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Nucleon mass: From lattice QCD to the chiral limit
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Previous extrapolations of lattice QCD results for the nucleon mass to the physically relevant region of
small quark masses, using chiral effective field theory, are extended and expanded in several directions. A
detailed error analysis is performed. An approach with explicit ��1232� degrees of freedom is compared
to a calculation with only pion and nucleon degrees of freedom. The role of the ��1232� for the low-
energy constants of the latter theory is elucidated. The consistency with the chiral perturbation theory
analysis of pion-nucleon scattering data is examined. It is demonstrated that this consistency can indeed be
achieved if the ��1232� dominance of the P-wave pion-nucleon low-energy constant c3 is accounted for.
Introduction of the ��1232� as an explicit propagating degree of freedom is not crucial in order to describe
the quark-mass dependence of the nucleon mass, in contrast to the situation with spin observables of the
nucleon. The dependence on finite lattice volume is shown to yield valuable additional constraints. What
emerges is a consistent and stable extrapolation scheme for pion masses below 0.6 GeV.
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I. INTRODUCTION

In recent years the nucleon mass has been in the focus of
steadily improving lattice QCD computations. Technical
limitations have so far restricted lattice QCD results to
quark masses larger than 5 times the physically relevant
masses of the light quarks, mu;d < 10 MeV. Under such
conditions, the nucleon masses produced on the lattice are
considerably larger (MN > 1:2 GeV) than the physical
one. Systematic extrapolations guided by well-defined
rules of low-energy QCD are necessary in order to bridge
this gap. Several versions of such extrapolations have been
developed in recent years [1–3]. They differ partly in de-
tails but agree on the basics, namely, on the relevance of
one-loop chiral pion-nucleon dynamics in determining the
dependence of MN on the pion mass m�.

The connection between m� and the u- and d-quark
masses (for which we take their average, mq�

�mu�md�=2), is given in leading order by PCAC and the
Gell-Mann-Oakes-Renner relation, m2

�f2
� � �2mqh �qqi,

with the pion decay constant f� and the chiral condensate
h �qqi both taken at the chiral limit. Accurate lattice QCD
results for the pion mass as a function of the quark massmq

[4–6] demonstrate that this leading linear relation between
m2
� and mq remains remarkably stable even at large quark

masses. Corresponding lattice data are consistent with one-
loop chiral perturbation theory at next-to-leading order, up
to m� � 0:5 GeV [4,7]. Moreover, the data continue to
display the leading-order (linear) PCAC behavior even
beyond this margin, for reasons not yet understood in
detail. We will therefore accept this as a fact when we later
compare our theoretical MN�m�� with lattice results.
address: Massimiliano.Procura@ph.tum.de
address: Bernhard.Musch@ph.tum.de
address: Thomas.Hemmert@ph.tum.de
address: Wolfram.Weise@ph.tum.de

06=73(11)=114510(15) 114510
The present work updates and extends previous inves-
tigations [1,8] in several respects:
(i) T
-1
he overall consistency of parameters and low-
energy constants in the expansion of MN�m��
with those extracted from pion-nucleon scattering,
is carefully examined.
(ii) T
he role of explicit ��1232� degrees of freedom in
the one-loop nucleon self-energy is studied.
(iii) A
 systematic error analysis for the extrapolation
from the lattice data through the physical point
down to the chiral limit is performed.
(iv) A
 study of finite-volume effects in comparison with
lattice data provides interesting additional
constraints.
Issues of convergence when carrying chiral expansions
over relatively large ranges of quark masses, will also be
addressed.

The following section briefly summarizes the frame-
work of the present approach, covariant baryon chiral
perturbation theory (B�PT) using infrared regularization.
We omit derivations of basic equations which have already
been reported elsewhere [1]. Section III describes the de-
tailed error analysis of the extrapolation from lattice data
down to the physical region. Section IV discusses connec-
tions with the analysis of low-energy pion-nucleon scatter-
ing. Section V introduces the ��1232� as an explicit degree
of freedom and examines its relevance to the chiral ex-
trapolation of the nucleon mass. Section VI investigates
effects induced by varying the finite volume of the lattice,
and Sec. VII completes the analysis by exploring the
effects of avoiding the inclusion of the physical nucleon
mass as input. Conclusions are drawn in Sec. VIII.

II. THE NUCLEON MASS IN CHIRAL
PERTURBATION THEORY

In previous work [1] we have investigated the quark-
mass dependence of the nucleon mass using chiral effec-
© 2006 The American Physical Society
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tive field theory in the two-flavor, pion-nucleon sector. A fit
has been performed to lattice data selected according to the
largest available lattice volumes and smallest accessible
lattice spacings, in order to be as close as possible to the
infinite-volume and continuum limits for which these �PT
calculations are designed. We first present a brief summary
of this approach.

In Ref. [1] a one-loop calculation has been performed,
taking into account diagrams up to chiral order p4 in
covariant B�PT with infrared regularization [9]. The fol-
lowing result is obtained for MN�m�� when expanded in
powers of m�:

 

M�4�N � M0 � 4c1m
2
� �

3g2
A

32�f2
�
m3
�

�

�
4e�4�1 ��� �

3

64�2f2
�

�
g2
A

M0
�
c2

2

�

�
3

32�2f2
�

�
g2
A

M0
� 8c1 � c2 � 4c3

�
ln
m�

�

�
m4
�

�
3g2

A

256�f2
�M2

0

m5
� �O�m6

��: (1)

This formula requires the following input:

(i) t
he nucleon axial vector coupling constant gA and

the pion decay constant f�, both taken in the chiral
(m� � 0) limit. In practice we use their physical
values, gA � 1:267 and f� � 92:4 MeV, for guid-
ance and examine variations around these values;
(ii) t
he nucleon mass in the chiral limit, M0;

(iii) t
he low-energy constants c1, c2 and c3. Here c1 is

closely linked to the pion-nucleon sigma term,
while c2;3 encode information primarily on the
��1232� excitation in P-wave pion-nucleon
scattering;
(iv) a
 parameter e�4�1 ���, combining three different cou-
plings of the most general O�p4� B�PT Lagrangian
(see Ref. [1]). e�4�1 ��� represents unresolved short
distance dynamics. This term compensates the
logarithmic dependence on the renormalization
scale � so as to ensure scale independence of the
result.
The present work builds upon a successful fit of Eq. (1)
to unquenched two-flavor lattice results, referred to as ‘‘fit
II’’ in Ref. [1]. The input lattice data with improved Wilson
fermions (points 19, 41, 8 and 23 in Ref. [8] and Table V)
are chosen according to the following criteria: small lattice
spacing, a < 0:15 fm, and large spatial lattice size,m�L>
5. We have considered only the smallest available pion
masses, m� < 0:6 GeV. In order to avoid an under-
determined fit we fix some parameters. In particular, c1 is
eliminated by substituting the empirical nucleon mass into
Eq. (1) at the physical value of the pion mass, c2 is set
equal to 3:2 GeV�1 as determined in [11], and c3 is fixed at
�3:4 GeV�1, according to the NN phase-shift analysis in
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Ref. [12]. Employing the physical values f� � 92:4 MeV,
gA � 1:267, only two parameters remain free: M0 and
e�4�1 ��� (we chose a renormalization scale � � 1 GeV
throughout this work).

