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Scaling behavior of discretization errors in renormalization and improvement constants
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Nonperturbative results for improvement and renormalization constants needed for on-shell and off-
shell O�a� improvement of bilinear operators composed of Wilson fermions are presented. The calcu-
lations have been done in the quenched approximation at � � 6:0, 6.2, and 6.4. To quantify residual
discretization errors we compare our data with results from other nonperturbative calculations and with
one-loop perturbation theory.
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I. INTRODUCTION

In this paper we present our final results for the renor-
malization and improvement constants for quark bilinear
operators using Wilson’s gauge action and the O�a� im-
proved Dirac action first proposed by Sheikholeslami and
Wohlert [1]. The calculations have been done at three
values of the gauge coupling, � � 6:0, 6.2, and 6.4 in the
quenched approximation.1 Our results represent a realiza-
tion of Symanzik’s improvement program for systemati-
cally reducing discretization errors in lattice simulations
[3,4]. Results for the improvement of the Dirac action have
been obtained previously by the ALPHA Collaboration and
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y results were presented in [2] and are updated
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we have used these in our calculation. This paper deals
with the improvement of external bilinear operators, O
with O being one of the five Lorentz structures A, V, P,
S, T.

The mixing with extra operators, both for on-shell and
off-shell improvement of the operators, and the introduc-
tion of mass dependence in the renormalizaton constants
has been discussed in detail in Section II of Ref. [5]. To
summarize that discussion, and to remind the reader of the
notation, the fully improved and renormalized bilinear
operators at O�a� are
�ARI �� � Z0
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Here �ij� (with i � j) specifies the flavor. The Z0
O are

renormalization constants in the chiral limit and ~mij is
the quark mass defined in Eq. (7) using the axial Ward

identity (AWI). W
!

 j � �6d
!

�mj� j �O�a2� is defined to
be the full O�a� improved Dirac operator for quark flavor j
(See Appendix in Ref. [5]). This ensures that the equation-
of-motion operators give rise only to contact terms, and
thus cannot change the overall normalization ZO. The
normalization is chosen such that, at tree level, c0O � 1
for all Dirac structures. We determine the improvement
and renormalization constants using Ward identities. When
implementing these, we have a number of choices. Two are
of particular importance. First, we need to pick a discreti-
zation of the total derivatives appearing in the improve-
ment terms proportional to cA;V;T . Note that, because the
derivatives are external to the operators, rather than inter-
nal, this choice should not impact the result for the Z’s or
-1 © 2006 The American Physical Society
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TABLE I. Simulation parameters and statistics. x4 denotes the
time interval over which the chiral rotation is performed in the
AWI. The initial Wuppertal source is placed at t � 0.

Label � cSW a�1 (GeV) Volume L (fm) Confs. x4

60NPf 6.0 1.769 2.12 163 � 48 1.5 125 4–18
60NPb 112 27–44
62NP 6.2 1.614 2.91 243 � 64 1.65 70 6–25

70 39–58
64NP 6.4 1.526 3.85 243 � 64 1.25 60 8–56

2f�x� 0:5a� ! �f�x� a� � f�x�	=2, @xf�x� 0:5a� !
�f�x� a� � f�x�	=a and @2

xf�x� 0:5a� ! �f�x� 2a� � f�x�
a� � f�x� � f�x� a�	=�2a2�.

3@xf�x� ! �f�x� a� � f�x� a�	=�2a�, and @2
xf�x� ! �f�x�

a� � 2f�x� � f�x� a�	=a2.
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c’s, aside from corrections of O�a2� which are not con-
trolled. In fact, we will find that such higher-order correc-
tions are largely kinematical, and can be removed by the
chiral extrapolations. Second, we need to choose the ex-
ternal states. As far as we know, there are no standard
choices, and so we take either the state giving the best
signal, or an average if there are several giving similar
accuracy. We then use the difference of the results with
those from other states as part of the estimate of the
uncertainty. Although this is somewhat ad hoc, it is a
well-defined procedure as long as we make consistent
choices for all lattice spacings. We stress that the coeffi-
cients ~bO differ from the bO used by earlier authors. These
are related as

bOamij � ~bOa ~mij �O�a�; (1)

where mij � �mi �mj�=2 is the average bare quark mass
defined as ami � 1=2�i � 1=2�c, � being the hopping
parameter in the Sheikholeslami-Wohlert action and �c
its value in the chiral limit. At the level of O�a� improve-
ment, one has

~bO � �Z
0
AZ

0
S=Z

0
P�bO: (2)

The analogous relation between m and ~m is given in
Eq. (20).

In this paper we present results for those overall nor-
malization constants, Z0

O, that are scale independent and
the improvement constants bO, cO, and ~cO. A detailed
discussion of the methods has already been presented in
Refs. [5,6], and we do not repeat them here. The extension
of the method to full QCD has been presented in [7].
Instead we concentrate on presenting the final results and
new aspects of the analyses. In particular, using three
lattice spacings we are able to significantly improve our
understanding of residual discretization and perturbative
errors by comparing our results with those obtained by the
ALPHA Collaboration using a nonperturbative method
based on the Schrödinger functional and with the predic-
tions of perturbation theory at one-loop order.

The remainder of this paper is organized as follows. In
the next section we describe the essential features of our
simulations and the types of propagator we use. Section III
gives an overview of the methods we use to implement
Ward identities and a summary of the results. We then run
through the results from the different Ward identities that
are needed to calculate cA (Secs. IV and V for zero and
nonzero spatial momenta, respectively), Z0

V and bV
(Sec. VI), cV and ~bA � ~bV (Sec. VII), Z0

A (Sec. VIII),
Z0
P=Z

0
S and ~bS � ~bP (Sec. IX), ~bP � ~bA and ~bS (Sec. X),

cT (Sec. XI), and the coefficients of the equation-of-motion
operators (Sec. XII). We compare our results with those of
others in Sec. XIII and with one-loop perturbation theory in
Sec. XIV. We close with brief conclusions in Sec. XV.
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II. DETAILS OF SIMULATIONS

The parameters used in the simulations at the three
values of � are given in Table I. The table also gives the
labels used to refer to the different simulations. For the
lattice scale a we have taken the value determined in
Ref. [8] using r0 as it does not rely on the choice of the
fermion action for a given �. The values of the hopping
parameter �, along with the corresponding results for the
quark mass a ~m, determined using the axial ward identity
(AWI), and aM� are given in Table II.

Four major changes have been made in the analysis
compared to our previous work [5]. First, the addition of
the data set at � � 6:4 to those at � � 6:0 and 6.2 (the
latter two being unchanged from Ref. [5]) allows the
identification of higher-order contributions in the chiral
extrapolations. As a result we now use quadratic or linear
fits in the chiral extrapolations for all three � values as
opposed to the linear or constant fits used in [5]. Second,
the improvement in the signal with increasing � allows us
to better determine which values of � to keep in the fits. We
are able to use all seven values, �1 � �7, at� � 6:2 and 6.4
whereas � � 6:0 data at � � �7 are too noisy (no clear
plateaus in the ratios of correlators), and in some cases
even the data at � � �6 are too noisy to include in the fits.

The third improvement is with respect to the discretiza-
tion of the derivatives in the operators. As in Refs. [5,6], we
use two discretization schemes in order to estimate the size
of O�a2� uncertainties. Most of our central values come
from the ‘‘two-point scheme’’ (which are changed from
those presented in Refs. [5,6]). This scheme uses two-point
discretization2 throughout the calculation, i.e. both in the
axial rotation of the action, �S, and in the operators. It
improves upon the scheme with the same name that we
used in Refs. [5,6], in which we only used two-point
discretization in the calculation of cA and �S, but all other
operators were discretized using three-point discretization.

We estimate discretization errors using a hybrid scheme
in which we use three-point discretization3 in all the op-
-2



TABLE II. Values of the hopping parameter used in the various simulations, and the corresponding pseudoscalar mass aM� and
quark mass a ~m defined using the cA� ~m� and two-point discretization (see Sec. IV). The three estimates of �c, obtained using quadratic
fits, correspond to (1) the zero of ~m with mass dependent cA, (2) the zero of ~m with chirally extrapolated cA, and (3) the zero of M2

�.

60NP 62NP 64NP

Label � a ~m aM� � a ~m aM� � a ~m aM�

�1 0.1300 0.1442(10) 0.711(2) 0.1310 0.1345(6) 0.609(1) 0.1280 0.2106(6) 0.766(1)
�2 0.1310 0.1182(08) 0.631(2) 0.1321 0.1053(4) 0.522(1) 0.1294 0.1754(5) 0.672(1)
�3 0.1320 0.0913(06) 0.544(2) 0.1333 0.0728(3) 0.418(1) 0.1308 0.1391(4) 0.573(1)
�4 0.1326 0.0752(05) 0.488(2) 0.1339 0.0562(2) 0.360(2) 0.1324 0.0960(2) 0.449(1)
�5 0.1333 0.0561(04) 0.416(2) 0.1344 0.0419(2) 0.307(2) 0.1334 0.0682(2) 0.364(1)
�6 0.1342 0.0308(04) 0.308(3) 0.1348 0.0306(2) 0.261(2) 0.1343 0.0429(1) 0.278(2)
�7 0.1345 0.0236(35) 0.265(12) 0.1350 0.0248(1) 0.235(2) 0.1348 0.0285(1) 0.223(2)
��1�c 0.13528(2) 0.135854(5) 0.135786(3)
��2�c 0.13530(1) 0.135875(4) 0.135784(3)
��3�c 0.13539(3) 0.13594(2) 0.13578(2)
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erators but retain the two-point discretization in �S (using
the corresponding two-point values for cA and ~m). We refer
to this as the ‘‘three-point scheme’’. We did not use three-
point derivatives in the discretization of �S in the present
calculation for reasons of computational cost. We stress,
however, that both schemes have errors starting at O�a2�.
By comparing them we obtain information about about the
size of these errors. Further details on the two schemes are
explained later.

Lastly, we have also added the calculation of cA using a
‘‘four-point’’ discretization of derivatives4 which is im-
proved to O�a3� at the classical level. This allows us to
further study discretization errors.

The fourth improvement is in the definition of the central
value x obtained from the jackknife fits. We now include an
O�1=N� correction in the single elimination jackknife pro-
cedure [9] and define

x � �x� N�x0 � �x�; (3)

where �x �
P
Nxjk=N is the uncorrected (and previously

used) estimate, N is the sample size, and x0 is the result of
the fit to the full data sample.

