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We show that the use of the fourth-root trick in lattice QCD with staggered fermions corresponds to a
nonlocal theory at nonzero lattice spacing, but argue that the nonlocal behavior is likely to go away in the
continuum limit. We give examples of this nonlocal behavior in the free theory, and for the case of a fixed
topologically nontrivial background gauge field. In both special cases, the nonlocal behavior indeed
disappears in the continuum limit. Our results invalidate a recent claim that at nonzero lattice spacing an
additive mass renormalization is needed because of taste-symmetry breaking.
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I. INTRODUCTION

Staggered fermions [1] have long been in use as a
method for formulating the quark sector of lattice QCD.
The main advantages are that they are relatively inexpen-
sive when it comes to including sea-quark effects in lattice
computations, and that they have an exact chiral symmetry
in the limit of vanishing bare quark mass. The combination
of these two advantages makes it possible to reach rather
low quark masses, which are essential for any serious
phenomenological applications of lattice QCD.

These benefits come at a price, however. A theory with
one flavor of staggered fermion on the lattice yields a
theory with four quarks in the continuum limit. This is a
consequence of fermion species doubling, which is un-
avoidable in any situation in which an exact chiral sym-
metry is preserved on the lattice. In modern language, these
four quarks per flavor of lattice staggered fermion are
referred to as ‘‘tastes.’’ Only in the continuum limit does
the theory recover a full SU�4� taste symmetry, whereas at
any nonzero value of the lattice spacing this group is
broken to a smaller discrete subgroup [2].

In principle, the four tastes can be given different masses
[2], but this is not what is done in practice.1 Instead, each
staggered flavor (up, down, or strange) is given a single
mass, leading to four tastes of degenerate quarks per flavor.
In order to obtain a theory with only one quark per flavor
appearing in sea-quark loops, one reduces the number of
tastes by taking the fourth root2 of the degenerate-mass
staggered determinant for each flavor [3].

This formulation of the sea-quark sector of QCD does
not necessarily correspond to a local field theory at nonzero
lattice spacing a. The potential lack of locality has been the
cause for much concern recently [4] about the application
of staggered fermions to high-precision hadron phenome-
nology. At issue is: (1) whether the theory is local at a � 0,
and (2) whether the theory, if nonlocal at a � 0, becomes
local in the continuum limit. An alternative way to phrase
the second question is to ask whether the theory is in the
correct universality class.

In this paper, we will argue (Sec. II) that the theory with
the fourth root of the staggered determinant is indeed
nonlocal at nonzero a, but that this does not imply that
the answer to the second question is negative. We connect
the issue of locality to the role of taste and chiral symme-
tries. In Sec. III, we give some simple examples that show
how the correct local continuum theory may indeed be
obtained. In addition, we demonstrate that recent claims
about the properties of staggered fermions at nonzero a, in
particular, about the renormalization of the bare mass [5],
are incorrect. A concluding section summarizes our argu-
ments and results, while the Appendix collects some useful
properties of various Dirac operators in the taste basis.

II. GENERAL CONSIDERATIONS

We begin by giving our general argument. Suppose that
the theory with the fourth root did correspond to a local
field theory on the lattice at nonzero a. By definition, this
would require that the two theories differ only by a local
functional. In other words,

 Det 1=4�Dstag� � Det�D� exp��1
4�Seff�; (2.1)

where Dstag is the staggered Dirac operator, D is a local
lattice Dirac operator that describes one quark field in the
continuum limit, and �Seff is a local effective action for the

*Permanent address: Department of Physics and Astronomy,
San Francisco State University, San Francisco, CA 94132, USA.

1One reason is that breaking the taste degeneracy requires
additional hopping terms in the lattice action, which, for a
generic choice, make the fermion determinant complex. Also,
the existence of a partially conserved continuous chiral symme-
try depends on the choice of mass term.

2In the isospin limit, the up-down sector is represented by a
square root of a staggered determinant with the common light
quark mass.
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gauge field.3 Saying that �Seff is local means that it pro-
duces only effects at the scale of the cutoff. This would
imply that, apart from a renormalization of the gauge
coupling constant, the presence of �Seff would not affect
the behavior at any physical length scale that is to be held
constant as the lattice spacing is taken to zero.

It is rather easy to see that this set of assumptions leads
to a conflict with what we know to be true about the
original staggered theory, i.e. the one without the fourth
root of the determinant. Taking the fourth power of
Eq. (2.1), we have

 Det �Dstag� � Det4�D� exp���Seff�: (2.2)

Under our assumption �Seff is local, and it therefore cannot
change the long-distance behavior of any correlation func-
tion. In particular, it cannot have any effect on the
Goldstone-boson (GB) masses predicted by the staggered
theory defined by Dstag, and those predicted by the theory
defined by

 D4t � D � 1; (2.3)

where the second factor is a unit 4� 4 matrix, to be
interpreted as the identity matrix in taste space. The op-
erator D describes a lattice theory with one taste; in a finite
volume, the size of the matrix D is in fact 4 times smaller
than the size of Dstag. Clearly, we have that Det�D4t� �

Det4�D�, and the lattice theory defined by D4t has a con-
tinuous SU�4� taste symmetry.

We can now compare what we know about the GB
spectrum of the two theories. In the theory defined by
D4t, there will be 15 GBs, transforming in the adjoint
representation of SU�4�, with possibly a common non-
vanishing mass if the operator D violates chiral symmetry
and/or is not massless. Under our assumption described
above, �Seff does not change this fact: all long-distance
physics would be contained in D4t.