In Eq. (1) we have truncated the O�p4� infrared regu-
larized expression at m5

� in order to avoid further uncon-
strained counter terms, cf. Ref. [1]. We note that the
truncation of M�4�N at O�m4

�� coincides with the O�p4�
result in heavy baryon chiral perturbation theory
(HB�PT), see Ref. [2]. We stress that in the context of
baryon �PT with infrared regularization, recoil corrections
are part of the same order in the corresponding perturba-
tive, diagrammatic expansion. Manifestly covariant and
nonrelativistic methods just lead to a different organization
of the perturbation theory. We have checked that fits based
on the HB�PT O�p4� expression give results that are
compatible with the analysis presented here. Thus the
term proportional to m5

� in Eq. (1), i.e. the leading recoil
correction to the nonrelativistic result, plays no significant
numerical role.

The application of chiral perturbation theory to interpo-
lations spanning a rather large interval of quark masses has
always been a point of concern. In the next section we
examine the degree of convergence as the calculation of the
nucleon mass evolves order by order in the chiral expan-
sion. In preparation of this study we first recall further
basic results discussed in Ref. [1]. At chiral order p2, we
have

 M�2�N � M0 � 4c1m2
� (2)

and the one-loop expression at O�p3� using infrared regu-
larization, expanded in powers of m�, is
 

M�3�N � M0 � 4c1m2
� �

3g2
A

32�f2
�
m3
�

�

�
4e�3�1 ��� �

3g2
A

64�2f2
�M0

�
1� 2 ln

m�

�

��
m4
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256�f2
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0

m5
� �O�m6

��: (3)

Here, e�3�1 ��� absorbs the �-dependence at O�m4
��, which

differs from that of e�4�1 ��� in Eq. (1).

III. ERROR ANALYSIS

In this section a systematic error analysis is performed in
order to test the reliability of the interpolation between
lattice results and the physical nucleon mass based on
Eq. (1).

We are confronted with uncertainties from two different
sources of errors, namely input uncertainties and theoreti-
cal uncertainties, which need to be distinguished through-
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TABLE I. Input and output parameters in the fits to large volume lattice data. Lattice pion
mass errors have been taken into account. The pion-nucleon sigma term is obtained using �N �
m2
��@MN=@m

2
�� with Eq. (1).

(a) statistical error (b) systematic envelope

e�4�1 (1 GeV) (GeV�3) 0:74� 0:18 fitted 0.27 . . . 1.14 fitted
M0 (GeV) 0:882� 0:003 fitted 0.876 . . . 0.888 fitted
c1 (GeV�1) �0:93� 0:04 elim. �1:04 . . .� 0:82 elim.
gA 1.267 fixed 1.1 . . . 1.3 scanned
f� (MeV) 92.4 fixed 86.2 . . . 92.4 scanned
c2 (GeV�1) 3.2 fixed 3.2 fixed
c3 (GeV�1) �3:4 fixed �3:4 fixed

�2=d:o:f: 0.13 0.1268 . . . 0.1346

�N (MeV) 49� 3 44 . . . 54

FIG. 1 (color online). Nucleon mass as function of m2
�. Shown

is the best-fit interpolation between lattice results and the physi-
cal point (star), performed at chiral order p4 using Eq. (1) (solid
curve), with input given in column (a) of Table I. The physical
point is included. The lattice data points in the gray region have
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out the analysis because they require different treatments.
Input uncertainties result from statistical errors of lattice
calculations1 and from limited empirical information on
low-energy constants. Theoretical uncertainties come from
two sources: First, they arise because our fit function
derives from a perturbative expansion and is therefore
subject to corrections of higher order. Secondly, we are
dealing with an effective field theory, which has a limited
range of applicability. Our analysis is performed in two
steps. First, we compare different orders in the perturbative
expansion of MN�m�� focusing only on pion masses up to
0.6 GeV. This range is consistent with the conclusions
drawn in Ref. [2]. In a second step we treat input
uncertainties.

Using c1 and M0 as given by the M�4�N best fit in Table I,
we display, in Fig. 1 M�2�N and examine M�3�N of Eq. (3). The
pattern of successive steps is certainly promising form� <
600 MeV. Note that the parameter e�3�1 ��� in M�3�N and
e�4�1 ��� in M�4�N have different �-dependence. In contrast
to Ref. [1], we do not identify the two parameters at a
specific scale. Instead e�3�1 ��� is fitted to lattice data, yield-
ing e�3�1 �1 GeV� ’ 0:48 GeV�3, a naturally sized value for
that coupling. A more stringent test of convergence would
have to involve an estimate of corrections from O�p5�.
Then, however, the number of poorly constrained parame-
ters would become prohibitively large. In the present work
a consistency check of the low-energy constants required
by the fit to the nucleon mass in comparison with the same
constants deduced from the analysis of pion-nucleon scat-
tering data provides a nontrivial test that will be performed
in Sec. IV.

Let us now study the numerical impact of input uncer-
tainties for Eq. (1). The relevant technical details are
summarized in Appendix A. The uncertainty in c3 is sub-
stantial but difficult to quantify. For the moment, we ignore
uncertainties in c2 and c3 and defer this part of the dis-
1At the moment we cannot estimate the intrinsic systematic
uncertainties in the lattice calculations.
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cussion to Secs. IV and VI. To start with, gA and f� are set
equal to their values at the physical point. Fitting with this
setup has led to the results of ‘‘fit II’’ in [1]. We now also
take into account uncertainties in extracting the lattice pion
mass, see Appendix A 5. They turn out to have little effect.
The resulting parameter values are listed in column (a) of
Table I. The global error band for the pion mass depen-
dence of the nucleon mass is the ‘‘statistical band’’ dis-
played in Fig. 2.

The values of gA and f�, to be taken in the chiral limit,
are expected to differ slightly from the values at the physi-
cal point. We assume to find these values in the intervals

 gA � 1:1 . . . 1:3; f� � 86:2 MeV . . . 92:4 MeV: (4)

The range for gA is taken from [13]. For the lower bound-
ary of f�, we take the estimate from an analysis of the pion
mass dependence of f� in Ref. [14]. Varying gA and f�
not been used as input. Also shown are intermediate steps at
orders p2 and p3 according to Eqs. (2) and (3). The parameter
e�3�1 ��� has been fitted to lattice data.
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FIG. 2 (color online). Error band at 68% confidence level
(‘‘statistical error’’) and envelope of bands encoding input pa-
rameter uncertainties (‘‘systematic envelope’’).
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within these intervals extends the error band to what is
labeled ‘‘systematic envelope’’ in Fig. 2 (see Appendix A).
The corresponding parameter bounds can be found in
column (b) of Table I.

In the limit m� ! 0, the error band remains narrow,
reflecting our ability to determine M0 quite precisely. Of
course, this prediction relies heavily on the inclusion of the
physical point which is located close to the chiral limit. For
pion masses below 0.6 GeV, i.e. left of the four selected
lattice points, the band does not bulge much. As long as
information about the physical point and the LECs is
included, �PT provides a stable interpolant which is
well-conditioned to make predictions within its range of
validity.2 However, the predictive power of our analysis in
the regionm� > 600 MeV is evidently low. The agreement
between best-fit curve and lattice data up to m� �
750 MeV, a scale not small compared to the chiral sym-
metry breaking scale �� � 4�f�, has low statistical
significance.3

Note that while the individual fit parameters in Table I
exhibit appreciable sensitivity to the input choice for gA
and f�, the overall shape of the fit curve shows hardly any
dependence on gA, f� in the range of interest for m�, such
that the ‘‘systematic envelope’’ in Fig. 2 for the global error
band is barely distinguishable from the band found for
fixed gA and f�.