The reanalysis changes many of the results presented in
[5]. The most significant changes (with final results chang-
ing by more than 1�) arise from the order and range of the
fit used (for example, changing from linear to quadratic
extrapolation). The other changes in the analysis lead to
smaller changes in the final results. We comment below on
the changes at appropriate places. Because of these
changes we present here estimates from all four sets of
simulations listed in Table I, and these revised estimates
supersede previously published numbers.
4f�x � 0:5a� ! �9�f�x � a� � f�x�	 � �f�x � 2a� � f�x �
a�	�=16, @xf�x� 0:5a� ! �9��f�x� a� � f�x�	 � �f�x� 2a� �
f�x� a�	=27�=8a and @2

xf�x� 0:5a� ! �f�x� 2a� � f�x�
a� � f�x� � f�x� a�	=�2a2�.
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To highlight the improvement in the signal in various
ratios of correlation functions with �, we include in
Figs. 10–12, 17, 20, 22, and 23, previous data from
60NP and 62NP sets for comparison. Whereas the signal
is marginal at� � 6:0, it improves rapidly, and by� � 6:4
reliable estimates for all constants can be obtained with
O�100� independent configurations.

For each set of simulation parameters the quark propa-
gators are calculated using Wuppertal smearing [10]. The
hopping parameter in the 3-dimensional Klein-Gordon
equation used to generate the gauge-invariant smearing is
set to 0:181, which gives mean squared smearing radii of
�r=a�2 
 2:9, 3.9, and 5.4 for � � 6:0, 6.2, and 6.4
respectively.

In Table I we also show the time extent of the region of
chiral rotation in the three-point axial Ward identities. The
dependence of our results on this region was investigated at
� � 6:0, as shown by the two different time intervals listed
under 60NPf and 60NPb. We observed no significant dif-
ference in the two results, so for our final results we
average the two values weighted by their errors. In the
62NP calculation, we used two separate rotation regions
with equal time extent and placed symmetrically about the
source. This allowed us to average the correlation functions
to improve the statistical sample. In the 64NP data set we
were able to further improve the efficiency of the method
by enlarging the region of insertion to include the whole
lattice except for a few time slices placed symmetrically on
either side of the source for the original propagator at t �
0. This construct allows us to average the signal from
forward and backward propagation with a single insertion
region, (time slices 8–56), and reduces the computational
time significantly because only five inversions are required
instead of the eight needed in the 60NP and 62NP studies
(where forward and backward propagating correlators
were calculated separately).

The five kinds of propagators we use in our calculation
at � � 6:4 are as follows. The initial quark propagator is
-3
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calculated with a Wuppertal source on time-slice t � 0 for
all the lattices. To make explicit the construction of sources
for propagators with insertions we label the two ends of the
time integration region by �ti; tf�, which for 64NP data are
ti � 8 and tf � 56 as listed in Table I. We define the
insertion operator �S using the two-point discretization
of the derivatives, whereby the discretizations for the three
terms in �S � 2 ~mP� @4A4 � acA@2

4P are

Z
d4x@4A4 !

Z
d3x�A4�tf; x� � A4�ti; x�	;

Z
d4x@2

4P!
Z
d3x�P�tf � 1� � P�tf � 1� � P�ti � 1�

� P�ti � 1�	=2;Z
d4xP!

Z
d3x�P�ti�=2� P�ti � 1� � . . .

� P�tf � 1� � P�tf�=2	: (4)

Starting with the original Wuppertal source propagator we
construct the three quantities defined in Eq. (4) and use
these as sources to create the propagators with insertions.
The final, fifth, propagator is calculated by inserting �5 at
zero 3-momentum on time slice t � 23, 20 and 24, respec-
tively, for the three � values. This is needed to study the
vector Ward identity used to extract ZV .

The quark and antiquark in the operators in �S, which
have flavors we call ‘‘1’’ and ‘‘2,’’ respectively, are always
taken to be degenerate, i.e. m1 � m2. This choice is made
for computational simplicity.
FIG. 1. Fits used to determine �c by extrapolating 64NP
results for ~m and M2

�. We show quadratic fits to the two-point
version of ~m for the two cases discussed in text (octagons label
points with cA� ~m� and pluses label points with chirally extrapo-
lated cA), and a quadratic fit to M2

� (diamonds).
III. OVERVIEW OF METHODOLOGY AND
RESULTS

In this section we discuss technical details relevant to the
implementation of all the Ward identities, and give a
summary of our results.

The Ward identities can be implemented on states hav-
ing any spatial momentum, and we collected data for
(0; 1;

���
2
p
;
���
3
p
; 2) units of lattice momenta. In the extraction

of cA we find that the results from all momenta are con-
sistent, but only after errors proportional to �pa�2 are taken
into account. Because of these additional discretization
errors, and the larger statistical errors in correlators with
nonzero spatial momentum, we did not find that the results
at nonzero momenta added useful information. Thus, for
the calculation of all other renormalization and improve-
ment coefficients we present results only from correlators
with zero spatial momentum.

We were unable to determine the covariance matrix to
sufficient accuracy to do fully correlated fits. Thus, when
fitting the time dependence of correlators, or ratios of
correlators, we use only the diagonal part of the covariance
matrix. Similarly, fits to the quark mass dependence (which
are done within the jackknife procedure) ignore correla-
tions between the results at different masses. Also, in the
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analysis of the three-point axial WI identities we do not
propagate the errors associated with estimates of cA and cV
as we do not have a corresponding error estimate on each
jackknife sample. The fully self-consistent method would
be to do a simultaneous fit to all the unknown parameters,
but we do not have enough statistical power to do this.
Because of these shortcomings, we can make no quantita-
tive statement about goodness of fit. Nevertheless, assum-
ing that the fits are good, the errors in the fit parameters,
which are obtained using the jackknife procedure, should
be reliable.

In Table II we give our results for the critical hopping
parameter �c, which is needed to define the vector Ward
identity (VWI) quark mass m. These are obtained from the
fits shown in Fig. 1 (for the 64NP dataset). We fit three
quantities to quadratic functions of 1=2� (which, up to an
additive shift, is the tree level quark mass). The first
quantity fit is the quark mass ~m extracted from the axial
Ward identity, using a mass dependent cA� ~m� and two-
point discretization (see Sec. IV below for definitions of
these quantities). This is the middle curve in the plot. The
second fit quantity is also ~m, but now obtained using the
chirally extrapolated value of cA. This is the lower curve in
the plot. Finally, the third quantity fit is M2

�, and gives the
upper curve in the plot. Only the last fit includes results for
both degenerate and nondegenerate quarks, using the av-
erage value of 1=� for the latter. As the curve shows, we
find no noticeable dependence on the mass difference. The
respective fit parameters are
-4
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a ~m�cA� ~m�� � �12:24�13� � 5:57�7�
1

2�
� 0:610�9�

1

�2��2
;

a ~m�cA�0�� � �15:12�11� � 7:13�6�
1

2�
� 0:822�8�

1

�2��2
;

a2M2
� � �48:3�9� � 27:9�5�

1

2�
� 4:03�6�

1

�2��2
:

(5)

From these we get three estimates of �c which we find to be
consistent; this was not the case for 60NP and 62NP data.
The first estimate, ��1�c , is the most direct as ~m and cA� ~m�
are extracted together from the same two-point Ward
TABLE III. Summary of results for the different combinations of
two-point derivative. The horizontal lines separate the extraction of q
charge, three-point axial chiral Ward identities, and the relation betw
based on quadratic fits in both ~m1 � ~m2 and ~m3. Asterisks mark valu
All seven masses are used at � � 6:2 and 6.4 while at � � 6:0 th
respectively, to whether the mass dependent or chirally extrapolated

60NPf 6

cA �0:039�08� �0:

Z0
V �0:7689�08� �0:

~bV �1:448�20� �1:
Z0
V �0:7689�08� �0:
bV �1:530�12� �1:

Z0
V �0:773�05�� �0:

~bA � ~bV �0:309�76�� �0:
Z0
V �0:774�05�� �0:
bA � bV �0:288�69�� �0:
Z0
V=�Z

0
A�

2 �1:203�11�� �1:
~bA � ~bV �0:094�89�� �0:
Z0
A �0:799�04�� �0:
Z0
P=Z

0
AZ

0
S �1:052�10�� �1:

~bP � ~bS �0:058�65�� �0:
cT �0:083�12�� �0:

Z0
P=Z

0
AZ

0
S�cA�m�	 �1:051�10�� �1:

~bA � ~bP � ~bm�cA�m�	 �0:598�43�� �0:
�2~bm�cA�m�	 �1:052�72�� �1:
Z0
P=Z

0
AZ

0
S�cA�0�	 �1:055�09�� �1:

~bA � ~bP � ~bm�cA�0�	 �0:943�114�� �0:
�2~bm�cA�0�	 �1:406�107�� �1:
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identity (also see below), so we use it in subsequent analy-
ses and, henceforth, drop the superscript.

If both M� and ~m are extracted from fits that include
large times, where only the ground state survives, then it
follows from Eq. (7) below that 2 ~m � M2

��2=B� � acA� �
O�a2�, with B� / h0jPj�i=f� a quantity which is nonzero
in the chiral limit (and which we will use in several places
below). Thus M� and ~m should vanish at the same point.
We use this fact to test the adequacy of our quadratic fits of
M2
� versus ~m�cA� ~m�� or ~m�cA�0��. The 64NP data, illus-

trated for two-point discretization of derivatives, give sig-
nificant intercepts:
a2M2
� � 0:0090�23� � 2:61�5�a ~m� 5:84�27��a ~m�2 �cA�m�; � � 6:0�;

a2M2
� � 0:0098�27� � 2:54�7�a ~m� 7:48�40��a ~m�2 �cA�0�; � � 6:0�;

a2M2
� � 0:0049�13� � 1:87�3�a ~m� 6:32�15��a ~m�2 �cA�m�; � � 6:2�;

a2M2
� � 0:0043�13� � 1:86�3�a ~m� 7:24�17��a ~m�2 �cA�0�; � � 6:2�;

a2M2
� � 0:0020�12� � 1:49�2�a ~m� 6:11�09��a ~m�2 �cA�m�; � � 6:4�;

a2M2
� � 0:0059�12� � 1:34�2�a ~m� 7:73�12��a ~m�2 �cA�0�; � � 6:4�:

(6)
renormalization and improvement constants extracted using the
uantities using the divergence of axial current, the conservation of
een quark masses given in Eq. (20). All unmarked estimates are
es extracted using linear extrapolations in both ~m1 � ~m2 and ~m3.
e lightest quark (�7) is dropped. Labels cA�m� and cA�0� refer,
value of cA is used in the analysis.

