high temperature, the free gas of massless
quarks. If we perform an analytic continuation from real to
imaginary chemical potential, then the free energy density
of this model is given by

 

�F�T;�I�

VT4
�
Nf
2

�
�I

T

�
2
�
Nf
4�2

�
�I

T

�
4
: (31)

These simple expressions are valid in the continuum
theory at very high temperature, where the coupling
g�T� � 0. On the lattice we expect finite-size corrections
(Ns <1) as well as cutoff corrections (T � 1

aNt
).

Reference [16] has calculated the free energy of free
fermions on a lattice having infinite spatial size (Ns �
1) but finite temporal extent (Nt � 4). Here, we also
determine the corrections for finite spatial size Ns � 4, 6,
8, 10 for the free massless fermion gas on the lattice. We set
the gauge fields A��x� � 0, i.e. the gauge links to the
identity, and solve for the free energy via

 

�Ffree
latt �T;�I�

VT4
� �

logZfree�T;�I�

VT3

� �
log detMfree�T;�I�

VT3

� C2

Nf
2

�
�I

T

�
2
� C4

Nf
4�2

�
�I

T

�
4
; (32)

where C2 and C4 are fit coefficients. Table I summarizes
the results.

The coefficients C2 and C4 approach their infinite vol-
ume expectation rather quickly. For the particular quark
mass m

T � 0:2 which we consider, the difference from the
massless limit is smaller than the (fitting) errors, and thus,
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Stefan-Boltzmann limit

FIG. 5 (color online). �F�T;�I�

VT4 as a function of �I
T for T

Tc
� 1:1. Left: The histogram method, right: the reweighting method [3],

supplemented by the histogram results for 83 	 4. A simple modification of the free gas expression describes all the data. As the
volume increases, the data come close to the Stefan-Boltzmann limit (T ! 1) even though T

Tc
� 1:1 only.

7We thank D. Toublan [18] for estimating the sum of reso-
nances for the four-flavor continuum theory. However, the result,
f�T � 0:9Tc� � 0:2, differs from our determination by about a
factor 4. It is unclear what is the main reason for this discrep-
ancy, but the small, coarse lattice we use (a� 0:3 fm) certainly
contributes an important part. 8The 83 	 4-data points are taken from the histogram method.
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results are not presented explicitly. Note that we have an
additional column [C6]: we have added the term C6�

�
T�

6 to
the Ansatz equation (32). The coefficient C6 is very small
and leaves C2 and C4 unchanged within the errors.

In the end, we consider the volume-dependent lattice
corrections C2 and C4 and measure the deviation from this
free gas model by two parameters b2�T� and b4�T�. The
Ansatz to describe our results in Fig. 5 is thus

 

�F�T;�I�

VT4
� b2�T�C2

Nf
2

�
�I

T

�
2
� b4�T�C4

Nf
4�2

�
�I

T

�
4
:

(33)

We observe that the leading term approaches the Stefan-
Boltzmann limit rather fast upon increasing the volume,
see Fig. 5 and Table II. This is somewhat surprising since
this coincidence with the Stefan-Boltzmann law will occur
only at T ! 1. Deviations at T � 1:1Tc should persist
even in the thermodynamic limit, reflecting the interactions
of the quarks.9 The reduction of b2�T� from 1 is consistent
with leading perturbative corrections [17]. The value we
obtain is consistent with that measured in Ref. [20]. The
simple prediction of the free massless quark gas model
works better than expected. Thus, the relevant degrees of
freedom at high temperature are very light quarks, which is
also visible in the strong dependency of the free energy
density on the imaginary chemical potential, hence mq �

�I � Tc � 160 MeV.
The coefficient b4�T� in Table II suffers from systematic

fitting errors. One source is the fitting range: our Ansatz
equation (33) does not reflect the 2�

3 -periodicity of �I
T ,

therefore we are allowed to fit small �I
T only. In this regime,

the quartic term is subleading and hard to quantify. An
estimate of the systematic fitting error can be obtained by
varying the fitting range (not explicitly tabulated). Another
source is the fitting Ansatz: we could add the next-order
term ��I

T �
6, which changes C4 by a few percent, or make the

Ansatz periodic via

 

�Fper�T;�I�

VT4
� �

1

VT3 log
Zper�T;�I�

Zper�T; 0�
(34)

with

 Zper�T;�I� �
X1

k��1

exp
�
�VT3

�
b2�T�C2

Nf
2

�
�I

T
�

2�k
3

�
2
� b4�T�C4

Nf
4�2

�
�I

T
�

2�k
3

�
4
��
: (35)

However, we must truncate (in practice, at k � �1) the
sum over all sectors to preserve convergence, because of
the sign of the C4 contribution. In conclusion, we cannot
determine b4�T� accurately. Nevertheless, it is remarkable
how well the free quark gas model describes our results. On
an 83 	 4 lattice, the deviation is only about 10%. By using
a canonical approach to simulate finite density QCD [3],
we can obtain more accurate results, to be presented in a

follow-up publication. In particular, we can show that
b4�T � 1:1Tc� � 1:94�6� [2].