In Ref. [15] an attempt was made to determine the
impact of higher-order effects by plotting a band for
M�4�N , selecting the chiral limit values of gA and f� from
error intervals while all other parameters were kept fixed.
However, when studying higher-order effects one must
substitute the pion mass dependent functions gA�m�� and
2We refer to Sec. VII for a scenario without inclusion of the
physical point.

3Complementary results for large quark masses are obtained
using different methods, such as the Adelaide approach [3] and
the chiral quark soliton model [34].
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f��m��, constrained in such a way that they are consistent
with lattice QCD results over the whole range of m�. This
has not been done and therefore the significance of the
analysis [15] remains doubtful.

Our conclusion is instead that the interpolation based on
O�p4� chiral perturbation theory is sufficiently stable for
m� 	 0:6 GeV.
IV. CONSISTENCY WITH PION-NUCLEON
SCATTERING

In order to test whether our extrapolations from lattice
results are physically meaningful, we compare them with
pion-nucleon observables for which chiral expansions in-
volve the same parameters but in different combinations.
One such observable is the isospin-even �N S-wave scat-
tering amplitude at threshold, T��m�� 
 4��1�
m�=MN�a

� where a� is the corresponding scattering
length. Empirically [16] one finds the anomalously small
value T� � ��0:12� 0:11� GeV�1. Chiral symmetry im-
plies that the leading term of T� at chiral order p vanishes.
In HB�PT the contributions at order p2 and p3 read [17]:

 T� �
2m2

�

f2
�

�
c2 � c3 � 2c1 �

g2
A

8M0

�
�

3g2
Am

3
�

64�f4
�
�O�p4�:

(5)

The term of order p4, supposedly small, involves a series of
additional low-energy constants which are not well deter-
mined and therefore presently of no practical use for a
detailed estimate.

Another suitable observable is the isospin-even, spin-
averaged P-wave �N threshold amplitude, P�1 �m�� 

4��1�m�=MN��4a33 � 2a31 � 2a13 � a11�, given in
terms of the P-wave scattering volumes a2I;2J in channels
with spin/isospin J, I � 1=2 or 3=2. Empirically, one finds
P�1 � �1044� 38� GeV�3 in [18]. In HB�PT, the terms
up to chiral order p3 are [17]:
 

P�1 �
2
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c2
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4f2
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2
0

�
g2
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12�f4
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77

32

�
�O�p4�; (6)

where one should note that P�1 enters in the scattering
amplitude with an extra factor involving pion momenta,
~q � ~q0, of order p2 in the chiral counting.

Further independent information can be drawn from the
pion-nucleon sigma term,

 �N � hNjmu �uu�md
�ddjNi � mq

@MN

@mq
: (7)

Making use of the Gell-Mann-Oakes-Renner relation, one
obtains:

 �N ’ m
2
�
@MN

@m2
�
� �4c1m

2
� � . . . : (8)
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4For a leading one-loop calculation in a different framework
see Ref. [35].
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Reference [19] provides us with the empirical value �N �
�45� 8� MeV.

The requirement that the empirical T�, P�1 and �N are
simultaneously reproduced implies c3 ’ ��5� 1� GeV�1

if one uses the O�p3� HB�PT formulas Eqs. (5) and (6) at
the physical pion mass. It might then appear that c3 deter-
mined from �N scattering is incompatible with the value
c3 � �3:4 GeV�1 consistent with NN scattering and used
as input previously. At tree level and in the nonrelativistic
limit, the spin-isospin averaged P-wave scattering volume
is well known [20,21] to be proportional to ��2 �!2��1,
where the pion energy ! equals m� at threshold. The fact
that the delta-nucleon mass difference, � � M� �MN , is
barely twice the physical pion mass, mphys

� , is at the origin
of the strong energy dependence of the P-wave �N am-
plitude. A determination of c3, first by comparison with
�N threshold data and secondly by examining its role in
peripheral NN phase shifts, will therefore lead to different
conclusions concerning c3, the NN situation being effec-
tively closer to the limit of a static pion field with ! � 0
[22]. This apparent discrepancy just reflects the ineffec-
tiveness of HB�PT to deal with the well-known strong
energy dependence of the �N amplitude. The important
effects of this energy dependence are then ‘‘hidden’’ by
absorbing a large correction of order m2

�=�2 into c3 when
using the O�p3� result of Eqs. (5) and (6) for its determi-
nation. Including this leading correction the estimate of c3

is reduced by a factor of 1� �m�=��2 � 3=4, which ac-
counts for much of the difference between the two cases.
The large value of c3 � �5 GeV�1 is therefore an artifact
of the HB�PT expansion truncated at O�p3�.

Matching the tree-level �N amplitude with explicit
��1232� and the �N ! �N graph calculated from the
second-order pion-nucleon effective Lagrangian, the
��1232� contribution to c3 reads

 c�
3 � �

4c2
A

9�
; (9)

where cA � g�N�f�=�2M0� in terms of the �N� coupling
constant g�N�, and all constants �f�;�;M0� are under-
stood to be taken in the chiral limit. With the frequently
used empirical coupling cA ’ 1:5, see section V B, we have
c�

3 ’ �3:4 GeV�1, which agrees with c3 extracted from
the NN scattering analysis. We interpret this value as being
representative for the c3 to be used in the extrapolation of
lattice results for MN .

We point out here that the set of values M0 �
0:883 GeV, c1 � �0:89 GeV�1, c2 � 2:98 GeV�1, c3 �

�3:55 GeV�1, e�4�1 �1 GeV� � 0:46 GeV�3, gA � 1:1 and
f� � 92:4 MeV represents an optimal fit to lattice data,
gives a curve right in the center of our statistical error band
Fig. 2, and satisfies the empirical constraints for �N , T�

and P�1 provided that c3 in Eqs. (5) and (6) is replaced by
�4=3�c3 
 c�N3 . We note that the factor 4=3 is to be under-
stood as representing the substantial contribution at O�p4�
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in Eqs. (5) and (6) arising from the ��1232� propagator
structure. Our intermediate conclusion is that the parame-
ters required by the ‘‘best fit’’ to lattice results for MN are
consistent with those from the analysis of�N andNN low-
energy data once c3 is corrected for artifacts of the p3

Heavy Baryon truncation. These considerations will be
strengthened as we now further examine the role of the
��1232� and investigate the systematics of finite-volume
effects.
V. EXPLICIT ��1232� DEGREES OF FREEDOM

An effective field theory which includes only pion and
nucleon as explicit degrees of freedom encodes implicitly
contributions from the ��1232� resonance through low-
energy constants, e.g. c3, but its interpretation requires
caution, as elaborated in the previous section. Working at
limited perturbative order, ‘‘freezing’’ the ��1232� and
relegating its effects to higher-order terms can lead to a
rather in-effective chiral expansion, given that the delta-
nucleon mass difference is only about a quarter of the
chiral symmetry breaking scale, �� � 4�f�. It has been
shown that including the ��1232� as an explicit degree of
freedom in spin-dependent quantities like the magnetic
moments or the axial coupling of the nucleon promotes
important quark-mass dependent contributions to low or-
ders in the perturbative calculation, leading to well-
behaved chiral extrapolation functions, see e.g.
Refs. [13,23]. For the case of the nucleon mass explicit
��1232� treatment turns out to be less crucial. However, it
helps us in clarifying the role of the p4-effects in Eq. (1),
which are dominated by the couplings ci.