0NPb 62NP 64NP

037�09� �0:034�03� �0:032�03�

7703�09� �0:7880�04� �0:8033�05�

413�23� �1:273�10� �1:212�11�

7697�09� �0:7876�03� �0:8016�05�

519�13� �1:402�08� �1:370�09�

761�06�� �0:790�02�� �0:801�02�

469�77�� �0:096�31�� �0:123�54�

762�06�� �0:791�02�� �0:800�02�

433�71�� �0:095�29�� �0:130�49�

209�13�� �1:191�06�� �1:173�05�

016�96�� �0:075�75�� �0:131�65�

794�05�� �0:818�04� �0:825�02�

062�12�� �1:084�05�� �1:089�04�

178�52�� �0:096�25�� �0:104�56�

088�12�� �0:063�10�� �0:054�05��

057�12�� �1:084�05�� �1:077�02�

629�49�� �0:674�21�� �0:511�09�

251�81�� �1:313�27�� �1:193�15�

060�10�� �1:090�05�� �1:077�03�

932�137�� �0:957�27�� �0:646�28�

472�124�� �1:428�28�� �1:346�13�
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Using cA� ~m� leads to smaller intercepts, and because of this
we use a ~m�cA� ~m�� (rather than a ~m�cA�0��) when making
chiral extrapolations in the subsequent analyses. We note,
however, that the intercept is not small when converted into
physical units (� �160 MeV�2), and does not show any
significant decrease with a. In this context it is important to
note that the range of the fits in physical units is different in
the three cases and the lightest ‘‘pions’’ are heavy. The
range of pion masses in the three cases are 550–1500,
680–1770 and 850–2900 MeV, respectively. Thus ne-
glected contributions from chiral logarithms, which be-
come significant only at lower quark masses, and higher-
order terms in the chiral expansion, could account for the
intercept. Since the present data are well fit by a quadratic,
we cannot empirically resolve the issue of what additional
terms need to be included in the fits.

An important point to keep in mind is that the extrap-
olations to extract renormalization and improvement con-
stants are in a ~m, and are different from the usual chiral
extrapolations where the control parameter isM2

�=�2
	 with

�	 � 1 GeV. We do not need to be in the chiral regime for
our method to work. In the ratios of correlators that appear
in the Ward identities we use, the same intermediate states
TABLE IV. Summary of results for the different combinations of
three-point derivative. All unmarked estimates are based on quadrat
using linear extrapolations in both ~m1 � ~m2 and ~m3. At � � 6:2 and
dropped, and, for estimates marked @, only masses �1 � �5 and li
whether the mass dependent or chirally extrapolated value of cA is

60NPf 6

cA �0:036�16� �0:

Z0
V �0:7677�25� �0:

~bV �1:492�68� �1:
Z0
V �0:7672�21� �0:
bV �1:533�13� �1:

Z0
V �0:771�16�@ �0:

~bA � ~bV �0:234�61�@ �0:
Z0
V �0:773�16�@ �0:
bA � bV �0:210�56�@ �0:
Z0
V=�Z

0
A�

2 �1:198�08�@ �1:
~bA � ~bV �0:079�74�@ �0:
Z0
A �0:800�04�@ �0:
Z0
P=Z

0
AZ

0
S �1:051�08�@ �1:

~bP � ~bS �0:003�42�@ �0:
cT �0:087�11�@ �0:

Z0
P=Z

0
AZ

0
S�cA�m�	 �1:011�27�� �1:

~bA � ~bP � ~bm�cA�m�	 �0:513�110�� �0:
�2~bm�cA�m�	 �1:120�104�� �1:
Z0
P=Z

0
AZ

0
S�cA�0�	 �1:014�23�� �1:

~bA � ~bP � ~bm�cA�0�	 �0:208�253�� �0:
�2~bm�cA�0�	 �0:917�125�� �0:

114507
contribute to both numerator and denominator, and pos-
sible nonanalytic behavior in the quark mass (including
that from enhanced quenched chiral logarithms) cancels.
What matters is that a ~m 1, which, as can be seen from
Table II, is reasonably well satisfied for all of our masses.
Indeed, a striking feature of our results is that the quadratic
fits we use work very well over our entire range of quark
masses.

With a ~m and �c in hand we carry out the analysis for
two-point and three-point Ward identities discussed in
Ref. [5]. Each identity allows us to extract one or more
combinations of on-shell improvement and normalization
constants. Since many of the results for 60NP and 62NP
data sets given in [5] have changed as a result of our
reanalysis, estimates from all three lattice spacings are
given in Tables III and IV. Similarly, a detailed comparison
of the results for cV obtained using the methods discussed
in Ref. [5] is given in Table V for all three values of �.

Our final results for the individual constants are col-
lected in Table VI. We quote both a statistical error (given
by the single elimination jackknife procedure, in which we
repeat the entire analysis on each jackknife sample), and an
estimate of the residual O�a� uncertainty. The latter is
renormalization and improvement constants extracted using the
ic fits in both ~m1 � ~m2 and ~m3. Asterisks mark values extracted
6:4, all seven masses are used. At � � 6:0 the lightest quark �7 is
near fits are used. Labels cA�m� and cA�0� refer, respectively, to
used in the analysis.

0NPb 62NP 64NP

038�18� �0:040�05� �0:035�03�

7679�31� �0:7877�04� �0:8027�06�

499�83� �1:296�10� �1:233�11�

7678�23� �0:7875�03� �0:8016�05�

522�14� �1:402�08� �1:370�09�

760�17�@ �0:785�03�� �0:797�02�

359�57�@ �0:053�30�� �0:174�56�

762�17�@ �0:785�03�� �0:797�02�

324�54�@ �0:053�29�� �0:168�51�

196�08�@ �1:189�05�� �1:173�04�

002�83�@ �0:057�69�� �0:009�56�

797�04�@ �0:814�02�� �0:824�02�

062�10�@ �1:084�05�� �1:087�04�

142�36�@ �0:096�25�� �0:033�55�

085�12�@ �0:071�10�� �0:058�05��

009�26�� �1:071�05�� �1:074�03�

470�89�� �0:617�27�� �0:520�14�

168�92�� �1:196�34�� �1:183�19�

010�26�� �1:068�05�� �1:072�03�

209�291�� �0:187�27�� �0:233�31�

953�135�� �1:150�26�� �0:918�09�
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TABLE V. Results for cV using the two-point discretization data. See text (Sec. VII) and
Ref. [5] for details. The labels cA�m� and cA�0� refer to whether the mass-dependent or chirally
extrapolated value of cA was used in the analysis.

64NP

2pt 3pt
cA�m� cA�0� cA�m� cA�0�

Extrapolation �0:167�90� �0:136�90� �0:042�71� �0:092�69�
1=m fit �0:079�07� �0:090�08� �0:099�08� �0:079�06�
Slope ratio �0:088�10� �0:085�10� �0:066�08� �0:074�08�

62NP
2pt 3pt

cA�m� cA�0� cA�m� cA�0�
Extrapolation �0:143�166� �0:128�164� �0:008�160� �0:036�157�
1=m fit �0:104�17� �0:124�20� �0:161�20� �0:120�19�
Slope ratio �0:116�23� �0:117�23� �0:103�21� �0:105�21�

60NPf
2pt 3pt

cA�m� cA�0� cA�m� cA�0�
Extrapolation �0:058�157� �0:075�170� �0:158�115� �0:015�188�
1=m fit �0:138�25� �0:189�47� �0:230�43� �0:143�58�
Slope ratio �0:136�23� �0:143�28� �0:092�16� �0:102�16�

60NPb
2pt 3pt

cA�m� cA�0� cA�m� cA�0�
Extrapolation �0:068�162� �0:112�186� �0:087�156� �0:036�211�
1=m fit �0:132�23� �0:176�44� �0:221�43� �0:139�60�
Slope ratio �0:123�27� �0:128�35� �0:089�25� �0:104�26�

TABLE VI. Final results for improvement and renormalization constants. The first error in LANL estimates (this work) is statistical,
and the second, where present, corresponds to the difference between using 2-point and 3-point discretization of the derivative. We
quote both ~bV , ~bA and bV , bA to simplify comparison with previous results. Estimates for Z0

P=Z
0
S by the ALPHA Collaboration are

taken from Ref. [11] and the rest from Refs. [12–14]. The final column gives the results from one-loop tadpole improved perturbation
theory Ref. [5].

� � 6:0 � � 6:2 � � 6:4

LANL ALPHA P. Th. LANL ALPHA P. Th. LANL ALPHA P. Th.
cSW 1.769 1.769 1.521 1.614 1.614 1.481 1.526 1.526 1.449
Z0
V �0:7695�8��19� �0:7809�6� �0:810 �0:7878�4��2� �0:7922�4��9� �0:821 �0:8024�5��2� �0:8032�6��12� �0:830
Z0
A �0:797�4��2� �0:7906�94� �0:829 �0:815�2��1� �0:807�8��2� �0:839 �0:825�2��1� �0:827�8��1� �0:847

Z0
P=Z

0
S �0:840�7��15� �0:840�8� �0:956 �0:883�4��6� �0:886�9� �0:959 �0:894�3��4� �0:908�9� �0:962

cA �0:036�8��3� �0:083�5� �0:013 �0:034�3��6� �0:038�4� �0:012 �0:032�3��3� �0:025�2� �0:011
cV �0:13�2��3� �0:32�7� �0:028 �0:12�2��2� �0:21�7� �0:026 �0:09�1��2� �0:13�5� �0:024
cT �0:085�12��1� � � � �0:020 �0:063�10��8� � � � �0:019 �0:054�5��4� � � � �0:018
~bV �1:43�2��7� � � � �1:106 �1:27�1��2� � � � �1:099 �1:21�1��2� � � � �1:093
bV �1:52�1� �1:48�2� �1:274 �1:40�1� �1:41�2� �1:255 �1:37�1� �1:36�3� �1:239
~bA � ~bV �0:21�6��5� � � � �0:002 �0:09�4��2� � � � �0:002 �0:13�5��6� � � � �0:002
bA � bV �0:36�7��13� � � � �0:002 �0:10�3��8� � � � �0:002 �0:13�5��3� � � � �0:002
~bP � ~bS �0:12�6��5� � � � �0:066 �0:10�3��1� � � � �0:062 �0:10�6��7� � � � �0:059
~bA � ~bP � ~bS=2 �0:61�5��12� � � � �0:585 �0:67�2��6� � � � �0:579 �0:51�1��1� � � � �0:575
~bS �1:15�8��1� � � � �1:172 �1:31�3��12� � � � �1:161 �1:19�2��1� � � � �1:151
~bA �1:22�6��11� � � � �1:104 �1:19�4��5� � � � �1:097 �1:09�5��6� � � � �1:092
bA �1:16�7��10� � � � �1:271 �1:31�3��4� � � � �1:252 �1:24�5��4� � � � �1:237
~bP �1:02�9��15� � � � �1:105 �1:19�4��3� � � � �1:099 �1:13�6��1� � � � �1:093
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TABLE VII. Results for off-shell mixing coefficients using the
two-point derivative data and cA� ~m�.