The GB spectrum of the staggered theory is completely
different, irrespective of the value of the staggered bare
quark mass. Of course, in the continuum limit, one recov-
ers 15 degenerate (pseudo)GBs, but at nonzero lattice
spacing, they split up into at least four [7,8], and up to
seven [9], nondegenerate irreducible representations, con-
sistent with the lattice symmetry group of the staggered
theory. Indeed, at strong coupling [10,11], there is only one
exact GB (at zero quark mass), because of the exact U�1��
axial symmetry [10].

It thus becomes clear that our assumption on �Seff

cannot be correct. The effective action �Seff has to know
about the long-distance effects of taste-symmetry break-
ing, and cannot be a local functional of the lattice gauge
field. Of course, given a local operator D, one can always

define �Seff through Eq. (2.2) or Eq. (2.1) (as long as we
consider gauge fields on which D has no exact zero modes,
cf. Sec. III B), but what we find is that �Seff cannot be
local. This shows that the theory defined by taking the
fourth root of the staggered determinant must be nonlocal
at a � 0.

It also follows that the staggered theory without the
fourth root cannot be written as an SU�4�-symmetric local
theory at a � 0. In Ref. [5], it was assumed that Eq. (2.2)
held with �Seff local.4 However, we have shown that such a
decomposition is not possible.

What might be confusing is that the left-hand side of
Eq. (2.2) is the determinant of a local operator, Dstag.
Clearly, the determinant, or equivalently the effective ac-
tion Seff � �Tr log�Dstag�, is a nonlocal object. What we
observe is simply the fact that the nonlocality of Seff cannot
be reproduced entirely by the effective action for the
operator D4t, because of a conflict between the symmetries
of Dstag and D4t at nonzero lattice spacing. It is true that
Dstag itself can be written as the sum of taste-invariant and
taste-breaking local operators:

 Dstag � D � 1�
X
A

DA ��A; (2.4)

with the �A a set of 15 SU�4�-algebra valued (Hermitian)
generators in taste space,5 with D and DA all local.6

Considering the determinant, however, one has that

 Seff � � log Det�Dstag�

� �4 log Det�D� � log Det
�

1�
X
A

D�1DA ��A

�
:

(2.5)

This split of the effective action corresponds to choosing a
specificD in Eq. (2.2). Because of the presence ofD�1, the
second term produces a nonlocal �Seff , even though the
taste-breaking part of the Dirac operator in Eq. (2.4) is
local. What we have argued above, on the basis of the GB
spectrum of the staggered theory without fourth root, is
that no split of the form of Eq. (2.2) exists for which �Seff is
local. While it is generally accepted that the taste-breaking
effects of the operator

P
ADA ��A vanish in the contin-

uum limit, it is precisely the nonlocality of �Seff that
causes the 15 GBs of the staggered theory to be nondegen-
erate at a � 0.

While our argument demonstrates that no local lattice
theory exists with a fermion determinant equal to the fourth
root of the staggered determinant, it leaves open the ques-
tion of whether the nonlocal behavior persists in the con-
tinuum limit. Nevertheless, Eq. (2.5) lends support to the

3Adams [6] has recently emphasized that Eq. (2.1) with �Seff
local is indeed the proper definition of locality of the rooted
theory at a � 0; requiring �Seff � 0 would be too strong.

4exp���Seff� was written as Det�T� in Ref. [5].
5We may choose this set to be f��; i����; i���5; �5g with ��

a set of 4� 4 matrices satisfying f��; ��g � 2���.
6Lattice symmetries, such as U�1�� symmetry, further restrict

which �A can appear, as well as the form the DA can take.
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conjecture that the nonlocalities vanish in this limit.
Although �Seff is nonlocal, the operator

P
ADA ��A is

of order a. Thus, the effects of �Seff should vanish when
the limit a! 0 is taken while keeping physical momenta
fixed.7

In closing this section we comment on Refs. [12,13].
Rather than looking at the fourth root of the staggered
determinant, these references directly study the locality
properties of a certain fourth root8 of the staggered Dirac
operator itself. Since a huge number of operators can have
the same determinant, demanding that a fourth root of the
Dirac operator itself be local is much stronger than the
sufficient condition that the fourth root of the staggered
determinant correspond to some local operator in the sense
of (2.1), in the continuum limit. Further, taking the fourth
root of the Dirac operator does not satisfy the intuitive
requirement of reducing the number of degrees of freedom
by a factor of 4. Even starting from the operator D4t �
D � 1, the procedure of Refs. [12,13] would fail to find the
local operator D, which has four times fewer degrees of
freedom than D4t, and instead would find the nonlocal����
D4
p
� 1. (See Ref. [14], Sec. IX D 7, for a discussion of

this point.) It is therefore not surprising that Ref. [12] finds
a nonlocal result even in the continuum limit of the free
theory, while there are two explicit local constructions in
that case: Ref. [15] and Ref. [6].