A. Formalism

We work in the Lorentz covariant formulation of the so-
called small scale expansion (SSE) introduced in Ref. [24].
In this scheme the delta-nucleon mass difference in the
SU�2� chiral limit, � � M� �M0, is included in the
power-counting, together with the pion mass and soft
external momenta, as a small scale generically labeled �
[25].

The main topic of our discussion with explicit delta
degrees of freedom is to clarify the success of the O�p4�
calculation without ��1232�. The leading effect due to
explicit delta appears at order �3 in SSE and starts to
contribute at m4

�, like the O�p4� graphs. Therefore we
have concentrated on the O��3� leading one-loop contri-
bution to the nucleon self-energy involving the propagation
of the ��1232�, Fig. 3.4 In Sec. V C we will compare our �3

results with the �4 expression in Ref. [26] in order to
estimate the importance of higher-order effects.
-5



FIG. 3. Leading-one-loop diagram for the nucleon self-energy
with an intermediate ��1232�.
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The �3 calculation requires the leading chiral pion-nu-
cleon-delta effective Lagrangian

 L �N� � �
cA
f�

��i
�@

��i�N � h:c:; (10)

where �i
� is the Rarita-Schwinger field representing the

��1232� and �N is the nucleon field. We employ the
following propagator for the free spin-3=2 isospin-3=2
field [26]:

 G ij
���p� � �i

p6 �M�

p2 �M2
� � i�

p2

M2
�

P3=2
�� �

ij
3=2; (11)

where P3=2
�� and �ij3=2 are the spin- and isospin-3=2 projec-

tion operators, respectively. Using the propagator (11), the
computation of the one-loop ��1232� contribution to the
nucleon self-energy in infrared regularization requires the
standard loop integrals5

 iI��p2� �
Z ddk

�2��d
1

�m2
�� k2� i���M2

�� �p� k�
2� i�

;

i�� �
Z ddk

�2��d
1

�m2
�� k

2� i��
:

Here d denotes the space-time dimension. Both previous
integrals diverge as d! 4.

The O��3� graph in Fig. 3 leads to a correction to the
mass of the nucleon, cf. [26]:
 

	M�
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A�d� 2�

4f2
��d� 1�M0M

2
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�

�
I��M

2
0��M

2
0 � 2M�M0

�M2
� �m

2
���M

2
0 � 2M�M0 �M

2
� �m

2
��

2

� ��

�
M2

0

�
M2

0 � 2M�M0 � 4m2
�
d� 1

d

�

� �M2
� �m

2
���2M�M0 �M2

� �m
2
��

��
(12)

where d � 4 is set after removal of the singularities from
I� and ��. The resulting expression for the nucleon mass
at order �3 is then of the form

 MN � M0 � 4c1m2
� � 	M

�N
N � 	M�

N � counter terms;

(13)
5See Ref. [9] for details. In distinction from this reference, we
do not identify the regularization scale with M0, which is a
parameter in our approach.
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where 	M�N
N is the nucleon mass-shift at order p3 in the

scheme with �N degrees of freedom only, cf. Equation (3).
We note that we recover the nonrelativistic O��3� SSE
result for the nucleon mass6 by just keeping the leading
term in the 1=M0 expansion in Eq. (13) with Eq. (12)
inserted.

In a first approach we truncate at order 1=M0 the result
of Eq. (13). In addition to the term �4e�m

4
�

��N�N , the
SSE-scheme provides two more counter terms at this or-
der7

 L �3�
�N �

��N�B1�3 � 4B2m2
���N � . . . (14)

which are sufficient for renormalization. The finite parts of
the renormalized couplings B1;2 are then set such that the
chiral expansion of MN�m�� at order �3 begins with

 MN � M0 � 4c1m2
� �O�m3

��: (15)

Imposing this condition, one obtains
 

Br1��� �
8c2

A

9�4�f��
2

�
2
�
1�

�

M0

�
� 3

�
2�

�

M0

�
ln

2�

�

�

Br2��� �
2c2

A

�4�f��2

�
�

M0
�

�
2�

�

M0

�
ln

2�

�

�
: (16)

It follows that
 

MN � M0 � 4c1m
2
� �

3g2
Am

3
�

32�f2
�
�

3m4
�

64�2f2
�M0

�g2
A � 3c2

A�

�
m4
�

32�2f2
�M0

�3g2
A � 10c2

A� ln
m�

�
� 4e����m

4
�

�
c2
Am

2
��

12�2f2
�

�
1�

�

2M0

�
�

c2
A

6�2f2
�
�2�3 � 3m2

���

�

�
1�

�

2M0

�
ln
m�

2�
�

c2
A

3�2f2
�

�
1�

�

2M0

�

� ��2 �m2
��

3=2 ln
�

�

m�
�

����������������
�2

m2
�
� 1

s �
(17)

The last formula is valid form� 	 �. Since in our numeri-
cal analysis we take as input lattice data at pion masses
larger than the physical one, we need also the analytic
continuation of the expressions above to m� � �. This is
done with the replacement

 

�������������������
�2 �m2

�

q
ln
�

�

m�
�

����������������
�2

m2
�
� 1

s �

! �
�������������������
m2
� � �2

q
arccos

�

m�
:

In the next section we will also analyze the nontruncated
O��3� result of Eq. (13) with Eq. (12), keeping the full
6See, e.g., the calculation in Ref. [36], which in addition
contains an ‘‘effective’’ coupling, like e�3�1 in Sec. II.

7The constants B1 and B2 used here are denoted B32 and B23,
respectively, in Ref. [26].
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TABLE II. Fit results for MN�m�� in covariant SSE, at leading-one-loop order. ‘‘Fit delta I’’
refers to the formula truncated at order 1=M0, ‘‘fit delta II’’ to the full expression with residual
scale dependence. The input parameters are cA � 1:5, gA � 1:267, f� � 92:4 MeV and � �
271:1 MeV. The renormalized effective coupling e� entering at O�m4

�� has a different regu-
larization scale dependence in the two cases.

M0 (GeV) c1 (GeV�1) e� (1 GeV) (GeV�3) �2=d:o:f:

fit delta I 0:894� 0:004 �0:76� 0:05 4:5� 0:1 0.19
fit delta II 0:873� 0:004 �1:08� 0:05 2:8� 0:2 0.43
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tower of 1=Mn
0 recoil corrections. We introduce the same

counter term structures as for the truncated expression and
accept uncompensated regularization scale dependence
�m6

� and �m8
� in this case. The finite parts of the renor-

malized Bi are again determined by imposing Eq. (15).