60NPf 60NPb 62NP 64NP

c0V � c
0
P 2.97(26) 2.66(36) �2:68�9� 2.51(13)

c0A � c
0
P 2.56(20) 2.54(24) �2:44�10� 2.23(12)

2c0P 2.98(41) 2.76(43) �2:99�13� 2.12(22)
c0S � c

0
P 2.54(14) 2.54(15) �2:38�7� 2.36(11)

c0T � c
0
P 2.58(19) 2.48(23) �2:45�11� 2.40(13)

c0V 1.48(31) 1.28(32) �1:19�10� 1.45(13)
c0A 1.07(27) 1.16(24) �0:94�11� 1.17(11)
c0P 1.49(21) 1.38(22) �1:50�7� 1.06(11)
c0S 1.05(22) 1.16(19) �0:89�9� 1.30(10)
c0T 1.09(25) 1.10(22) �0:95�12� 1.34(12)

FIG. 2 (color online). Estimates of 2a ~mij for different values
of cA illustrated using i � j � �3, J � P, and two-point dis-
cretization in the 64NP data set. For this quark mass, cA �
�0:0089 extends the plateau to the earliest allowed time slice
t � 2. To show sensitivity to the tuning we contrast this best fit
with those using cA � 0 and cA � �0:03, the latter being close
to the chirally extrapolated value.
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taken to be the difference in results obtained using two- and
three-point discretizations of the derivatives except for bV
where there is no three-point estimate. A different estimate
of the uncertainties can be obtained by comparing our
results to previous estimates by the ALPHA
Collaboration [12–14] summarized in Table VI, by the
QCDSF Collaboration given in Table IX [15] and by the
SPQcdR Collaboration [11].

We collect separately, in Table VII, our results for the
improvement constants c0X, the coefficients of the equation-
of-motion operators. These are discussed in Sec. XII. In
Secs. XIII and XIV we present an analysis of residual
discretization errors by comparing our estimates with those
by the ALPHA Collaboration and with one-loop tadpole
improved perturbation theory estimates summarized in
Table VI.
IV. CALCULATION OF cA

The calculation of cA exploits the two-point axial Ward
identity
P
~x
h@��A� � acA@�P	

�ij�� ~x; t�J�ji��0�i

P
~x
hP�ij�� ~x; t�J�ji��0�i

� 2 ~mij �O�a
2�;

(7)

which also defines the quark mass ~mij. Here the superscript
�ij� refer to the mass (flavor) labels (�i�j) of the quark and
the antiquark. Up to corrections of O�a2�, this ratio of
correlators should be independent of the source J and the
time t provided cSW (the coefficient of the Sheikholeslami-
Wohlert term in the action) and cA are tuned to their non-
perturbative values. Since this criterion is automatically
satisfied when the correlators are saturated by a single
state, the determination of cA relies on the contribution
of excited states at small t.

The sensitivity of the ratio (7) to cA is illustrated for the
64NP data in Fig. 2. We find that, for J � P, the contribu-
tion of higher excited states is significant only at time slices
114507
t � 1� 5 for all three values of � (see [5] for data at � �
6:0 and 6.2). For two-point and four-point discretization,
the data at t � 1 cannot be used to extract cA as the
discretization of @2

4P�t � 1� in Eq. (7) overlaps with the
source at time slice t � 0. Consequently, only the range
2 � t � 5 is sensitive to tuning cA and we choose cA to
make ~mij as flat as possible for time slices t � 2. This is
done by minimizing the 	2 for a fit to a constant, as
illustrated in Fig. 2. For three-point discretization we can
implement the same choice only for t � 3. The J � A4

data are not presented as they are dominated by the ground
state already at t � 4 and are thus not sensitive to the
choice of cA. Results for ~m with different choices of
discretization are collected in Table VIII.

As noted in Ref. [16], a possible problem with our
criterion for determining cA is that it does not involve the
same physical distances at all couplings. The ‘‘physical’’
criterion we wish to implement is that the same value of ~mij

is obtained in the AWI from both the ground and the first
excited states. This requires that we tune the source to
produce the same mixture of ground and excited states at
all values of a. While the lattice size and the radius of the
smeared source in the generation of quark propagators
were increased with �, they were not tuned. In fact, we
find that our fit is sensitive to the same range, t � 2� 5
(3� 5 for three-point discretization), for all three lattice
spacings, and thus is sensitive to significantly shorter
-8



TABLE VIII. Values of the quark mass a ~m defined using the mass-dependent cA for two-point, three-point and four-point
discretization schemes at the three couplings.

60NP 62NP 64NP

Label 2-pt 3-pt 4-pt 2-pt 3-pt 4-pt 2-pt 3-pt 4-pt
��1; �1� 0.1442(10) 0.1425(13) 0.1450(10) 0.1345(6) 0.1340(7) 0.1349(6) 0.2106(6) 0.2108(9) 0.2110(6)
��2; �2� 0.1182(8) 0.1167(11) 0.1188(8) 0.1053(4) 0.1048(5) 0.1058(4) 0.1754(5) 0.1752(7) 0.1756(5)
��3; �3� 0.0913(6) 0.0902(8) 0.0920(6) 0.0728(3) 0.0722(3) 0.0727(3) 0.1391(4) 0.1389(5) 0.1394(4)
��4; �4� 0.0752(5) 0.0744(7) 0.0757(5) 0.0562(2) 0.0558(3) 0.0561(2) 0.0960(2) 0.0958(3) 0.0963(2)
��5; �5� 0.0561(4) 0.0555(6) 0.0563(4) 0.0419(2) 0.0417(2) 0.0421(2) 0.0682(2) 0.0681(2) 0.0686(2)
��6; �6� 0.0308(4) 0.0312(15) 0.0310(4) 0.0306(2) 0.0304(2) 0.0307(2) 0.0429(1) 0.0428(1) 0.0430(1)
��7; �7� 0.0236(35) 0.0251(5) 0.0246(30) 0.0248(1) 0.0247(2) 0.0250(1) 0.0285(1) 0.0284(1) 0.0286(1)
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Euclidean times at � � 6:4 than at � � 6. The part of our
analysis which is, therefore, sensitive to the extent to which
our criterion is physical is the manner in which the con-
tinuum limit is approached. With a physical criterion, the
dominant correction to scaling will be proportional to a2. If
one changes the criterion as a is varied, the simple power
dependence can be distorted. While the data suggests that
the contribution from higher states is small, we cannot rule
out some distortion and the scaling analysis has to be taken
with caution. To study the question in detail, however,
would require a more extensive data set than ours.

In Figs. 3–5, we show quadratic fits to cA� ~m� versus ~m
for the two-point, three-point and four-point discretization
of the derivative. The data are for zero-momentum corre-
lators at � � 6:0, 6.2, and 6.4, and include degenerate and
FIG. 3 (color online). Results of chiral extrapolation of cA data
at � � 6:0 (60NPf) for the two-point, three-point and four-point
discretization of the derivative. Quadratic fits are made to all
degenerate and nondegenerate mass combinations using �1 �

�7. We also show the quantity c3�pt
A � c2�pt

A � a ~m=2 discussed
in the text using the symbol plus.
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nondegenerate mass combinations. The results for two-
point and three-point discretizations are given in
Tables III and IV. The four-point estimates are 0.034(8),
0.034(9), 0.030(4) and 0.030(3) for 60NPf, 60NPb, 62NP,
and 64NP data sets, respectively. We find that the three
estimates agree within errors in the chiral limit. By con-
trast, the O�am� contributions are significant, as shown by
the large, roughly linear, dependence of cA on ~m. However,
as we now explain, the bulk of this linear dependence has
a simple kinematic origin and can be understood
analytically.

In Ref. [5] we showed that if, by tuning cA and ~m, Eq. (7)
can be satisfied over a common range of time-slices where
two- and three-point discretizations schemes are imple-
mented then, to O�a3�, ~m is the same in both schemes
and the cA at any a ~m are related as c3�pt

A � c2�pt
A �

~ma=2�O�a2�. It is useful to generalize this argument to
provide the relation between cA determined in any two
discretization schemes. The equation we wish to satisfy is
@4A4 � acA@

2
4P� 2 ~mP � 0. Taylor expansion of any lat-
FIG. 4 (color online). Same as Fig. 3 but at � � 6:2.
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FIG. 5 (color online). Same as Fig. 3 but at � � 6:4.

5This means that the assumption leading to Eq. (9), namely,
that the relation (8) can be satisfied by two schemes over a range
of time slices, cannot hold precisely.

6Unfortunately, we are not able to determine the efficacy of the
four-point discretization scheme for analyzing the three-point
Ward identities as some of the required raw data has been lost
due to disk corruption.
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tice version of this relation using a symmetric discretiza-
tion scheme for the derivatives gives

�@4A4 � a
2
@3

4A4 �O�a
4�	

� acA�@
2
4P� a

2�@4
4P�O�a

4�	

� 2 ~m�P� a2�@2
4P�O�a

4�	 � 0: (8)

The key assumption is that this relation can be satisfied by
two discretization schemes over a common range of time
slices. If so, then it follows, first, that the two schemes will
give the same ~m to O�a3� and, second, that

c�2�A � c
�1�
A � 2a ~m�
�1� � 
�2� � ��1� � ��2�� �O�a2�:

(9)

For the two-point and three-point derivatives we have used,
this condition reduces to c3�pt

A � c2�pt
A � a ~m=2�O�a2�

because 
2�pt � 1=24, �2�pt � 1=8, 
3�pt � 1=6, and
�3�pt � 0. Our data confirm these two predictions to
good accuracy: the ratio of correlators (2 ~mij) is the same
within errors for the three discretization schemes, as shown
in Table VIII, and Eq. (9) holds, as illustrated in Figs. 3–5,
where we also plot the quantity c3�pt

A � c2�pt
A � a ~m=2 and

show it is consistent with zero at the 1-� level.
The UKQCD Collaboration [16] has pointed out that the

mass dependence of cA can be reduced using higher-order
discretization schemes. This also follows from Eq. (9). For
any O�a3� improved scheme, 
 � � � 0, and conse-
quently cimp

A � c2�pt
A � a ~m=6�O�a2�. In fact we find

that the slope of c2�pt
A versus a ~mij is � 
 0:18, 0.18 and

0.19, respectively, for � � 6, 6.2 and 6.4, so that the slope
obtained using any O�a3� improved scheme should indeed
114507
be very small, �� 1=6� 0:02. For our four-point discre-
tization scheme (which isO�a3� improved, but differs from
the five-point scheme used in Ref. [16]) we find that the
slope is� 0:03 for all four data sets as shown in Figs. 3–5.
We also find that the contribution of the �a ~m�2 term in the
four-point scheme is comparable to the linear term over the
range of quark masses simulated, and to the errors.
Because of the size of these higher-order terms, further
improvements in the discretization of the derivative are not
expected to reduce the undertainty.