III. EXAMPLES

To make the discussion more concrete, we now give a
possible prescription for the construction of the operator
D4t in Eq. (2.4). We begin with a massive staggered Dirac
operator Dstag�m� � Dstag�0� �m with bare quark mass m
in the one-component formalism.9 There exists a gauge-
covariant unitary transformationQ�0� which puts the theory
into the taste representation of Refs. [16,17].10 We may
however carry out this transformation as a Gaussian
renormalization-group (RG) blocking, leading to a stag-
gered Dirac operator in the taste representation Dtaste�m�
given by [15]

 D�1
taste�m� �

1

�
�Q�0�D�1

stag�m�Q
�0�y; (3.1)

where � is a parameter which appears in the Gaussian
blocking kernel. We then have that

 Det �Dstag�m�� � Det�G�1�Det�Dtaste�m��; (3.2)

with

 G�1 �
1

�
Dstag�m� �Q�0�yQ�0� �

1

�
Dstag�m� � 1; (3.3)

where in the last step we have used the fact that the kernel
Q�0� is unitary for this ‘‘RG blocking.’’ For �! 1, one
recovers a transformation of the type considered in
Ref. [17], but we will take � to be finite here. Because
G�1 is a Dirac operator with a mass of order � in lattice
units, all the long-distance physics should be contained in
Dtaste�m�.

Again following Ref. [15], one may use Dtaste as the
input for n true RG blocking steps (in which actual thin-
ning out of fermionic degrees of freedom occurs) with an
RG blocking kernel Q�n�. The nth blocking step takes us
from a lattice with spacing an�1 to a lattice with spacing
an � 2an�1; a0 is defined to be the spacing of the lattice
associated with Dtaste;0 � Dtaste and is twice the spacing of
the original lattice on which Dstag is defined. Blocked
operators Dtaste;n and G�1

n result from this process, with,
recursively,
 

D�1
taste;n�m� �

1

�
�Q�n�D�1

taste;n�1�m�Q
�n�y;

G�1
n �

1

�
Dtaste;n�1�m� �Q

�n�yQ�n�;

Q�n�Q�n�y � c1;

(3.4)

where c is a positive constant, and here ‘‘1’’ stands for the
Kronecker delta on the coarse lattice. One expects that the
long-distance physics is entirely carried by D�1

taste;n, which
is manifestly the sum of a smeared quark propagator and a
contact term, while Tr log�G�1

n � is a local functional of the
gauge field. The determinants are related by

 Det �Dstag�m�� � Det�Dtaste;n�m��
Yn
k�0

Det�G�1
k �; (3.5)

withG�1
0 � G�1 from Eq. (3.3). While Eq. (3.5) resembles

Eq. (2.2), it is fundamentally different. In Eq. (3.5), both
Det�Dstag�m�� and Det�Dtaste;n�m�� describe the same long-
distance physics, and the factor

Qn
k�0 Det�G�1

k � is expected
to be a local functional of the gauge field. For any finite n,
both Dstag�m� and Dtaste;n�m� break taste symmetry, con-
sistent with our general arguments above.

The massless one-component action is invariant under
U�1�� transformations [10],

 ���x� � i��x���x�; � ���x� � i��x� ���x�; (3.6)

because ��x� � ��1�x1�x2�x3�x4 anticommutes with
Dstag�0�. From

 Q�0�� � ��5 � �5�Q�0�; (3.7)

it follows [15] that Dtaste � Dtaste;0 satisfies a Ginsparg-

7We expect that the continuum limit will have to be taken
before the theory is continued to Minkowski space.

8These references actually study the square root rather than the
fourth root, but for simplicity we do not bother making this
distinction here since it is not relevant to the points under
discussion.

9We will make the dependence on the quark mass explicit for
the rest of this paper.

10The transformation Q�0� is not unique; see Ref. [18] for
details.
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Wilson (GW) relation [19]

 f�5 � �5; D
�1
taste�0�g �

2

�
��5 � �5�; (3.8)

if the original operator Dstag is massless.11 Using Eqs. (3.1)
and (3.7) one can show that ��5 � �5�Dtaste�0� is Hermitian.
Equation (3.8) then implies that the eigenvalues ofDtaste�0�
lie on a circle in the complex plane crossing the real axis at
0 and �, with center at �=2.

If we start with a massive staggered Dirac operator
Dstag�m� in the one-component formalism, we obtain a
corresponding massive operator Dtaste�m� in the taste rep-
resentation. Using the fact that Dtaste�m� � Dtaste�0� �m
for � � 1, it is straightforward to show for finite � that

 Dtaste�m� �
Dtaste�0� �m�1�

1
�Dtaste�0��

1� m
� �1�

1
�Dtaste�0��

: (3.9)

This operator is local, because the second term in the
denominator is small compared to the 1 (as long as m	
1 in lattice units). The eigenvalues still lie on a circle, now
with center ��=2�m�=�1�m=�� and radius ��=2�=�1�
m=��. In particular, the two possible real eigenvalues are
m=�1� m

�� and �.
In general, Dtaste;n�0� satisfies a GW relation for any n,

since the RG kernels Q�n� for n � 1; . . . are trivial with
respect to Dirac and taste indices. Explicitly, we have that
[15]
 

f�5 � �5; D
�1
taste;n�0�g �

2

�n
��5 � �5�;

�n �
1� c

1� cn�1 �:

(3.10)

Dtaste;n is not invariant under the full taste SU�4� for any
finite n. We may construct an SU�4� taste-invariant opera-
tor by simply taking the trace in taste space:

 Dinv;n�m� �
1
4 tr�Dtaste;n�m�� � 1; (3.11)

where tr denotes a trace over taste only. This operator is not
necessarily massless if we set m � 0, but whatever quark
mass the theory defined by Dinv;n�m� has, it is proportional
to the unit matrix in taste space. It is also clear that
Dinv;n�0� does not satisfy a GW relation.