VII. FINITE-SIZE EFFECTS ON THE PHASE
TRANSITION

The phase transition is signaled by the peak in the
susceptibility of the chiral condensate h �  i (chiral transi-
tion) or in the specific heat (deconfinement transition). In
Fig. 6, we compare the grand-canonical versus the canoni-
cal ensemble. Although there is no theoretical argument
that the two transitions should occur together, we observe
that within our accuracy they do.

On the 43 	 4 lattice, a slight shift in the pseudocritical
�c can be observed between the grand-canonical and the

TABLE I. The prediction for the free energy density based on
the free massless gas model in the continuum at high tempera-
ture suffers from finite-size and cutoff effects. The correction
terms C2 and C4 help to quantify the systematics. The functional
form in Eq. (32) is sufficient, since the contribution of the
additional term C6�

�
T�

6 is very small.

Lattice C2 C4 [C6]

43 	 4 4.387(1) 0.28(3) [ � � � ]
63 	 4 2.628(1) 1.70(5) [0.0081(1)]
83 	 4 2.315(1) 2.25(5) [0.0046(1)]
103 	 4 2.250(1) 2.49(5) [0.0030(1)]
13 	 4 2.25 2.6 � � �

TABLE II. The coefficients of the free energy density expan-
sion for T

Tc
� 1:1 come close to their Stefan-Boltzmann (T ! 1)

value. There are two values for b4�T�: the first one is the result of
the chi-square fit of Eq. (33); the second one (‘‘periodic’’) makes
use of a periodicised Ansatz, see Eq. (34). The comparison of the
two values gives some measure of the systematic error.

T � 1:1Tc b2�T� b4�T� b4�T� (periodic)

43 	 4 0.29(1) 32(4) 7(1)
63 	 4 0.71(1) 4.1(4) 0.2(7)
83 	 4 0.90(2) 3.6(8) 1.4(4)
SB limit (T ! 1) 1 1 1

9It has been shown already that the free energy of the gluon
sector deviates from the Stefan-Boltzmann value 8�2

45 by about
15% [19] even at T

Tc
� 5 (and more for lower temperatures). It

thus would be natural to observe deviations at finite temperature
also in the quark sector.
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canonical results. It disappears for larger volumes. The
small deviation is caused by contributions from B � 0
sectors, which are present in the � � 0 ensemble.
However they are suppressed by a factor �e�BmB=T � 1,
where mB is the mass of a baryon. In terms of the baryon
density �, we recognize the exponential suppression in the
volume since e�BmB=T � e�V�mB=T . Thus, we verify once
more that the zero chemical potential ensemble is equiva-
lent to the zero baryon density ensemble in the thermody-
namic limit.

Note that the nonzero triality sectors have zero partition
function and do not contribute. They do not affect observ-
ables studied in this section, which are insensitive to the
center symmetry.

In quenched simulations, a Z3-symmetrization of the
Polyakov loop is sometimes enforced by hand, which is
accompanied by reduced finite-size effects [21]. Therefore,
we might expect to observe a similar reduction in the

canonical formalism as well compared to the grand-
canonical one. To compare the finite-size effects in the
two ensembles, we analyze the minimum of the Binder
cumulant [22]

 CB�Ô� � 1�
1

3

hÔ4i

hÔ2i2
(36)

versus the inverse volume 1=V (see Fig. 7). For both the
plaquette and the chiral condensate, the thermodynamic
(linear) extrapolation does not tend to 2

3—indicative of a
first-order phase transition,10 confirming the finding in the
literature [23] for our quark masses. However, for each
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FIG. 7 (color online). Binder cumulant minimum versus inverse volume for both ensembles (slightly shifted in the x-axis to enhance
visibility). Left: Ô � plaquette, right: Ô � chiral condensate. The thermodynamic extrapolation does not reach 2

3 (the upper left corner
of the figure), indicating a first-order transition. Finite-size effects, reflected in the 1=V slope, are equivalent for both ensembles.
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FIG. 6 (color online). Susceptibility of �  (top) and specific heat, given by the susceptibility of the plaquette (bottom), versus � for
increasing volumes, in the grand-canonical (left) and canonical (right) ensembles. Even for the smallest, 44, lattice, differences
between the two ensembles are barely visible.

10In the case of a second-order transition or a crossover, hÔ4i is
equal to hÔ2i2 up to finite-size corrections [22]. Thus, CB�Ô� !
2
3 in the thermodynamic limit. In the case of a first-order
transition, the double peak structure of the distribution of the
measurements causes a nontrivial value of the Binder cumulant.
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volume, the measured cumulant values agree between the
two ensembles within statistical errors, indicating equiva-
lent finite-size effects.