We stress that we do not expect a higher-order scheme to
completely remove a ~m contributions in cA, for to do so
would require complete implementation of an O�a2� im-
provement program.5 Nevertheless, our results indicate
that the bulk of the slope for two- and three-point discre-
tization is due to errors associated with discretization of the
derivative.

The upshot of this discussion is as follows. On the one
hand, it would have been advantageous to use a higher-
order discretization scheme with a smaller slope �. This
would have reduced the uncertainty in the results for some
of the bO that are proportional to �, as discussed in later
sections. On the other hand the O�a ~m�2 and O�a ~m� terms
become comparable in our four-point data, and the error in
the extrapolated value does not decrease compared to the
lower-order schemes.6 Having demonstrated that the domi-
nant effect is kinematic, we can remove it in our two- and
three-point schemes simply by using the mass-dependent
cA� ~m� in the improved axial current, rather than cA�0�. This
is indeed what we do in the axial rotation �S (which, we
recall, is always defined with two-point derivatives and in
which we always use the two-point cA� ~m�).

We now return to the numerical results for cA�0�, which
are given in Tables III and IV. Results from two-, three- and
four-point discretizations should differ only by terms of
relative size a�QCD. In fact, as already noted, Figs. 3–5
show that the quadratically extrapolated values for cA at
each of the three � from all three discretization schemes
agree. Estimates using linear fits, however, differ by com-
bined 1� errors, due to the curvature.

In Ref. [5] we chose, for our central value, cA from the
two-point discretization of the derivative over that from the
three-point derivative for the following two reasons. First,
the O�a2� discretization errors in the derivatives are
smaller, which leads to a smaller slope of cA versus ~m;
and second, because the statistical errors are smaller. Now
that we understand the relative size of the slope to be
largely a kinematical effect, and the extrapolated values
-10
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overlap, and the uncertainty in the estimates are compa-
rable, we take the weighted mean of the two-, three- and
four-point results for our central value at all three lattice
spacings. In addition to statistical errors we quote the
spread of the results to estimate the residual O�a� errors.
Note that, as pointed out in the Introduction, the choice of
the discretization scheme used for the derivative does not
affect results for cA�0� at the leading order of overall
improvement, and the estimates from any scheme can be
used to define the improved theory. However, if a calcu-
lation requires the axial-vector Ward identity be respected,
then the appropriate discretization scheme and the corre-
sponding cA�m� should be used.
FIG. 7 (color online). cA using states of non-zero momentum
at � � 6:4. Notation as in Fig. 6.
V. EXTRACTING cA USING STATES AT FINITE
MOMENTUM

The data at� � 6:2 and 6.4 are precise enough to extract
cA using states having nonzero momenta. In Figs. 6 and 7
we show the results of linear fits for the chirally extrapo-
lated value of cA for two-, three-, and four-point discreti-
zation of the derivative as a function of �pa�2. For the
chiral extrapolation of cA� ~m�, quadratic fits to all mass
combinations of �1 � �7 propagators work very well at
all five values of pa. The signal in three-point data at pa �
2 is noisy and this is reflected in the errors. The data exhibit
the following two features:
(i) A
FIG. 6
plotted
the two
derivati
dditional discretization errors of O�p2a2� are gen-
erated when using states with nonzero momenta.
The coefficients of these corrections are significant,
lying in the range 0.12–0.22.
(color online). cA using states of non-zero momentum
against �pa�2, along with a linear fit. We show results for
-point, three-point, and four-point discretization of the
ve. The data are for � � 6:2 and pa is in units of 2�=24.
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(ii) T
-11
he difference in results between the two-, three-
and four-point discretization of the derivative de-
creases significantly between � � 6:2 and 6.4.
Overall, the consistency of the estimates between the two-,
three-, and four-point discretization schemes, the added
information from fits versus �pa�2, and the expected im-
provement with � enhance our confidence in our quoted
estimate of cA.

VI. Z0
V AND bV

Our best estimate of Z0
V comes from the matrix elements

of the vector charge
R
d3xV�23�

4 �x� between pseudoscalar
mesons

1

Z0
V�1�

~bVa ~m2�
�

P
~x; ~y
hP�12�� ~x; ���VI�

�23�
4 � ~y; t�J

�31��0�i

h
P
~x
P�12�� ~x; ��J�21��0�i

(10)

with � > t > 0 and the superscript (23) denoting the flavor
of the two fermions in the bilinear (which are taken to be
degenerate). Our results for this ratio, illustrated by those
in Fig. 8, show two features of particular interest: first,
there is a significant dependence on t for time slices close
to the source or sink; and, second, there is a clear difference
between the results using J � P and J � A4. Both features
are indicative of O�a2� corrections, since, aside from such
corrections the ratio should be independent both of t and
the choice of source. The observed effect is �1� 5�a2�2

QCD

using �QCD � 300 MeV. Since neither feature would be
present if the source and the sink coupled to a single state



FIG. 8 (color online). The ratio defined in Eq. (10) for sources
J � P and J � A4. Data from the 64NP set with all propagators
having mass � � �5.

FIG. 9 (color online). Linear and quadratic fit to ZV versus a ~m
for the 64NP data set.

TABLE IX. Nonperturbative estimates of Z0
V and bV from the LA

LANL estimates at all three � are taken from fits versus the VWI m

� � 6:0 �

LANL ALPHA QCDSF LANL A
Z0
V 0.7695(8) 0.7809(6) 0.7799(7) 0.7878(4) 0.7
bV 1.52(1) 1.48(2) 1.497(13) 1.40(1) 1
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(irrespective of improvement), our results show that the
separation between source and sink in our calculation is
insufficient to isolate the lowest state for any value of t. We
stress, however, that this is not a problem for implementing
the improvement program (since, after all, we expect am-
biguities of O�a2�).

To obtain our central values we average the J � P and
J � A4 data within the jackknife procedure as they are of
similar quality. There is a slight difference in results for Z0

V
using two- and three-point derivatives, as shown in
Tables III and IV. Also, at � � 6:0, the errors in the
three-point estimates are almost 3 times as large. These
differences arise during the chiral extrapolation because
the ~m and �c are slightly different for the two cases and the
errors in cA� ~m� are 2–3 times larger for the three-point
data. The difference between linear and quadratic chiral
extrapolation, as shown in Fig. 9, is significant. For our
central values we use quadratic extrapolations of the two-
point data.

To extract ZV , ~bV and bV we fit the ratio in Eq. (10) to a
quadratic function of both ~m and the VWI mass. At � �
6:4 the fits yield

ZV � 0:8033�5��1� 1:212�11� ~ma� 1:134�39�� ~ma�2	;

(11)

ZV � 0:8016�5��1� 1:370�9�ma� 0:033�24��ma�2	:

(12)

The two intercepts, which give Z0
V , differ by 3-� at � �

6:4 and by� 1–� at� � 6:0 and 6.2. For the final estimate
of Z0

V we choose the weighted average as they are of
similar quality. The coefficient of the linear term in the
two fits gives ~bV and bV respectively.

In Table IX we compare results with those from other
nonperturbative calculations that have been done with the
same O�a� improved fermion action but utilizing different
initial and final states to measure the charge. We find that
the results for bV agree within the combined 1� uncertain-
ties and the expected differences ofO�a�. For Z0

V , there is a
significant difference between the LANL and the ALPHA
[12–14] Collaboration values, which we show, in
section XIII, can be explained as residual O�a2� effects.
Estimates by the QCDSF [15] and the SPQcdR [11]
Collaboration lie in the range defined by the LANL and
ALPHA data.
NL, ALPHA, and QCDSF [15] Collaborations. For consistency
ass m.

� 6:2 � � 6:4

LPHA QCDSF LANL ALPHA QCDSF
922(4) 0.7907(3) 0.8024(5) 0.8032(6) 0.8027(2)
.41(2) 1.436(8) 1.37(1) 1.36(3) 1.391(5)

-12
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In Ref. [5] it was observed that extrapolations using a
quadratic fit in ~m give estimates closer to measured values
of Z0

V near the charm quark mass than did fits versus m. At
� � 6:4 the two fits agree within 1% up to ~ma 
 0:3,
whereas the charm quark mass is smaller in lattice units,
i.e. amc 
 0:22. Since, as noted above, O�a2� errors are
�1%, we conclude that either fit can be used for quark
masses in the range 0–mc.
FIG. 10 (color online). Illustration of the quality of the signal
for the quantity N1 of Eq. (13) for all four data sets with two-
point discretization and cA� ~m�. In all cases the data have to be
multiplied by the respective values of 2�3, the lattice normal-
ization of the additional propagator in the numerator.

FIG. 11 (color online). Illustration of the quality of the signal
for N2 of Eq. (14) for all four data sets with two-point discre-
tization and cA� ~m�. In all cases the data are for �3 and have to be
multiplied by the respective values of 2�3, the lattice normal-
ization of the additional propagator in the numerator.
VII. cV AND ~bA � ~bV

Up to this stage, we have used only two-point correlation
functions or three-point correlators involving the vector
charge. We now turn to axial Ward identities involving
three-point correlators. These allow us to determine cV ,
~bA–~bV , Z0

A, Z0
P=Z

0
S, ~bP–~bS, and cT , as well as giving an

alternate determination of Z0
V . We first consider the im-

provement coefficient cV whose precise determination
feeds into the calculation of Z0

A, Z0
P=Z

0
S, cT , and c0A. The

best signal for cV is obtained by enforcing N1 �
N2 � cVD, with

N1 �

P
~y
h�S�12�

I �VI�
�23�
4 � ~y; y4�P�31��0�i

P
~y
h�AI�

�13�
4 � ~y; y4�P�31��0�i

; (13)

N2 �

P
~y
h�S�12�

I V�23�
i � ~y; y4�A

�31�
i �0�i

P
~y
h�AI�

�13�
i � ~y; y4�A

�31�
i �0�i

; (14)

D �

P
~y
h�S�12�

I a@�T
�23�
i� � ~y; y4�A

�31�
i �0�i

P
~y
h�AI�

�13�
i � ~y; y4�A

�31�
i �0�i

; (15)

so that

cV �
N
D
�
N1 � N2

D
: (16)

We recall that �S uses two-point discretization (and the
corresponding value of cA� ~m1�), but that the other im-
proved currents in these expressions are discretized both
with the two- and three-point forms giving two sets of
estimates. Within each set we provide two estimates using
cA�0� and cA�m� in the expression for AI. We also recall
that we always use ~m1 � ~m2.