B. Numerical results

Using as input our selected set of lattice data discussed
in Sec. II, we now analyze the O��3� expressions for
MN�m�� introduced in the previous section: the
O�1=M0�-truncated Eq. (17) and the ‘‘full’’ expression
with its residual scale dependence. We fix the renormal-
ization scale again at � � 1 GeV. The mass splitting � is
identified with its value at the physical pion mass. The
axial vector nucleon-delta coupling cA is treated as input
quantity, determined from the decay width of the ��1232�
as follows. In the rest frame of the decaying delta we have
the relativistic expression:

 ��!N� �
c2
Aq

3

6�f2
�

�M� �MN�
2 �m2

�

4M2
�

; (18)

where q is the pion or nucleon momentum in that frame. At
the delta mass and width corresponding to its pole position
[27], M� � i��=2 � �1210� i50� MeV, one finds cA ’
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FIG. 4 (color online). Best-fit curves based on the formula at
order �3 in SSE. The short-dashed curve refers to ‘‘fit delta I’’,
while the long-dashed curve corresponds to ‘‘fit delta II’’ in
Table II. For comparison, we plot the 68% statistical error band
of the O�p4� B�PT result shown in Fig. 2.
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1:5. We fit again the three remaining unknown parameters:
M0; c1 and e��1 GeV�.

In Table II, ‘‘fit delta I’’ refers to Eq. (17), while ‘‘fit
delta II’’ refers to the relativistic untruncated expression.
We fit to the four data with m� < 600 MeV including the
physical point, see Fig. 4. In ‘‘fit delta II’’ the output
parameters M0 and c1 remain stable (within error bars) if
we vary the input scale � between 0.5 and 1.5 GeV. Thus
the residual scale dependence is indeed under control. In
light of the discrepancies between the two fits, the trunca-
tion of Eq. (17) at order 1=M0 neglects terms which seem
to play a significant role. Furthermore, we have checked
that the 68% error bands associated with ‘‘fit delta I’’ and
‘‘fit delta II’’ do not overlap for m� < 300 MeV, except at
the physical point used as a constraint. Therefore we can
conclude that the discrepancy between the truncated and
untruncated expressions does not have a statistical origin.
This situation is different in the O�p4� B�PT calculation
discussed in Ref. [1], where truncating at 1=M0 represents
a very good approximation to the full result.

In Fig. 4 we plot the curves corresponding to ‘‘fit delta I’’
and ‘‘fit delta II’’, together with the 68% error band of the
O�p4� B�PT result in Sec. III previously drawn in Fig. 2.
At that confidence level, B�PT at O�p4� and O��3� cova-
riant SSE are compatible for the whole range of pion
masses under study. At the present level of accuracy,
treating the ��1232� as an explicit, propagating field is
therefore not essential for a satisfactory description of the
quark-mass dependence of the nucleon mass. The virtual
��1232�, being far off-shell, has a short propagation
length. Therefore an equally successful interpolating func-
tion can be obtained by freezing the delta effects into low-
energy constants, working at fourth chiral order, with a
value for the coupling c3 governed by delta-dominance, as
discussed in Sec. IV. Note that the �� loop integral in

Fig. 3 involves a denominator �
������������������
~q2 �m2

�

p
����1, charac-

teristic of the crossed (u-channel) delta pole in the pion-
nucleon scattering amplitude, for which the sensitivity to �
turns out to be less significant.

These conclusions hold for any choice of the input
parameters gA, f�, cA and � within phenomenologically
meaningful limits. In order to check the sensitivity with
respect to variations of the delta-nucleon mass difference
we have performed fits for � � 293 MeV and 330 MeV.
The former corresponds to the 900 �N phase-shift in the
-7



FIG. 6. One-loop graphs of O�p3� (a) and O�p4� (b, c) con-
tributing to the nucleon self-energy in B�PT (without explicit
��1232� degrees of freedom). The solid dot (diamond) denotes a
vertex from first (second) order �N Lagrangian.
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FIG. 5 (color online). Comparison between our O��3� ‘‘fit
delta II’’ (dashed curve) and a band of O��4� fits using natural
size assumptions for higher-order couplings.
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spin-3=2 isospin-3=2 channel, while the latter is motivated
as a chiral limit value in Ref. [26].

C. O��3� vs O��4�

Equation (20) of Ref. [26] provides the �4 contribution
to MN�m��.

8 This expression involves the poorly known
SSE couplings c2, c3, b3, b6 and e1. Note that c2, c3 and e1

have different numerical values in SSE and B�PT.
Motivated by delta-dominance, we assume the range
�1 . . . 1 GeV�1 for c2 and c3 within SSE. For b3 and b6

we have made a more conservative estimate, varying them
between �3 . . . 3 GeV�1. Scanning those ranges, we have
performed fits with three free parameters M0, c1 and
e1�� � 1 GeV�. We have fixed gA�1:267, f��
92:4 MeV, ��271:1 MeV and cA � 1:5. The resulting
band of best-fit curves is shown in Fig. 5. In output we
get: M0�0:85...0:93 GeV, c1��1:32...�0:25 GeV�1

and e1�1 GeV���7:3...1:9 GeV�3. In view of these re-
sults, our �3 results are potentially affected by important
systematic effects from higher orders. At present, however,
lack of information on SSE couplings does not permit us to
perform the analysis discussed in previous chapters at
O��4�.
VI. VOLUME DEPENDENCE

A. Implementing finite lattice sizes

So far we had to restrict ourselves to the largest available
lattice sizes. However, �PT is also able to describe devia-
tions from the infinite-volume limit due to the finite spatial
extent of the simulation volume L3 [28]. Combining the L-
and m�-dependence in our analysis of the nucleon mass
enables us to enlarge the input data base for our analysis.
8The reader should be aware of misprints in Eqs. (19), (25) and
(26) of that paper.
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With pion loop momenta restricted to the discrete values
permitted by periodic boundary conditions, the O�p4�
B�PT result for the mass difference 	MN between finite
and infinite volume has been published in Ref. [8]. At order
p3 one obtains from diagram (a) of Fig. 6 using infrared
regularization
 

	�3�MN �
3g2

AM0m2
�

16�2f2
�

�Z 1

0
dx�

Z 1
1
dx
�

�
X

~n2Z3nf~0g

K0�Lj ~nj
����������������������������������������
M2

0x
2 �m2

��1� x�
q

�; (19)

where the integral from 1 to infinity is taken in accordance
to the prescription in Ref. [9].

The O�p4� contribution stems solely from the tadpole
graph [8], diagram (b) of Fig. 6, and reads

 	�4�MN �
3m4

�

4�2f2
�

X
~n2Z3nf~0g

�
�2c1 � c3�

K1�Lj ~njm��

Lj ~njm�

� c2
K2�Lj ~njm��

�Lj ~njm��
2

�
: (20)

Here K0, K1 and K2 are modified Bessel functions.
Equations (19) and (20) have been worked out in the so-
called ‘‘p-régime’’, namely, for m�L� 1. In Ref. [8] the
parameters of Eq. (1) have been fitted for large volumes,
L ’ 2 fm. The resulting predictions for the finite-volume
effects at O�p4� showed a surprisingly good agreement
with dynamical improved Wilson data of the QCDSF,
UKQCD and JLQCD collaborations, even down to L �
1 fm. Here we use Eqs. (19) and (20) for a global fit of
lattice data in different simulation volumes.

We note that no new parameters enter in the finite-
volume corrections 	MN , and that c1, c2 and c3 appear
in combinations different from those in the infinite-volume
formula (1). Thus the m�- and L-dependence complement
each other in constraining these parameters. The nucleon
mass in the finite volume reads

 MN�m�; L� � MN�m�� � 	�3�MN�m�; L�

� 	�4�MN�m�; L�; (21)

where MN�m�� is the order p4 result of Eq. (1), corre-
sponding to the limit L! 1. For the numerical evaluation
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TABLE III. Input and output parameters for the finite-volume fit.