VIII. CONCLUSIONS

For all densities, volumes, and (finite) temperatures, the
Polyakov loop expectation value is nonzero in the grand-
canonical ensemble Eq. (1), and zero in the equivalent
canonical ensemble Eq. (2). This Polyakov loop paradox
has to be considered an artifact of keeping, in the grand-
canonical ensemble, sectors with quark numbers not mul-
tiple of three. These canonical sectors, the so-called non-
zero triality sectors, have zero partition function. Thus, the
nonvanishing expectation value hPoliZGC�T;�� in the com-
mon grand-canonical formulation of QCD at finite tem-
perature and density, Eq. (1), is irrelevant for thermo-
dynamic properties. The physically meaningful Polyakov
loop correlator hPol�0�Pol�x�yi behaves in the same way in
both ensembles.

Because of quantum and thermal fluctuations,
hPol�0�Pol�x�yi tends to a nonzero value when jxj ! 1.
On the other hand, hPoli � 0 in the canonical ensemble.
Thus, the clustering property is violated, which shows that
the center symmetry is spontaneously broken in the ca-
nonical ensemble, rather than explicitly broken by the
fermion determinant as in the usual grand-canonical
ensemble.

Furthermore, an explicitly center-symmetric grand-
canonical partition function ZGC�T;��, Eq. (8), can be
constructed from the canonical partition functions, where
the contributions of nonzero triality states are projected
out. This partition function will give identical expectation
values to the usual ZGC�T;��, apart from a vanishing
expectation value for the Polyakov loop. Therefore, the
nonzero triality states can be included or excluded: the
thermodynamic properties of the theory are unchanged.

We have shown this explicitly by comparing the grand-
canonical ensemble at � � 0 with the canonical ensemble
B � 0. Numerically, we have established the equivalence
of ZGC�� � 0� and ZC�B � 0� in the thermodynamic limit
by measuring the free energy density as a function of �I,
using the histogram of the imaginary chemical potential
distribution.11 For all temperatures, we observe a minimum
at �I

T � 0. At low temperature, the free energy density of
the confined phase can be rather well described by the
hadron resonance gas, see Eq. (30). We thus have a simple
way to determine the sum of resonances f�T�. At high
temperature, a slightly modified free gas Ansatz, see

Eq. (33), allows to account for all data points in the
quark-gluon plasma phase. We determine the finite-size
and cutoff correction terms C2 and C4 by calculating the
free energy of the free fermion gas on the lattice and find
agreement with the literature for V ! 1. By construction,
the interaction coefficients b2�T� and b4�T� tend to 1 for
high enough temperatures, reproducing the Stefan-
Boltzmann law. Just above Tc, the deviation from 1 in
the leading coefficient is about 30% on a 63 	 4 lattice;
on an 83 	 4 lattice, this deviation is about 10% only. This
near-agreement with a noninteracting gas is unexpected at
such comparatively low temperatures.

The approach to the thermodynamic limit is very similar
in the canonical (B � 0) and grand-canonical (� � 0)
ensembles. The susceptibility of the chiral condensate, or
the specific heat, indicate the same pseudocritical tempera-
ture already on small volumes. A small shift, caused by
contributions from nonzero baryon sectors, is visible only
on the 43 	 4 lattice.

The zero-density canonical formulation requires a
center-symmetric simulation of QCD, which can be
achieved very simply with negligible computer overhead,
by adding to the standard algorithm a single degree of
freedom �I updated by Metropolis.

We hope to have fully clarified the (un)importance of
nonzero triality states, and thus, to have put to rest long-
standing speculations. Further connections between the
grand-canonical and the canonical formalisms in the con-
text of nonzero chemical potential/density will be the
subject of a forthcoming paper [2].
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APPENDIX: STOCHASTIC ESTIMATOR

A ratio of determinants can be estimated using a single
Gaussian complex vector:

 

detNf � 6D��0I� �m�
detNf � 6D��I� �m�

�
detNfM��0I�
detNfM��I�

�

R
d	yd	e�	

y�1=MNf ��0I��	R
d	yd	e�	

y�1=MNf ��I��	
(A1)

 �

R
d�yd�jJ�	;�;�I�je��

yMNf=2
��I�M

�Nf=2
��0I�M

�Nf=2
��0I�M

Nf=2
��I��R

d�yd�jJ�	;�;�I�je��
y�

; (A2)

11Remember that our numerical approach treats �I as a dynamical degree of freedom.
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where we have substituted 	 � MNf=2��I��. Note that in the above notation, the Jacobian jJ�	;�;�I�j is detMNf ��I�,
which is independent of � and cancels out in the ratio:

 

detNf � 6D��0I� �m�
detNf � 6D��I� �m�

�

R
d�yd�e�jM

�Nf=2
��0I�M

Nf=2
��I��j2e�j�j

2�j�j2R
d�yd�e�j�j

2 (A3)

 � he�jM
�Nf=2

��0I�M
Nf=2
��I��j2�j�j2i�: (A4)

h�i� tells us that � has to be sampled with the distribution
R
d�yd�e�j�j

2
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