However, it is straightforward to construct an operator
that does obey a GW relation. In order to do this, we note
thatDinv;n has no fermion species doublers for finite�. (We
will show this explicitly in Sec. III A.) Furthermore, the
fact that � anticommutes with Dstag�0�, combined with
anti-Hermiticity of Dstag�0�, implies that

 �D�1
stag�m��

y � �D�1
stag�m��: (3.12)

Using Eqs. (3.1), (3.4), (3.7), and (3.11), it is then easy to

see that �5Dinv;n�m� is Hermitian. We may thus construct a
taste-invariant overlap operator, just as when one starts
with a Wilson-Dirac operator [20]:

 Dov;n �
�n
2

�
1� �5sign

�
�5

�
1�

2

�n
Dinv;n�0�

���
;

(3.13)

with �n given in Eq. (3.10). Since this operator is taste
invariant, it satisfies a GW relation for any taste matrix �:

 f�5 ��; D�1
ov;ng �

2

�n
��5 ���: (3.14)

It follows that Dov;n is a massless operator.12

The operator Dov;n can be written as D � 1 as in
Eq. (2.3), and the resulting D is a possible choice for use
in Eqs. (2.1) and (2.2). Obviously, we can only have that
Dov;n ! Dtaste;n�m� for n! 1 if we take the original one-
component staggered operator to be massless, so that
Eq. (3.10) coincides with Eq. (3.14) for � � �5. This
overlap operator is ‘‘natural,’’ because it has been con-
structed such that the difference between Dov;n and
Dtaste;n�0� is expected to be of order a2

0=a
2
n � 1=22n [18].

The distinction is that, by construction, Dov;n has exact
SU�4� taste symmetry [in fact a full chiral SU�4�L �
SU�4�R], while Dtaste;n�0� does not. The expectation that
the difference decreases like 1=22n arises from the similar
expectation that taste symmetry is restored in the unrooted
staggered theory as we take n! 1, i.e. as the lattice
spacing of the original (unblocked) theory is sent to zero.

The sequence of overlap operators can be made massive
by choosing

 Dov;n�m� � Dov;n�0� �Dinv;n�m� �Dinv;n�0�; m � 0;

(3.15)

with m the original bare staggered mass, and Dov;n�0� �
Dov;n of Eq. (3.13). Our choice is different from the mas-
sive overlap operator commonly used in the literature. The
reason is that, this way, we maintain the above naturalness
property for m � 0 as well. For details, see Appendix A 1.
Unless the n! 1 limit is taken, the two theories defined
by Dtaste;n�m� and Dov;n�m� will not have the same renor-
malized mass; but since the mass in both theories renorm-
alizes multiplicatively, both theories are massless for
m � 0. This follows from the fact that both Dtaste;n�0�
and Dov;n�0� have a Ginsparg-Wilson-Lüscher (GWL) chi-
ral symmetry [21]. Any of the operators Dov;n�m� is a
possible choice for D4t in Eq. (2.3).

11Note that this reduces to an ordinary chiral symmetry for �!
1.

12This is true even if the original operator Dstag�m� is not
massless, i.e. if Dinv;n�0� is replaced by Dinv;n�m� on the right-
hand side of Eq. (3.13).
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A. The free case

The free case provides an explicit example of Eq. (2.2),
with �Seff nonlocal. We choose n � 0 and useDinv;0�m� for
D4t � D � 1 on the right-hand side of this equation. In the
free case, a Q�0� exists such that [16,17]

 

Q�0�Dstag�m�Q
�0�y �

X
�

�i��� � 1� sinp� � ��5 � ���5�

� �1� cosp��� � �1 � 1�m (3.16)

in momentum space. Using this Q�0� in Eqs. (3.1) and
(3.11), we obtain

 Dtaste;0�m� �

P
�
�i��� � 1� �p� � 1

2 ��5 � ���5�p̂2
�� � �1 � 1��m� 1

� �p̂
2 �m2��

1� 2m
� �

1
�2 �p̂2 �m2�

;

Dinv;0�m� �

P
�
i��� � 1� �p� � �1 � 1��m� 1

� �p̂
2 �m2��

1� 2m
� �

1
�2 �p̂2 �m2�

;

(3.17)

where

 

�p� � sinp�; p̂� � 2 sin�p�=2�; p̂2 �
X
�

p̂2
�:

(3.18)

We see that Dinv;0�m� is a Wilson-like Dirac operator, and
thus has no fermion doubling as long as � is finite. The
massless overlap operator of Eq. (3.13) in the free case is

 Dov;0�0� �
�
2

�
1�

1� 2
�Dinv;0�0�������������������������

1�
�2
P
�

p̂4
�

��2�p̂2�2

s �
� Dinv;0�0� �O�p

4�:

(3.19)

The argument of the square root is strictly positive as long
as �< 2.