(a) statistical error (b) systematic envelope

e�4�1 (1 GeV) (GeV�3) 0:60� 0:09 fitted 0.22 . . . 0.90 fitted
c3 (GeV�1) �2:9� 0:6 fitted �4:3 . . .� 1:4 fitted
M0 (GeV) 0:884� 0:006 fitted 0.873 . . . 0.898 fitted
c1 (GeV�1) �0:88� 0:09 elim. �1:03 . . .� 0:69 elim.
gA 1.267 fixed 1.10 . . . 1.30 scanned
f� (MeV) 92.4 fixed 86.2 . . . 92.4 scanned
c2 (GeV�1) 3.2 fixed 3.1 . . . 3.3 scanned

�2=d:o:f: 0.75 0.69 . . . 0.82

�N (MeV) 47:6� 4:7 36 . . . 57

FIG. 7 (color online). Finite-volume lattice data and inferred
nucleon mass MN�m�;L�. All lattice points shown here are used
as input for the fit, cf. table in Appendix B. The solid curve, the
68% statistical error band and the systematic envelope project
the full information, including the finite-volume data, onto the
infinite-volume limit, Eq. (1). The calculated finite-volume
dependence is shown by the dashed curves.

FIG. 8 (color online). L dependence of the fit function and error
infinite-volume limit of the fit function. The dashed lines represent
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of 	MN�m�; L�, it is precise enough to terminate the
infinite sums at j ~nj � 8 and j ~nj � 6 in Eqs. (19) and
(20), respectively. The integral in Eq. (19) is computed
numerically.

Appendix B lists the lattice data used for this purpose
and explains our selection criteria. The massm� in Eq. (21)
is the pion mass in the infinite volume. For each set of
lattice simulations, we have identified the infinite-volume
pion masses with m� at the largest volume (L * 2 fm).
Equation (21) is used to determine low-energy parameters
by fitting to finite-volume lattice data following the same
statistical strategy as described in Sec. III. We can now
afford to release c3 and determine it from the fit. Also, we
accommodate an uncertainty about c2 in a range from
3:1 GeV�1 to 3:3 GeV�1, which encompasses results
from several HB�PT fits at O�p3� to experimental �N
scattering data, see Table IV in [29]. The output parameters
listed in Table III are then used to draw
(i) b
bands fo
the O�p

-9
est-fit curve and 68% confidence level error bands
based on the infinite-volume expression Eq. (1), see
Fig. 7.
(ii) L
-dependence at fixed m� based on Eq. (21), see
Fig. 8.
Remarkably, c3 comes out low in magnitude, compatible
with NN scattering results [12], the outcome of Ref. [1],
the finite-volume study of Ref. [8] and delta-dominance. In
r fixed pion masses. The horizontal dotted lines are the
3� contribution to the finite-volume correction.
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the previous infinite-volume analysis, it could be argued
that c3 and the counter term parameter e�4�1 ��� can be
played against each other, given that e�4�1 remains essen-
tially unconstrained. The L-dependence now provides a
further condition which definitively points to the ‘‘small’’
c3 discussed previously in Sec. IV.

B. Finite size effects with explicit ��1232�

In order to check the influence of the ��1232� resonance
also in the finite-volume case, we present a calculation of
finite size effects in SSE at O��3� with infrared
regularization.

The basic ingredients have already been given in Sec. V.
The contribution from the diagram, Fig. 3, to the difference
	MN between finite and infinite volume becomes [30]:

 

	�3�SSEMN�
c2
AM

3
0

6�2f2
�M

2
�

�Z 1

0
dx�

Z 1
1
dx
�

�
X

~n2Z3nf~0g

�
1�x�

M�

M0

��
y�x�K0

�
Lj ~nj

���������
y�x�

q �

�

���������
y�x�

p
Lj ~nj

K1

�
Lj ~nj

���������
y�x�

q ��
(22)
FIG. 10 (color online). Comparison of 	�3�SSEMN�m�; L� in
Eq. (22) and 	�4�MN�m�;L� in Eq. (20).

FIG. 9 (color online). The box length L dependence of the
nucleon mass in relativistic SSE O��3� compared to the B�PT
O�p4� result and lattice data at fixed pion mass m� � 545 MeV.
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where y�x� 
 M2
0�x� 1�x�M2

�x�m
2
��1� x�, for de-

tails we refer to [30]. The finite-volume mass-shift at order
�3 is then given as:

 	SSEMN�m�; L� � 	�3�MN�m�; L� � 	
�3�
SSEMN�m�; L�

(23)

It has to be added to the infinite-volume result of
Eq. (13). Here we do not perform any truncation in the
expansion in powers of 1=M0. Equation (23) is used with
the parameters from ‘‘fit delta II’’ to predict the finite-
volume effects of the nucleon mass with explicit ��1232�.

In Fig. 9 we show a comparison between SSE at O��3�
and B�PT at O�p4� with the parameters listed in Table I.
Both curves are compatible with lattice data. As in the
infinite-volume case, at the present level of accuracy, the
inclusion of explicit � degrees of freedom is not essential
to reproduce the trend shown by the lattice data, in the
sense that effects of the � can be absorbed in low-energy
constants at order p4. In order to quantify the contribution
of the ��1232� to the tadpole diagram in B�PT, we com-
pare 	�3�SSEMN in Eq. (22) and 	�4�MN in Eq. (20) for m� �
545 MeV, see Fig. 10. The overall result gives additional
support to our arguments in Sec. IV, emphasizing the delta-
dominance in the low-energy constants entering the tad-
pole at O�p4�.

In Ref. [31] formulae for the finite size effects of the
nucleon mass have been presented in the framework of
FIG. 11 (color online). Chiral extrapolation of finite-volume
lattice data down to the physical pion mass, based on the O�p4�
expression in Eq. (1). The relevant parameters have been fixed as
in Table IV. Shown are the resulting 68% local statistical error
bands for the nucleon mass extrapolated to infinite volume. The
band width can be directly interpreted as the error of a prediction
at each given pion mass, see Appendix A 4. Only those lattice
data points corresponding to large volumes with L > 2 fm are
displayed.
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TABLE IV. Input parameters and resulting output for the nucleon mass extrapolation based on
finite-volume lattice data. Also listed are the thereshold pion-nucleon amplitudes T� and P�1 .
Consistency with empirical values for these observables is achieved by substituting c3 !
�4=3�c3 in their O�p3� HB�PT expressions, as discussed in Sec. IV.

scenario 1 scenario 2

e�4�1 (1 GeV) (GeV�3) 0:38� 0:04 0:62� 0:04 fitted
M0 (GeV) 0:837� 0:017 0:924� 0:017 fitted

c1 (GeV�1) �1:0 �0:95 fixed
c2 (GeV�1) 3.2 3.0 fixed
c3 (GeV�1) �3:4 �3:65 fixed
gA 1.2 1.2 fixed
f� (MeV) 90 90 fixed

�N (MeV) 55:42� 0:13 49:73� 0:14
MN�m

phys
� � (GeV) 0:899� 0:017 0:981� 0:017

T� (c3 ! �4=3�c3) (GeV�1) 2:984� 0:021 0:101� 0:017
P�1 (c3 ! �4=3�c3) (GeV�3) 949:4� 3:0 1010:5� 2:3
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nonrelativistic chiral effective field theory with explicit
��1232� degrees of freedom. We have checked that for
pion masses larger than 300 MeV and L< 1:5 fm the
corresponding mass difference between finite and infinite
volume lies systematically below the covariant SSE result
of Eq. (22), suggesting that recoil corrections could play an
important role in this régime [30].