Figs. 10–12, illustrate the quality of our data for N1, N2

and D. The improvement in errors and overall quality as �
increases is evident. Note that N2 and D are expected to
have larger errors than N1 since the lightest state which
contributes is the axial-vector rather than the pion.

Our procedure is to determine N1, N2 and D from fits to
the plateaus and then combine the first two to form N �
N1 � N2. The results for N and D at � � 6:4 are shown in
114507-13



FIG. 14. A fit of the form cV � c�0�V � c
�1�
V =� ~m1 � ~m3� to the

64NP data with two-point discretization and cA� ~m�.
FIG. 12 (color online). Illustration of the quality of the signal
for D of Eq. (15) for all four data sets with two-point discretiza-
tion and cA� ~m�, using �3 propagators in all cases.
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Fig. 13, where it is apparent that the errors in N determine
the quality of the result for cV � N=D. As noted in Ref. [5]
for the data at � � 6 and 6.2, both N and D are to good
approximation functions of ~m1 � ~m3 that vanish when
~m1 
 ~m3. Since they do not, however, vanish at exactly
the same point (presumably due to statistical and residual
FIG. 13. Data for N and D, defined in the text and used to
extract cV , plotted as a function of ~m1 � ~m3 for the 64NP dataset
with two-point discretization and cA� ~m�.
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discretization errors), their ratio diverges, as shown in
Fig. 14.

In Ref. [5], we used three methods to extract cV that try
to minimize the effect of this spurious singularity, and we
follow the same strategy here. Details of the methods will
not, however, be repeated. Our estimates at � � 6:0 and
6.2 have changed after redoing the chiral fits to N1, N2, and
D, and so we quote, in Table V, results for all �. For each
method we have an additional four choices: we can use
two-point or three-point discretization of the currents, and
for each of these we can use either mass-dependent or
chirally extrapolated values of cA in the operator �AI�

�13�
4

appearing in the denominator of N1.
The extrapolation method has the largest uncertainty so

we discard it. The consistency between the result using the
‘‘1=m fit,’’ shown in Fig. 14, and the ‘‘slope-ratio’’ method,
improves with �, but the ‘‘slope-ratio’’ method is more
stable with respect to the range of quark masses used in the
fits at all three � values, and has the smallest dependence
on the choice of cA. We therefore take our final estimates
from the ‘‘slope-ratio’’ method and average the cA� ~m� and
cA� ~m � 0� values to get our final estimates. As usual, we
take the central value from the two-point scheme and use
the three-point scheme to estimate the discretization error.

We can also use the quantity N1, defined in Eq. (13), to
determine ~bA–~bV , bV–bA and to give an alternate determi-
nation of Z0

V . We must first extrapolate to ~m1 � ~m2 � 0 to
remove the contribution of equations-of-motion operators.
In Fig. 15 we illustrate the quadratic fits used to do this for
the 64NP data. We then fit to a quadratic function of ~m3 or
m3. These fits, shown in Fig. 16 for two-point discretiza-
tion and cA�0�, have parameters
-14



FIG. 15. Quadratic extrapolation of the ratio in Eq. (13) in
~m1 � ~m2 for fixed ~m3 � �4 for 64NP data set with two-point
discretization and cA� ~m�.

FIG. 16 (color online). Quadratic fits to Eq. (13) to extract
~bA � ~bV and bA � bV for 64NP data set with two-point discre-
tization and cA� ~m�. The crosses show data and fits versus the
AWI quark mass ~m, whereas the diamonds show results obtained
using the VWI quark mass m.
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1

Z0
V

�
1� �~bA � ~bV�

a ~m3

2
�O�a2�

�

� 1:249�3�
�

1� 0:123�54�
a ~m3

2
� 0:06�38�

�
a ~m2

2

�
2
�

1

Z0
V

�
1� �bA � bV�

am3

2
�O�a2�

�

� 1:250�3�
�

1� 0:130�49�
am3

2
� 0:25�33�

�
am3

2

�
2
�
:

(17)

The estimates for Z0
V are consistent with those obtained

using the conserved vector charge, Eq. (11), but have larger
errors, so our preferred value is from the analysis presented
in Sec. VI.

The coefficient of the term linear in ~m (m) gives ~bA � ~bV
(bA � bV). We find that the errors in both ~bA � ~bV and
bA � bV are large and comparable. In addition, there can
be large O�a� errors feeding in from the dependence of cA
on ~m as discussed below.

It is easy to see that when using Eq. (13) to extract ~bA �
~bV the result will depend on the choice whether cA�m� or
the chirally extrapolated cA�0� is used. As explained in [5],
a shift cA ! cA � � in the definition of �AI�4 in the de-
nominator produces a change in Z0

V of the form �aB�. If,
instead, we use cA� ~m� � cA �� ~ma in the calculation then
the slope, not the intercept, changes, i.e., one gets ~bA �
~bV � �aB�=2 instead of ~bA � ~bV . For the two-point data
at � � 6:4 the two estimates are �0:32�5� and �0:12�5�
for cA� ~m� and cA�0� respectively. The difference, �0:20,
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even though formally of higher order in a, is large because
aB� � 1:5 and � � 0:19 as discussed in the extraction of
cA. We do not have an a priori argument that, to this order,
favors one choice over another. Anticipating that calcula-
tions of physical quantities will use improvement constants
defined in the chiral limit and understanding that the slope
� is almost entirely an artifact of the discretization scheme
used to calculate cA, we take results obtained using cA�m �
0� for the two-point discretization as our estimates. We
stress that we do not include the difference between the
results using cA�m� and cA�0� as part of the error. These
new results supercede those given in [5].

Overall, ~bA � ~bV is small and the uncertainty is compa-
rable to the signal. The expected relation �~bA � ~bV� �
�Z0

AZ
0
S=Z

0
P��bA � bV� �O�a� holds at the 1� level.
VIII. Z0
A

The Ward identity
P
~y
h�S�12�

I �AI�
�23�
i � ~y; y4�V

�31�
i �0�i

P
~y
h�VI�

�13�
i � ~y; y4�V

�31�
i �0�i

�
Z0
V�1� ~bVa ~m3=2�

Z0
A � Z

0
A�1�

~bAa ~m3=2�
; (18)

gives Z0
V=�Z

0
A�

2 and a second estimate of ~bA � ~bV . The
quality of the signal for the ratio of correlation functions, as
illustrated in Fig. 17, is good as the intermediate state is the
-15



FIG. 19. Z0
A is obtained from the product of ratios of correla-

tors defined in Eqs. (13) and (18). The figure shows a quadric
extrapolation in ~m3=2 for the 64NP data set with two-point
discretization and cA� ~m�.

FIG. 18. The 64NP two-point data for ZV=Z0
AZA� ~m3� are ob-

tained by extrapolating the ratio defined in Eq. (18) to ~m1 �
~m2 � 0 using a quadratic fit. The intercept of the quadratic fit in
~m3, gives Z0

V=Z
0
AZ

0
A.

FIG. 17 (color online). Illustration of the signal for the ratio
defined in Eq. (18) for the four data sets using two-point
discretization. In all four cases the data have to be multiplied
by the respective values of 2�3, the lattice normalization of the
additional propagator in the numerator.
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vector meson. Data in Fig. 18 show that quadratic fits in
both ~m1 � ~m2 and ~m3 are preferred at � � 6:4. Linear fits
are sufficient at � � 6:0 and 6.2. The resulting values are
given in Tables III and IV.

Including the results in Sec. VI we have two estimates
for ~bA � ~bV with similar errors. These estimates come
from Ward identities that involve different, pseudoscalar
versus vector, intermediate states. Also, in Eq. (18) the
term proportional to cA in AI does not contribute at zero
momentum so there is no associated uncertainty. Thus, the
O�a� errors can be different in the two cases. As shown in
Tables III and IV, we find that the two estimates show
considerable O�a� variation, but this is not unexpected
given the size of the errors and the possibility of additional
O�a�QCD � 0:2� 0:1� uncertainty in previous estimates
as discussed in Sec. VI. Had we chosen to use cA� ~m� to
extract ~bA–~bV in Sec. VI the variation would have been
larger by a factor of 2 or more. Thus, for our final estimate
we average the two two-point estimates and quote the
difference between two-point and three-point discretiza-
tion schemes as an estimate of residual O�a� errors. The
upshot of the analysis is that ~bA � ~bV is small and the
systematic errors are of the same size as the signal.

To estimate Z0
A we use the product of Eqs. (13) and (18)

as it yields 1=�Z0
A�

2 directly. The final chiral extrapolation
in a ~m3 for the product is shown in Fig. 19. In this product
the terms proportional to a ~m3 cancel, but nevertheless the
data show a clear a ~m3 dependence. This we interpret as
114507
due to O�a2� terms of the generic form Z0
A� ~m3� � Z0

A�0��
�1� a2 ~m3��. The slopes at � � 6:0, 6.2 and 6.4 are
0.22(6), 0.12(11), and 0.11(4), respectively. To match the
observed slope a� 
 0:11 at � � 6:4 requires ��
�QCD 
 0:4 GeV, which is a reasonable value. Also, the
change between � � 6:0 and 6.4 is consistent with the
-16



FIG. 20 (color online). Comparison of the signal in the ratio of
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expected scaling in a. In Ref. [5] we had ignored this
dependence and fit the data to a constant to extract Z0

A. In
light of our results at� � 6:4 and a better understanding of
possible ~m3 dependence, we have refit the data at � � 6:0
and 6.2 also. We now use quadratic extrapolation in ~m1 �
~m2 at � � 6:4 and linear at � � 6:0 and 6.2. Linear
extrapolation in ~m3 works well at all three couplings,
however at � � 6:2 and 6.4 we use quadratic fits to main-
tain consistency with the rest of the analysis. At these
weaker couplings linear and quadratic estimates are
consistent.