We may now calculate �Seff for the free case from
Eqs. (2.2) and (2.5), choosingD � 1 � Dinv;0�m� and using
Eq. (3.17). We find

 e��Seff �
Y
p

�
1�

1
4

P
�
p̂4
�

p2 � �m� 1
� �p̂

2 �m2��2

�
8
: (3.20)

Defining �Leff by �Seff � �Tr��Leff�, we have
�Leff�p� 
 �

P
�p

4
��=�p2 �m2� at small p (and am	

1). This implies that the Fourier transform �Leff�x� y�
decays like inverse powers of the separation x� y (or its
components) times a factor e�mjx�yj. Because m is a physi-
cal scale, �Seff is nonlocal, Choosing D � Dov;0�m� in-
stead in Eq. (2.2) gives a similar result. While this only
demonstrates the nonlocality of �Seff in the free case, it is
clear that in the interacting case the nonlocality would be
gauge-field dependent [see the discussion around
Eq. (2.5)].

If we choose to consider the case ofDtaste;n�m� for n > 0,
the exact expressions become more cumbersome.
However, using the free-theory results of [15], it is possible
to show that

 

Dtaste;n�m� �
X
�

�
i��� � 1�p� �

1

2n�1 ��5 � ���5�p
2
�

� �1 � 1�m�O
�
m2

2n
;
p3

22n

��
; (3.21)

for small p, leading to

 �Seff � �8
X
p

1

22�n�1�

P
�
p4
�

p2 �m2 � � � � (3.22)

for small p. This shows explicitly how �Seff ! 0 for n!
1, but also how �Seff is nonlocal for any fixed n.

The free case is rather special in that there are no pions,
so the argument of Sec. II does not apply. This allows for
the possibility that there may be other choices for the
operator D in Eq. (2.2) for which �Seff is local. Indeed,
Adams [6] has constructed such an operator, which has
range

����������
a=m

p
and �Seff � 0. However, the general features

of the GB spectrum show that a similar construction is not
possible in the interacting case.

B. Background with nonzero topological charge

Another example is provided by the staggered Dirac
operator in the background of a smooth gauge field with
fixed topological chargeQ � 1. Here, we take the operator
D4t � D � 1 of Eq. (2.3) to be an overlap operator, and use
it (setting m � 0) to define the topological charge of the
gauge field under consideration. As already mentioned, a
possible choice would be one of the Dov;n of Eq. (3.13), but
in principle any overlap operator will do.

Our choice of gauge field implies that the operator D
will have one exact zero mode for quark mass m � 0, and
thus one eigenvalue proportional to m when m � 0. It
follows that Det4�D� on the right-hand side of Eq. (2.2)
will be proportional to m4 and vanish as m! 0. The
operator Dstag on the left-hand side of Eq. (2.2) will not
have any exact zero modes for a generic gauge-field con-
figuration (in any topological sector) at nonzero lattice
spacing. Instead, it will have four nondegenerate corre-
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sponding eigenvalues

 	i � m� cia�; i � 1; . . . ; 4; (3.23)

with � a positive exponent.13 In general none of the ci will
be exactly zero: If we consider for instance an instanton
with radius 
, the ci will be proportional to 
���1. It
follows that

 e��Seff /
Y
i

�
1�

cia�

m

�
: (3.24)

This is just the zero-mode contribution to

 �Seff � �Tr log
�

1�
X
A

D�1DA ��A

�
; (3.25)

in Eq. (2.5), where nowD has been chosen to be an overlap
operator.14 Thus, the 1=m signals the dependence of �Seff

on the nonlocal D�1. Note also that �Seff diverges in the
chiral limit for any nonzero lattice spacing, exhibiting the
well-known fact that the chiral and continuum limits do not
commute [22].

C. Consequences for Ref [5]

Our results invalidate the basic assumption made in
Ref. [5], which was that �Seff defined by Eq. (2.2) cannot
affect long-distance physics even at nonzero a. Instead, we
find that �Seff has to contain long-distance physics at a �

0 because of the mismatched symmetries of Dstag and D4t

of Eqs. (2.2) and (2.3). Contrary to what was suggested in
Ref. [5], it is not possible to reconcile the theories de-
scribed by Dstag and D4t by an additive shift in the quark
mass. Unlike the theory defined byDstag, the theory defined
byD4t has to contain 15 (pseudo) Goldstone bosons, which
remain degenerate even if they pick up a mass due to the
presence of an explicit (SU�4�-symmetric) quark mass.
Based on a comparison of zero modes of Dstag and D4t,
Ref. [5] furthermore argues that the quark masses of the
two theories have to be related by an O�a2� additive quark
mass renormalization. That argument fails, however, pre-
cisely because the relation between the two theories is
nonlocal. Our construction of the overlap operators
Dov;n�m� demonstrates that in fact SU�4�-symmetric lattice
Dirac operators exist which become exactly massless when
the staggered quark mass m is set equal to zero. We
emphasize however that any overlap operator can be used
to invalidate the claim of Ref. [5], as discussed in
Sec. III B. A correct description of the approach of the
continuum limit as far as the physics of GBs is concerned is
provided by staggered chiral perturbation theory [7,23].