VII. SYNTHESIS

With two independent variables at hand, the pion mass
m� and the lattice size L, one can make use of an enlarged
data base to extrapolate down to small quark masses.
Figure 11 shows the results of such a study in the frame-
work without explicit ��1232�. Now the physical point is
not included as a constraint. Instead, the low-energy con-
stants ci have been fixed as input. Two scenarios have been
chosen for comparison, with two different sets of ci, as
compiled in Table IV. In both cases the finite-volume data
with L< 2 fm have been included in the fit procedure, in
addition to the large-L data shown in Fig. 11. The spin-
isospin averaged S- and P-wave �N threshold amplitudes
are evaluated in parallel, using the rule that c3 is saturated
by ��1232� contributions, as elaborated in Sec. IV. The set
denoted ‘‘scenario 2’’ evidently meets the constraints im-
posed by pion-nucleon scattering data quite well. The fits
show that M0 and e�4�1 are well-determined, and the narrow
uncertainty band permits making precise statements at the
physical pion mass. Note that an exact knowledge of the ci
is crucial to achieve this result. Therefore, in order to
release those parameters and keep precision, several ob-
servables involving those low-energy constants should be
simultaneously analyzed—including finite size effects.
Such a combined approach promises to be the winning
strategy in performing reliable chiral extrapolations.
114510
VIII. CONCLUSIONS

In this work chiral extrapolations of lattice QCD results
for the nucleon mass have been extended in several direc-
tions, with the following conclusions to be drawn:
(i) A
-11
detailed error analysis demonstrates the statisti-
cal significance and stability of these extrapolations
for pion masses below 0.6 GeV.
(ii) F
or the results to be physically meaningful, it is
important to verify that the low-energy constants of
the chiral pion-nucleon effective Lagrangian which
control this extrapolation are consistent with those
extracted from �N and NN observables. This is
indeed demonstrated to be the case, provided that
the ��1232� dominance of the P-wave�N parame-
ter c3 is properly accounted for.
(iii) U
nlike the situation with spin observables such as
the nucleon axial coupling constant gA, at the
present level of accuracy, it is not crucial to intro-
duce the ��1232� as an explicit, propagating degree
of freedom when dealing with the mass of the
nucleon. The off-shell propagation length of the
� in the �� loop correction to the nucleon mass
is sufficiently short that its effects can be absorbed
in low-energy constants, with the caution exercised
as stated in ii).
(iv) A
 highly useful additional source of information
from lattice QCD results, apart from their quark-
mass (or m�) dependence, is their variation with
the finite lattice size L. The observed systematics of
this variation supports the underlying chiral dy-
namics framework, in terms of pion-nucleon de-
grees of freedom, for the extrapolation to small
quark masses. This systematics also reduces ambi-
guities in constraining input low-energy constants.
In particular, the P-wave �N parameter c3 pre-
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ferred by the chiral extrapolation of the nucleon
mass turns out to be compatible with the one de-
duced from NN scattering phases shifts. The larger
value found from fits based on O�p3� Heavy
Baryon �PT to threshold pion-nucleon scattering
data can be explained in terms of pion-nucleon-
delta dynamics in the P-wave channel.
In summary, chiral effective field theory extrapolations
of the nucleon mass from lattice QCD to the physically
relevant region of small quark masses and further on to the
chiral limit are beginning to reach a high degree of con-
sistency with other independent low-energy observables.
In order to further improve the accuracy of such investiga-
tions, it is an important task for the future (apart from
expanding the lattice QCD data base to smaller pion
masses) to perform simultaneous systematic extrapolations
of several observables using a single consistent set of low-
energy constants in the underlying effective Lagrangian.
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APPENDIX A: DETAILS OF ERROR ANALYSIS

1. Confidence regions and global error band

The information provided by the N lattice data points is
of the general form
 

“MN at m� � xj ��xj has values yj ��yj”

for j � 1; . . . ; N:

For simplicity, let us first ignore the errors �xj. We
assume the errors in the yj to be uncorrelated and distrib-
uted normally, one standard deviation being �yj. We de-
note our fit function f�x;p; u�, with parameters collected in
p � �p1; . . . ; pn� and u � �u1; . . . ; um�. The parameters p
are those which we will estimate from lattice data. For the
other parameters u, most prominently gA and f�, we take
estimates from literature. During the statistical analysis of
uncertainties in p, we keep u fixed. Therefore, we will omit
u in our notation.

Having agreed on a confidence level CL 2 �0; 1�, we are
looking for a confidence region RCL fulfilling P�ptrue 2
RCL � CL, i.e. the probability to find the true parameters
ptrue in the confidence region is CL. Throughout this work
we choose CL � 68% which corresponds to one standard
deviation for Gaussian distributed errors.

As described in [7,32,33], the �2 method offers a way to
construct such regions in good approximation. Using
�2�yjp� 


PN
j�1�yj � f�xj;p��

2=�y2
j we choose

 RCL :� fp: �2�yjp� 	 �2
opt�y� � �

2
CL;ng;

where �2
opt�y� 
 �2�yjpest�y�� is the global minimum of
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�2�yjp� with respect to p occurring at pest�y�. The incre-
ment �2

CL;n is a fixed number depending on the confidence
level CL and the number of parameters n. It is calculated
by solving

 W�n�
�2 ��2

CL;n� � CL;

where W�n�
�2 �t� is the cumulative �2 distribution for n de-

grees of freedom.
We have checked that, for our purposes, �2 is approxi-

mately quadratic in p around the minimum, i.e. �2�pest �

	p� � �2�pest� � 1
2	pkAk;l	pl. For each pion mass x, we

determine the minimal and maximal values of the fit
function, fmin�x� and fmax�x�, which can be found in the
confidence region RCL � fpest � 	p: 1

2	pkAk;l	pl 	
�2

CL;ng. Shading the region between fmin�x� and fmax�x�
results in a global ‘‘statistical error band’’ such as shown in
Fig. 2. It sweeps over all interpolating functions allowed by
statistics within the confidence level.

The error matrix ECL;n and the gradient v�x� of the
interpolating function f�x� are defined as

 ECL;n 
 2�2
CL;nA

�1; vk�x� 

@f�x;p�
@pk

��������p�pest
:

Denoting �f�x� 

��������������������������������
v�x�>ECL;nv�x�

p
, the global error band

is approximately given by fmax;min�x� � f�x;pest� �
�f�x�.

2. Mathematica code sample

A quick way to obtain a statistical error band is provided
by the following Mathematica 5:2 code snippet. The
function ErrorBand �data;model;vars;params;
npar;CL returns a list containing expressions for
fmin�x� and fmax�x�. The first four arguments data,
model, vars and params correspond to those in the
Mathematica function NonlinearRegress:
model contains f�x;p�, vars lists the independent var-
iable(s) x, and params specifies the parameters p, option-
ally together with initial values for the search. Here data
is a list of tuples of the form fxj; yj;�yjg, i.e. it has an
additional column specifying the one-standard-deviation
errors �yj. npar is typically set to Length �params
so as to generate the global error band, but it must be set to
1 when a local error band as discussed in Appendix A 4 is
desired. The confidence level CL defaults to 68%, corre-
sponding to one standard deviation. If options are given,
they are passed to NonlinearRegress.