A comparison of Figs. 18 and 19 raises the following
concern. The slope in Fig. 18 with respect to a ~m3 relative
to the intercept is an O�a� effect, proportional to ~bV � ~bA,
while that in Fig. 19 is, as just discussed, of one higher
order.7 The two slopes are, however, numerically very
similar. This once again suggests that there can be sub-
stantial uncertainty of O�a�, comparable to the value itself,
in any result for ~bV � ~bA. In fact, our analysis illustrates a
problem common to the extraction of all measurements of
the differences bO–b�O. The signal, the errors, and the
O�a2m�� uncertainties are all comparable.
correlators on the l.h.s. of Eq. (19) used to extract Z0
P=Z

0
S. In all

four cases the data have to be multiplied by the respective values
of 2�3, the lattice normalization of the additional propagator in
the numerator.

FIG. 21. Quadratic fits used to extract Z0
AZ

0
S=Z

0
P. The three fits

correspond to (i) Eq. (19) plotted versus a ~m � a ~m3=2,
(ii) Eq. (20) with ~m defined using the mass dependent cA, and
(iii) Eq. (20) with ~m defined using the chirally extrapolated c .
IX. Z0
P=Z

0
S, ~bP– ~bS

To obtain Z0
P=�Z

0
SZ

0
A� and ~bP–~bS we use the identity

P
~y
h�S�12�

I S�23�� ~y; y4�J�31��0�i

P
~y
hP�13�� ~y; y4�J�31��0�i

�
Z0
P�1� ~bPa ~m3=2�

Z0
A � Z

0
S�1�

~bSa ~m3=2�
;

(19)

evaluated in the limit ~m1 � ~m2 ! 0 with J � P or A4. The
intermediate state in both the numerator and the denomi-
nator has the quantum numbers of a pion, and the ratio has
a very good signal, whose quality, as a function of �, is
shown in Fig. 20. Data at � � 6:4 for the ratio on the left
hand side of Eq. (19) favor quadratic fits for ~m1 � m2 ! 0
and ~m3 ! 0 extrapolations as illustrated in Fig. 21. The
intercept and the slope give Z0

P=�Z
0
SZ

0
A� and ~bP � ~bS re-

spectively, and these estimates are quoted in Tables III and
IV. To get Z0

P=Z
0
S we eliminate Z0

A by combining the ratio
in Eq. (19) with the product of Ward identities discussed in
Sec. VIII.

The value of ~bP � ~bS is numerically small, comparable
to the errors and of the same order as O�a2m3�� effects
discussed in Sec. VIII. In this case we take the average of
the two-point and three-point values as our best estimate.
The reason is that the operators in Eq. (19) do not contain
any derivatives (no improvement terms) so the difference
between two-point and three-point estimates arises solely
A
The data are from the 64NP set with two-point discretization.
Note that the intercepts from all three fits should agree up to
errors of O�a2�, but the slope of (i) is bP � bS whereas those of
(ii) and (iii) give ~bA � ~bP � ~bm.

7Even though the data in Fig. 18 is consistent with no ~m3
dependence, this is not true at � � 6:0 and 6.2. We make a
quadratic fit as indicated by all other data at � � 6:4.
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from the chiral extrapolations due to the tiny differences in
~m for the two cases as shown in Table VIII.

Our results for Z0
P=Z

0
S, obtained using Eq. (19) and ZA

from Sec. VIII, are presented in Table VI. These are con-
sistent with the recent estimates by the ALPHA and
SPQcdR Collaborations [11]. In Sec. XIV we compare
our results with predictions of one-loop perturbation theory
and discuss the size ofO�a2� andO�
2

s� corrections needed
to explain the large difference.
X. Z0
P=�Z

0
SZ

0
A�, ~bA � ~bP � ~bm, AND ~bm

One can derive a relation between the two definitions of
quark mass [17],

~m
m
�
Z0
PZ

0
m

Z0
A

�
1� �~bA � ~bP � ~bm�a ~mav

� ~bma
� ~m2�av � � ~mav�

2

~mav
�O�a ~m�2

�
; (20)

where Xav � �X1 � X2�=2. This relation is useful because
Z0
m � 1=Z0

S and bS � �2bm [7,18].
In Fig. 21 we illustrate fits to Eq. (20) for the simpler

case of degenerate quarks for ~m calculated using both
cA� ~m� and cA�0�. In this case the term proportional to ~bm
does not contribute. The data show that for � � 6:4 in-
cluding a term quadratic in ~mav gives a much better fit
whereas for 6.0 and 6.2 a linear fit suffices. The term
proportional to bm contributes only to nondegenerate com-
binations. Fits using all combinations of six �� � 6:0� and
seven (� � 6:2 and 6.4) values of quark masses allow both
~bP–~bA–~bm and ~bm to be extracted reliably. These two sets
of results of the fits, using cA� ~m� and cA�0�, are quoted in
Tables III and IV.

The intercept, which gives Z0
P=Z

0
AZ

0
S, should be same for

cA�m� and cA�0�, to the extent that the fits are good.
Furthermore, the difference between two- and three-point
results (which have different results for cA) should be
small. These features are borne out by the results. The
only notable difference is that the errors in the two-point
data are smaller. The results are also consistent with those
obtained using Eq. (19), and have similar errors, as illus-
trated in Fig. 21. In Ref. [5] we preferred the results from
Eq. (19) since the method of this section has a greater
sensitivity to uncertainties in cA (which are enhanced by
the presence of the factor B� � M2

�= ~m 
 4 GeV). With
better understanding of the errors we now choose to take,
for our final value of Z0

P=Z
0
AZ

0
S, the weighted mean of the

two-point results from Eq. (19) and those using ~m=m, with
the latter determined using cA� ~m�.

The extraction of ~bA � ~bP � ~bS=2 and ~bS is effected by
the choice of cA. Using Eqs. (7) and (20) one can show that,
to leading order, �~bA � ~bP � ~bS=2�jcA�m� � �

~bA � ~bP �
~bS=2�jcA�0� ��aB�=2 and similarly for ~bm. Our data are
roughly consistent with this relation for both the two-point
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and three-point discretization methods. For example, in
case of the two-point discretization method, the values of
the slope �, illustrated in Fig. 5 for � � 6:4 data, are
approximately 0.18, 0.18, and 0.19 and aB� 
 2:6, 1.9,
and 1.5 at the three couplings, respectively. This O�a�
effect, enhanced by the large value of B�, gives rise to
the difference in slopes as illustrated in Fig. 21.

For the two combination of b’s the two-point and three-
points results are consistent for cA� ~m�. This is expected
because, as discussed in Sec. IV, at each quark mass the ~m
extracted from the two discretization schemes are, up to
O�a3�, the same, provided the mass dependent cA�m� are
used. We also find that the fits to two-point data with cA�m�
are marginally better. So we use estimates obtained from
the two-point data with cA� ~m� for the central values.

Note that the considerations regarding choice of cA� ~m�
versus cA�0� here are different from those applied in
Sec. VII when determining ~bA–~bV . To avoid confusion it
is worthwhile summarizing our choices. The quark mass ~m
and cA� ~m� are extracted simultaneously from the two-point
AWI. We then use these ~m and cA� ~m� in all calculations of
�S. For improving the external current, AI, in the three-
point AWI we use cA�0�. Lastly, the ‘‘slope-ratio’’ method,
where we use the average of data with cA� ~m� and cA�0�,
gives cV�0� needed to improve the vector current.

The estimate of ~bA � ~bP � ~bS=2 from fits to Eq. (20)
using the full set of masses (degenerate and nondegenerate)
is very similar to that obtained using only the degenerate
set. Including nondegenerate combinations we find that ~bm
can also be extracted reliably. With ~bA � ~bP � ~bS=2 and
~bS in hand we can finally extract ~bP in two ways. The first
is obtained by combining ~bP � ~bS and ~bS and the second
combines ~bV , ~bA–~bV , ~bA � ~bP � ~bS=2 and ~bS. Both esti-
mates use one combination of b’s from the three-point
axial Ward identity. These are of similar quality and domi-
nate the errors. We find that these two estimates of ~bP,
which provide a consistency check, differ at the level of the
uncertainties present in all combinations of b’s extracted
using three-point AWI. For our final estimates of ~bP given
in Table VI we take the weighted average.

XI. cT

cT is extracted by solving, for each ~m3, the Ward identity

1� acT

P
~y
h��@4Vk	

�13�� ~y; y4�T
�31�
k4 �0�i

P
~y
hT�13�
k4 � ~y; y4�T

�31�
k4 �0�i

� Z0
A

P
~y
h�S�12�

I T�23�
ij � ~y; y4�T

�31�
k4 �0�i

P
~y
hT�13�
k4 � ~y; y4�T

�31�
k4 �0�i

; (21)

and extrapolating these estimates to ~m3 � 0 as discussed in
Ref. [5]. The quality of the data for the ratios on the left and
-18



FIG. 23 (color online). The signal in the ratio of correlators
defined on the right hand side of Eq. (21). This 64NP data are
used to extract cT . In all four cases the data have to be multiplied
by the respective values of 2�3, the lattice normalization of the
additional propagator in the numerator.

FIG. 24. cT is extracted using a quadratic fit to all seven quark
masses (�1 � �7) for the 64NP data set with two-point discre-
tization and cA� ~m�.

FIG. 22 (color online). The signal in the ratio of correlators
used to extract cT and defined on the left hand side of Eq. (21).
The points are from 64NP two-point data with �3 quark propa-
gators.
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right hand sides of this equation is very good as illustrated
in Figs. 22 and 23. We find that the two-point and three-
point methods give consistent estimates after the chiral
extrapolations. We take the two-point value as our final
estimate and the difference from the three-point result as a
systematic uncertainty.

The data, illustrated in Fig. 24, exhibit a behavior linear
in ~m3. This can arise due to corrections of the form
O�a�a ~m3�. We had erroneously neglected this O� ~m3a�
dependence in cT in previous analyses. The slopes,
�0:33�11�, �0:21�10� and �0:17�3� at � � 6:0, 6.2, and
6.4, respectively, are consistent with an a� behavior. The
change in cT between a constant and a linear fit are
significant at the 1� level, i.e. they change from
0:063�7� ! 0:085�12�, 0:051�7� ! 0:063�10�, 0:041�3� !
0:054�5� for the three � values, respectively. Thus, our new
estimates, based on linear fits, differ from those quoted in
Ref. [5].
XII. EQUATION-OF-MOTION OPERATORS

We extract the coefficients, c0O, of the equation-of-
motion operators from the ~m12 dependence of the three-
point AWI [5]:

h
R
V d

4x�S�12�
I O�23�

I �y4; ~y�J�31��0�i

h�O�13�
I �y4; ~y�J�31��0�i

�
Z�13�
�O

Z�12�
A Z�23�

O

� a
c0P � c

0
O

2
~m12 �O�a2�: (22)

This can be rewritten as
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TABLE X. The three contributions to the coefficient of the
equation-of-motion operators c0O � c

0
P for the 62NP and 64NP

data sets using the two-point derivative data and cA� ~m� in the
calculation of �S and cA�0�, cV �0�, cT�0� in the discretization of
the operators.