IV. CONCLUSION

Our main result is a proof in Sec. II that the theory
defined by the fourth root of the staggered fermion deter-
minant does not correspond to a local theory at nonzero
lattice spacing a. This follows from the fact that SU�4�
taste symmetry is broken at nonzero a in the unrooted
staggered theory. If a local theory corresponding to the
fourth-root theory existed, one could take four copies of it
and construct a local theory with exact SU�4� taste sym-
metry, cf. the theory defined byD4t in Eq. (2.3). The SU�4�
symmetry implies that the 15 pseudo-Goldstone bosons of
this theory must be degenerate. On the other hand, it is well
known that the 15 pseudo-Goldstone bosons in the stag-
gered theory at nonzero a are nondegenerate because of
taste violations. There is thus a mismatch in the long-
distance physics of the staggered and SU�4� theories
when a � 0. The contradiction implies that the rooted
theory cannot be local at nonzero a: �Seff , defined through
Eq. (2.2), must be nonlocal.

The key issue is then whether the nonlocality persists in
the continuum limit. While this remains an open question,
the argument given around Eq. (2.5) suggests that the
theory is in the desired universality class as long at the
continuum limit is taken before the chiral limit. In other
words, it appears that locality will be restored for a! 0 at
any m � 0 (cf. Sec. III B). For recent theoretical results
supporting this conjecture, we refer to Refs. [18,24].

While the main argument summarized above stands
alone, we have discussed two examples that make our
reasoning more concrete. The examples are provided by
the staggered theory in the free case (Sec. III A) and in the
background of a smooth gauge field with nonzero topo-
logical charge (Sec. III B). Starting from the staggered
Dirac operator, we constructed a sequence of overlap
operators Dov;n in Sec. III, which can be used to give a
fermionic definition of topological charge suited to our
arguments. In both examples, we find that �Seff is explic-
itly nonlocal, but that the nonlocal behavior disappears in
the continuum limit.
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Note added.—Recently, Hasenfratz and Hoffmann [25]
have posted a paper that discusses staggered fermions in
the context of the Schwinger model. They present numeri-

13For generic eigenvalues, one expects that � � 1. It could be
that � � 2 for zero modes. The precise value of � does not affect
our argument.

14In this case the sum over A includes a term with �A � 1.
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cal evidence that the staggered determinant (on both un-
rooted and rooted ensembles) can be made approximately
equal to an overlap determinant by adjusting the overlap
mass appropriately, up to a local effective action. When the
quark mass is large compared to the taste violations, it is
not inconsistent with the arguments given here that the
physics of the overlap and staggered fermions could be
approximately the same. However, at low quark mass the
properties of the GBs guarantee that the physics of the two
theories must be drastically different; indeed, numerically
the matching of determinants deteriorates. In QCD, current
simulations [8] are in this ‘‘low mass’’ region (m

a2�3

QCD), where staggered chiral perturbation theory
[7,23,24] is the appropriate tool.

APPENDIX A: SELECTED PROPERTIES OF
TASTE-BASIS DIRAC OPERATORS

In this appendix we collect a number of useful results
pertaining to the three families of taste-basis Dirac opera-
tors considered in the text: Dtaste;n�m�, Dinv;n�m�, and
Dov;n�m�.

1. Construction of Dov;n�m�

Consider a massless overlap operator Dov that satisfies
the GW relation

 f�5; Dovg �
2

�
Dov�5Dov: (A1)

Here � � O�1=a�, where a is the lattice spacing. The
choice of a massive overlap operator most common in
the literature is

 Dov�m� � �1�m=��Dov �m; (A2)

where Dov�0� � Dov is a solution of Eq. (A1). In fact, as
we will explore, there is a large freedom in extending the
definition of an overlap operator to the massive case.

Let us spell out the requirements that a massive overlap
operator should meet. First, the definition (A2) satisfies

 Dov�m� � Dov�0� � Zm�O�m2a;mpa�: (A3)

This is an obvious requirement for any sensible Dov�m�.
The O�m2a;mpa� irrelevant terms cannot reintroduce any
fermion doublers becausema	 1. Sincem is a bare mass,
we have allowed for an O�1� multiplicative renormaliza-
tion factor Z. In the case of Eq. (A2) one has Z � 1, but,
anticipating less explicit definitions, there is nothing wrong
in principle with having Z � 1. Either way, the value of m
must be adjusted to reproduce the desired renormalized
mass.

The second requirement has to do with the algebraic
transformation properties under the GWL chiral symmetry
[19,21] (for reviews see Refs. [26,27]). The GW relation
(A1) implies that the operator

 �̂ 5 � �5�1� �2=��Dov� (A4)

satisfies �̂2
5 � 1. In all relevant cases it will further be true

that �̂5 (or its generalization) is Hermitian. A possible
choice of the GWL chiral transformation is then given by
� � �̂5 , � � � � �5. The GW relation can be rewritten
as �5Dov �Dov�̂5 � 0, which implies that the fermion
action Sov � � Dov is invariant under the GWL trans-
formation (see also Sec. A 3 below).

In the massive case the fermion action cannot be invari-
ant under the GWL transformation. Instead, in analogy
with an ordinary mass term, and assuming that parity is a
symmetry, one requires that the mass term be a scalar
density that transforms into a pseudoscalar density under
the GWL transformation. In fact, this requirement can be
rather trivially satisfied. Consider a general bilinear fer-
mion action SF � � D , assuming only that SF is hyper-
cubic and parity invariant. Assume also a given GW
operator Dov (with in general Dov � D). We introduce
the standard chiral projectors PR;L �

1
2 �1� �5� as well

as ‘‘hatted’’ chiral projectors P̂R;L �
1
2 �1� �̂5�, and define

 R;L � P̂R;L , � R;L � � PL;R. Note that hatted projectors
are used for  while ordinary projectors are used for � .
One can now split the action into two parts,

 SF � � �D� �Dmass� ; (A5)

where

 D� � PRDP̂L � PLDP̂R; (A6)

 Dmass � PRDP̂R � PLDP̂L: (A7)

Under the chiral GWL transformation, D� is invariant,
whereas Dmass transforms as required for a mass term.