Please note that ErrorBand �. . . uses an error matrix
which is only a good approximation when the model
f�x;p� is sufficiently linear in the parameters p and the
fit is good, cf. eq. (4.62) in Ref. [7]. A direct calculation of
the error matrix, as done, for example, by MINUIT, does
not suffer from this limitation.
-12
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� Statistics ’NonlinearFit’
� Statistics ’NormalDistribution’
ChiSqrThresh �n�;CL� :�
x=: Solve �CDF�ChiSquareDistribution�n;x �� CL;x��1;

ErrorBand �data�;model�;vars�;params�;npar�;CL�:0:68269;options��� :�
Module �freg;emat;grad;thr;err;pg;
thr � ChiSqrThresh �npar;CL;
reg � NonlinearRegress �Drop�data; fg; f�1g;model;vars;params;

Weights�> 1=�Last=@data� ^2;
RegressionReport�> fBestFit;BestFitParameters;EstimatedVariance;

AsymptoticCovarianceMatrixg;options;
�� extract approximation to error matrix ��
emat � thr � �AsymptoticCovarianceMatrix=:reg� ��1 = �EstimatedVariance =: reg�;
�� gradient of fit function with respect to the parameters ��
p � �Flatten=@�List=@params�� ��All;1;
grad � �D�model; #&=@p� =: �BestFitParameters=:reg�;
�� calculate parabolic error ��
err � Sqrt �grad:emat:grad;
f�BestFit=:reg��err; �BestFit=:reg� � errg

;
2

3. Systematic envelope

Up to here we have neglected uncertainties concerning
the fixed parameters u, such as gA and f�. While we have a
good guess about acceptable ranges for their values, we
have no knowledge about possible correlations of these
error estimates. Therefore we scan the whole range of
acceptable values of u on a grid, perform the complete
statistical error analysis for each choice of u and pick the
extreme values of fmin�x� and fmax�x�. We call the resulting
region the ‘‘systematic envelope’’ in our plots.

4. Single-parameter errors and local error band

Confidence intervals for any parameter dependent quan-
tity q�p� satisfying P�qmin 	 q�pest� 	 qmax � CL can be
generated in good approximation using the �2 method:

 �qmin; qmax � fq�p�: �2�yjp� 	 �2
opt�y� � �

2
CL;1g;

where now the single-parameter increment �2
CL;1 has to be

employed. For a confidence level CL � 68% correspond-
ing to a one standard deviation error, �2

CL;1 � 1.
A simple case of such a parameter dependent quantity

q�p� is a specific parameter pk itself. With the quadratic
approximation of �2 from above, the single-parameter
errors appear on the diagonal of ECL;1: ��pk�2 � ECL;1

k;k .
Note that the multiparameter confidence region is not
enclosed in the box of single-parameter error bounds [33].

As another important case, consider a local error band,
formed by plotting the single-parameter confidence inter-
val for f�x;p� at every x. It is narrower than the corre-
sponding global band and needs to be interpreted
differently. Its construction is identical to that of the global
band, except that now the error threshold is �2

CL;1, and the
error matrix is ECL;1. We opt to show such a band in
114510
Fig. 11, where we want to read off the error of our nucleon
mass prediction directly.

5. Errors in the pion mass

The errors �xj in the pion mass can be treated by setting
up �2 as

 �2�p; 	x� �
XN
j�1

��f�xj � 	xj;p� � yj
�yj

�
2
�

�	xj
�xj

�
2
�
:

The minimization and error treatment must now be per-
formed on n� N parameters p, 	x. Since we are not
interested in the joint confidence region of p and 	x, but
only in the confidence region of p, it makes sense to
continue using the threshold value �2

CL;n and to keep �2

minimized with respect to the 	x at all times [7].
We can avoid too many parameters by making an ap-

proximation. Assuming that f�xj � 	xjjp� is approxi-
mately linear in 	xj for 	xj & �xj and minimizing �2

with respect to the 	xj yields [7]

 �2
eff�p��

XN
j�1

�f�xj;p��yj
2

��yj
2��f�xj��xj=2jp��f�xj��xj=2jp�

Within our approximation, �2
eff has the same minimum as

the original, full �2. For hypothesis testing, the number of
degrees of freedom remains 2N � �N � n� � N � n. For
confidence regions for p, the �2 increment is �2

CL;n as
before.

APPENDIX B: LATTICE DATA

The lattice data used for our calculations was taken from
Refs. [8,10] and is listed in Table V. The conversion into
physical units was performed setting the Sommer scale
r0 � 0:5 fm [8]. Related systematic uncertainties need to
-13



TABLE V. Two-flavor lattice data for the nucleon mass MN taken from [8,10] and selected
according to the criteria described in Appendix B. The index numbers in the first column comply
with those in the compilation [8].

no. collaboration 
 � a [fm] L [fm] m� [GeV] MN [GeV] large L

19 CP-PACS 2.1 0.1382 0.111 2.68 0.5214(21) 1.2751(82) �

41 JLQCD 5.2 0.1355 0.098 1.96 0.5453(91) 1.300(23) �

36 JLQCD 5.2 0.1355 0.099 1.58 0.560(16) 1.412(62)
31 JLQCD 5.2 0.1355 0.099 1.19 0.655(32) 1.637(82)

8 QCDSF 5.25 0.13575 0.092 2.21 0.5570(70) 1.320(20) �

23 CP-PACS 2.2 0.1368 0.092 2.22 0.5946(53) 1.348(13) �

56 [10] 5.6 0.1575 0.085 2.04 0.6429(68) 1.377(19) �

55 [10] 5.6 0.1575 0.084 1.34 0.660(12) 1.471(29)
54 [10] 5.6 0.1575 �0:085 1.19 0.709(11) 1.672(38)
53 [10] 5.6 0.1575 �0:085 1.02 0.832(22) 1.900(39)
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be estimated by further lattice studies, and are not dis-
cussed throughout this work. The table is divided into
‘‘volume groups’’ characterized by the same value of
simulation parameters 
 and �. The data have been se-
lected according to the following cuts: L> 1 fm, a <
0:15 fm. In addition, the point of largest simulation volume
in each group must fulfill m� < 0:65 GeV and m�L> 5.
The lattice data from [10] have been generated with a
114510
standard, unimproved Wilson fermion action. Even
though, lattice artefacts are shown [10] to be small for
the points we select here, in virtue of the fine lattice
spacing. For points 53 and 54, no calculation has been
performed for the Sommer radius r0=a, which is needed to
determine the lattice spacing a. In accordance with
Ref. [10], a for these two points is copied from point 56.
[1] M. Procura, T. R. Hemmert, and W. Weise, Phys. Rev. D
69, 034505 (2004).

[2] V. Bernard, T. R. Hemmert, and U.-G. Meißner, Nucl.
Phys. A 732, 149 (2004).

[3] see, e.g., D. B. Leinweber, A. W. Thomas, and R. D.
Young, Phys. Rev. Lett. 92, 242002 (2004), and references
given therein.
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