62NP

c0O � c
0
P sO XO�b�O � bO�=2 XObA

c0V � c
0
P �0:22�05� �0:06�2� 1.50(5)

c0A � c
0
P �0:15�07� �0:05�5� 1.42(5)

c0P � c
0
P �0:17�10� �0:11�6� 1.56(6)

c0S � c
0
P �0:15�03� �0:05�1� 1.29(5)

c0T � c
0
P �0:21�07� �0:02�5� 1.45(5)

64NP
c0O � c

0
P sO XO�b�O � bO�=2 XObA

c0V � c
0
P �0:18�5� �0:08�3� 1.36(6)

c0A � c
0
P �0:08�6� �0:08�4� 1.27(6)

c0P � c
0
P �0:84�36� �0:41�32� 1.49(8)

c0S � c
0
P �0:06�4� �0:06�3� 1.18(6)

c0T � c
0
P �0:17�7� �0:05�5� 1.31(6)
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c0P � c
0
O � 2sO � XO�~b�O � ~bO � 2~bA�; (23)
where XO � Z0
�O=Z

0
AZ

0
O and sO is the slope, in the limit

~m3 ! 0, of the left hand side of Eq. (22) with respect to ~m1

for fixed ~m3. The results for c0P � c
0
O are shown in
FIG. 25 (color online). Quadratic fits to the l.h.s. of Eq. (22)
versus a ~m. The slopes sO contribute to the coefficient of the
equation-of-motion operators through Eq. (23). The data are for
64NP with two-point discretization, cA� ~m� and ~m3 chosen to be
�3.
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Table VII, and for the three individual pieces sO,
XO�b�O � bO�=2, and XObA in Table X.

The quality of all the results is dominated by how well
we can measure c0P. Unfortunately, the intermediate state in
the relevant correlation functions is a scalar which has a
poor signal. To obtain a flat region with respect to the time
slice of the operator insertion we fit the ratio on the l.h.s. of
Eq. (22) allowing ~m in �S to be a free parameter. The
resulting ~m differ from those obtained using Eq. (7) by
about 7%, 4%, and 2% at � � 6:0, 6.2, and 6.4,
respectively.

There is an additional systematic uncertainty of O�a� �
0:1 in the determination of any slope from the chiral fits as
discussed previously. This impacts the determination of all
three terms sO, XO�b�O � bO�=2 and XObA.

Examples of fits to the left hand side of Eq. (22) are
shown in Fig. 25 for the 64NP data set. The estimates, at
leading order, should not depend on ~m3, however, the data
show higher-order effects. We, therefore, use a quadratic
extrapolation in ~m3 at � � 6:4 and linear at � � 6:0 and
6.2 to get sO. This changes the estimates from those
presented in [2,5].

There is a very significant improvement in the signal for
both the individual terms and the final c0P � c

0
O as �

increases. Nevertheless, due to the uncertainties discussed
above, all the c0 could have additional systematic uncer-
tainties similar to the errors quoted in Table VII, whose
resolution is beyond the scope of this work. Thus, we
consider our estimates as qualitative and warn the reader
that the difference from the tree level value c0O � 1 should
be used with caution.
XIII. COMPARISON WITH RESULTS BY THE
ALPHA COLLABORATION

The ALPHA Collaboration has used a very different
method i.e., the Schrodinger Functional method, and their
estimates have the largest differences from ours, so it is
worthwhile comparing the two sets of values for Z0

A, Z0
V ,

Z0
P=Z

0
S, cA, cV , and bV . We expect the difference to vanish

as O�a2� for Z0
A, Z0

V and Z0
P=Z

0
S, and as O�a� for cA, cV and

bV . We find that, within combined errors, the estimates for
bV by the LANL, ALPHA, and QCDSF Collaboration are
already consistent at all three � values as shown in
Table IX. Similarly, estimates for Z0

P=Z
0
S by the LANL

and ALPHA Collaborations agree. For the other four quan-
tities, there is a statistically significant difference, and we
have attempted to see whether the lattice spacing depen-
dence is consistent with theoretical expectations. To do
this, we have fit the difference �X � XLANL � XALPHA to
an appropriate function of a, with the results:
�Z0
V � 0:004�1� � �261�16�a	2; 	2=ndf � 0:03;

(24)
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�Z0
A � �0:002�12� � �222�190�a	2; 	2=ndf � 0:5;

(25)

�cA � �188�39�a� �769�74�a	2; 	2=ndf � 0:4;

(26)

�cV � �0:15�14� � 703�431�a; 	2=ndf � 0:01;

(27)

where a is in units of MeV�1 so that the coefficients are in
units of MeV. Error estimates in �X were determined by
adding the two independent statistical errors in quadra-
tures. A number of comments are in order:
(i) T
hese fits are very sensitive to the errors assigned to
�X and should only be used to draw qualitative
conclusions.
(ii) A
s noted earlier, our condition (mij independent of
t for t � 2) for fixing cA, and the variation in the
physical size of our sources with a may lead to a
more complicated dependence on a than simply the
leading order expectation. Similarly, we have
chosen different forms for the chiral extrapolation
at the various �’s. These issues have been ignored
here given the small number of values of �.
(iii) F
or Z0
V and Z0

A we expect a vanishing intercept and
a difference proportional to a2. This expectation is
borne out reasonably well. The nonzero value for
the intercept in �Z0

V could be a manifestation of
higher-order terms that are ignored in our fit. The
size of the a2 term is consistent with being
��a�QCD�

2.

(iv) F
its to �cA without a quadratic term have large 	2.

The linear plus quadratic fit given in Eq. (27) does
slightly better than constant plus quadratic. The fits
are dominated by the difference at � � 6:0 where
our estimate agrees with that given in Ref. [16].
(v) E
stimates of cV by the ALPHA Collaboration are
systematically much larger. The fit in Eq. (27) has
large coefficients, however the errors are equally
large. The calculation of cV warrants further study
since the differences are large.
XIV. COMPARISON WITH PERTURBATION
THEORY

The data at three values of the coupling allow us to also
fit the difference between the nonperturbative and tadpole
improved one-loop estimates as a function of a and 
2

s , i.e.,
including both the leading order discretization and pertur-
bative corrections. The results of these fits are

�Z0
V � ��192a�2 � �1:3
s�2; 	2=ndf � 0:9; (28)

�Z0
A � ��159a�2 � �1:2
s�2; 	2=ndf � 0:5; (29)
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��Z0
P=Z

0
S� � ��439a�2 � �1:9
s�

2; 	2=ndf � 3:5;

(30)

�cV � ��138a� � �1:5
s�2; 	2=ndf � 0:4; (31)

�cA � �30a� � �1:4
s�2; 	2=ndf � 0:01; (32)

�cT � �130a� � �0:4
s�
2; 	2=ndf � 0:1; (33)

�~bV � �1197a� � �3:8
s�2; 	2=ndf � 3:2; (34)

�bV � �630a� � �1:8
s�2; 	2=ndf � 6:3; (35)

�~bA � ��770a� � �3:5
s�
2; 	2=ndf � 0:8; (36)

�~bP � ��857a� � �1:9
s�2; 	2=ndf � 2:3; (37)

�~bS � �507a� � �2:3
s�
2; 	2=ndf � 8:9; (38)

where a is expressed in MeV�1, �X � XLANL � X1�loop,
and 
s � g2=�4�u4

0� is the tadpole improved coupling
with values 0.1340, 0.1255 and 0.1183 at the three �.
The tadpole factor u0 is chosen to be the fourth root of
the expectation value of the plaquette.

One conclusion from these fits is that one-loop tadpole
improved perturbation theory estimates of the Z’s and c’s
underestimate the corrections. The deviations can, how-
ever, be explained by coefficients of reasonable size, i.e.
the coefficient of O�a� is 
 �QCD and the perturbative
corrections are �1� 2�
2

s . The case of Z0
P=Z

0
S is marginal,

and we point to nonperturbative calculations using external
quark and gluon states (the RI/MOM method) that show
that the majority of the difference comes from 1-loop
perturbation theory significantly underestimating (1�
Z0
P) [11].
The most striking differences from perturbation theory

are for the b’s. We stress, however, that the fits are very
poor as evident from the 	2=ndf. There are two useful
statements we can make. In the case of bV (and similarly
~bV), the agreement between our results and those by the
ALPHA, QCDSF, and SPQcdR Collaborations [11,12,15],
suggests that 1-loop perturbation theory underestimates the
correction. Second, at � � 6:4 ~bA, bA, ~bP, and ~bS are in
good agreement with perturbation theory.

XV. CONCLUSION

We have presented new results for renormalization and
improvement constants of bilinear operators at � � 6:4.
Combining these with our previous estimates at � � 6:0,
and 6.2, and with the results from the ALPHA
Collaboration we are able to quantify residual discretiza-
tion errors. Overall, we find that the efficacy of the method
improves very noticeably with the coupling �. Using data
at � � 6:4 we are able to resolve higher-order mass-
-21
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dependent corrections in the chiral extrapolation for all the
renormalization and improvement constants presented
here. Our final results are summarized in Table VI.

Determination of cA is central to O�a� improved calcu-
lations. By comparing results from three different discre-
tization schemes we improve the reliability of our error
estimate. We also show that reliable estimates from corre-
lators at finite momenta can be extracted and find that these
give consistent results with those from zero-momentum
correlators once additional O�p2a2� errors are taken into
account.

We find that both cA and cV are small, and the most
significant differences from estimates by the ALHPA
Collaboration are at the strongest coupling � � 6:0.

We also compare our nonperturbative estimates with
one-loop tadpole improved perturbation theory. Overall,
we find estimates based on 1-loop tadpole improved per-
114507
turbation theory underestimate the corrections in the Z’s
and c’s. The differences can, however, be explained by
terms of O��QCDa� and �1� 2�
2

s .
The most significant differences are in bV and ~bV which

are hard to explain by a combination of O�a� and 
2
s errors

with coefficients of reasonable size. All the other b’s show
agreement with perturbative estimates by � � 6:4.
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