While the decomposition (A5) is possible for any D,
clearly this does not imply that any D would qualify as a
massive overlap operator. In accordance with Eqs. (A3)
and (A5), we require that a massive overlap operator
satisfy

 Dov;��m� � Dov�0� �O�mpa�; (A8)

 Dov;mass�m� � Zm�O�m2a;mpa�; (A9)

where Dov;��m� andDov;mass�m� are defined by substituting
Dov�m� into Eqs. (A6) and (A7) respectively.15 Note that
corrections of O�m2a� are absent in Eq. (A8) because the
difference between �̂5 and �5 isO�pa�, and ordinary chiral
symmetry (as opposed to the GWL type) would forbid
mass terms in Dov;��m�. Like Eq. (A3), this asserts that
Dov�m� satisfies a GW relation in the limit m! 0; that the
difference Dov�m� �Dov�0� is O�m�; and that to leading

15The hatted projectors are always defined with respect to
Dov�0� � Dov. In the case of Eq. (A2), one has Dov;��m� �
Dov and Dov;mass�m� � m�PRP̂R � PLP̂L� � m�O�mpa�.
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order, this difference is actually linear in m. What
Eqs. (A8) and (A9) add is that Dov;mass�m� transforms as
expected under the GWL symmetry; the above discussion
clarifies that this additional requirement can always be met
for any operator that already satisfies Eq. (A3). These
properties ensure that the mass parameter will be renor-
malized multiplicatively.16

Here, we will add one new requirement. Under a certain
scaling assumption to be discussed in Sec. A 2, we demand
that the sequences Dinv;n�m� and Dov;n�m� both have the
same n! 1 limit as the original RG-blocked operators
Dtaste;n�m�, for any m. With Dov;n�0� � Dov;n of Eq. (3.13),
a massive overlap operator that satisfies all the above
requirements is (the following is identical to Eq. (3.15) in
the main text)

 Dov;n�m� � Dov;n�0� �Dinv;n�m� �Dinv;n�0�; m � 0:

(A10)

Of course, we now define the GWL transformation and the
hatted projectors using �̂5;n � �5�1� �2=�n�Dov;n�0��.
Equations (A8) and (A9) follow because, similarly to
Eq. (A3), one has Dinv;n�m� � Dinv;n�0� � Zm�
O�m2a;mpa�. Note that the proportionality constant Z is
necessary in this case, because Dinv;n�m� was defined such
that m is the value of the mass in the original one-
component staggered operator. The n! 1 convergence
properties will be established in the following subsection.

Last, we briefly comment on the construction of the low-
energy effective theories: the Symanzik action and the
chiral Lagrangian. In the case of Eq. (A2), the GW chiral
Lagrangian has the same internal symmetries as the con-
tinuum chiral Lagrangian. The situation is slightly more
involved in the more general case of Eqs. (A8) and (A9).
There, terms proportional to powers of ma appear in the
chirally invariant part of the Dirac operator,Dov;��m�. This
feature will carry over to the chirally invariant part of the
Symanzik action. In constructing the corresponding chiral
theory, one therefore has to include a chirally invariant
spurion proportional to ma. The spurion would, in effect,
make the low-energy constants (LECs) of the chiral theory
functions of am. Such mass dependence in the LECs could
present a practical difficulty in extracting chiral physics
from a simulation that used Dov�m� as the fundamental
Dirac operator. However, there is no theoretical problem in
considering Dov�m�, and all the standard implications of
chiral symmetry are preserved. In particular, the masses of
Goldstone pions vanish in the chiral limit, for any value of
the lattice spacing.

2. Scaling and convergence for n! 1

A basic hypothesis of the RG treatment of staggered
fermions (with or without the fourth root) is that the taste-
breaking terms of the RG-blocked operator Dtaste;n�m� tend
to zero in the limit of infinitely many RG blocking steps
[15,18]. The taste-breaking part �n is given explicitly by
writing

 Dtaste;n�m� � Dinv;n�m� � �n�m�; (A11)

where Dinv;n�m� is given by Eq. (3.11). We will hold fixed
the coarse-lattice spacing ac � an obtained after n block-
ing steps, implying that a0 � 2�nan goes to zero when n is
taken to infinity. In the free theory [15], one can prove that
kac�nk � O�2�n�. In the interacting case no proofs can be
given; we will assume that �n scales in the same way, up to
logarithmic corrections in a0=ac (that we suppress below).
We refer to Ref. [18] for a discussion of the status of this
assumption, as well as a more precise statement about the
gauge fields for which it is expected to apply.

Under this scaling hypothesis it is trivial that Dtaste;n�m�
and Dinv;n�m� have a common n! 1 limit, for any m.
Furthermore, by Eq. (A10), the same will be true for
Dov;n�m�, provided Dov;n�0� has the same n! 1 limit as
Dinv;n�0�. We will now prove this. In the rest of this sub-
section we set m � 0 and drop the mass argument. We
begin by substituting Eq. (A11) into

 f�5 � �5; Dtaste;ng �
2

�n
Dtaste;n��5 � �5�Dtaste;n; (A12)

which is equivalent to Eq. (3.10). We then multiply both
sides of the resulting equation by 1 � �5, take the trace
over taste indices only, and form the tensor product with an
arbitrary taste matrix �, obtaining

 fDinv;n; ��5 ���g �
2

�n
Dinv;n��5 ���Dinv;n

�
1

2�n
tr��1 � �5��n��5 � �5��n� ��: (A13)

We used that �n is traceless on the taste index [compare
Eq. (3.11)]. By the scaling hypothesis, the right-hand side
of Eq. (A13) isO�2�2n�, which tells us by how much Dinv;n

fails to satisfy the GW relation (3.14). Now introducing

 ~� 5;n � �5�1� �2=�n�Dinv;n�; (A14)

it follows from Eq. (A13) that ~�2
5;n � 1�O�2�2n�. Hence,

�̂5;n � sign�~�5;n� � ~�5;n �O�2�2n�. Finally, inserting this
into Eq. (3.13) we find Dov;n � ��n=2��1� �5�̂5� �
Dinv;n �O�2

�2n�.

3. Index of Dtaste;n

Here we address the following issue. The one-
component staggered theory has an exact chiral symmetry
for m � 0, the U�1�� symmetry. The corresponding chiral

16The (finite) ratio of continuum and lattice Z factors (both
evaluated at the same scale) will generically be a function of ma.
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transformations of the continuum four-taste theory are
generated by �5 � �5, and they form a nonanomalous
subgroup of SU�4�L � SU�4�R.17 In contrast, after any
number of RG blocking steps, we obtain the operator
Dtaste;n�m�which, form � 0, only satisfies the GW relation
(3.10). While the RG-blocked action is invariant under the
corresponding GWL transformation, this is not enough to
establish that it is a symmetry. One must further check that
the measure term, arising from this change of variables,
vanishes. Here we show that this is indeed the case. Again
we will set m � 0 and drop the mass argument.

The variation of the measure is given by [21]

 � tr���5 � �5�Dtaste;n=�n� � index�Dtaste;n�: (A15)

We note that, loosely speaking, one expects the index of
Dtaste;n to vanish in the continuum limit, because taste
symmetry is recovered in this limit, and tr��5� � 0. We
will establish the stronger result that the index of Dtaste;n is
actually zero on the lattice. The precise statement is that
the index is zero except possibly on a subspace U00 

U0 
U, where U is the (finite-volume) gauge-field
space, U0 is the (proper) subspace where Dtaste;n has at
least one exact zero mode, and U00 is a proper subspace of
U0 defined below. Further, U0 is a measure zero subset of
U, and U00 is a measure zero subset of U0.

One can always choose a basis for the exact zero modes
of Dtaste;n such that each zero mode  0 has a definite
chirality,

 

d��5 � �5� 0 � ��5 � �5� 0 � � 0; (A16)

where, analogous to Eq. (A4),

 

d��5 � �5� � ��5 � �5��1� �2=�n�Dtaste;n�: (A17)

By Eq. (A17), ordinary and hatted projectors coincide
when acting on a zero mode. Also, on a zero mode, the
Dirac operator Dtaste;n commutes with the chiral generator,

as usual. Therefore it is enough to show that the index of
Dtaste;n is zero with respect to �5 � �5 chirality. This can be
done by relating the zero modes ofDtaste;n to those ofDstag.
Iterating Eq. (3.4) we have

 D�1
taste;n � 1=�n �QnD

�1
stagQ

y
n ; (A18)

where Qn � Q�n�Q�n�1� � � �Q�1�Q�0�. If we gradually vary
the gauge field so as to approach a configuration where
Dtaste;n has an exact zero mode, the norm of D�1

taste;n on the
left-hand side diverges. This is possible only if the norm of
D�1

stag diverges too. Thus, not surprisingly, any exact zero
mode of Dtaste;n must be obtained via RG blocking from an
exact zero mode of Dstag.

Because of U�1�� symmetry, the spectrum of Dstag con-
sists of imaginary pairs�i	, and the corresponding eigen-
modes are related by multiplication with ��x�. Since the
eigenvalues are continuous functions of the gauge fields,
and since there are no zero modes in the free case, any zero
modes that appear must also be paired. We choose a chiral
basis for the two zero modes, which is always possible.
Then, as the gauge field changes, the off-diagonal matrix
element of Dstag between the modes is not forbidden by
U�1�� symmetry, and is thus generically nonzero. This
suggests—in accordance with standard lore—that exact
zero modes exist only on a zero measure subspace U0.

Using Eq. (3.7) it follows from the above discussion that,
given a pair of zero modes ofDstag, thenDtaste;0 must have a
corresponding pair of zero modes, with one zero mode of
each �5 � �5 chirality. The index of both Dstag and Dtaste;0

is, thus, always zero. The index of Dtaste;n could only be
nonzero if the blocking transformation Q�n�Q�n�1� � � �Q�1�

exactly annihilated one of the definite-chirality zero modes
of Dtaste;0 but not the other. Generically this will not
happen, and the subspace U00 where this does happen
therefore has measure zero with respect to U0. (We leave
it open whether or not U00 is an empty set.) Assuming that
no (interesting) QCD observable has a �-function support
on U00, the GWL transformation is then a symmetry of the
RG-blocked theory.
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