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Continuum limit of HP1-based topological charge density distribution
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The bulk distribution of the topological charge density, constructed via the HP1 �-model embedding
method, is investigated. We argue that the specific pattern of leading power corrections to gluon
condensate hints on a particular UV divergent structure of HP1 �-model fields, which in turn implies
the linear divergence of the corresponding topological density in the continuum limit. We show that under
testable assumptions, the topological charge is to be distributed within three-dimensional sign-coherent
domains and, conversely, the dimensionality of sign-coherent regions dictates the leading divergence of
the topological density. Confronting the proposed scenario with lattice data we present evidence for
indeed peculiar divergence of the embedded fields. Then the UV behavior of the topological density is
studied directly and is found to agree with our proposition. Finally, we introduce a method to investigate
the dimensionality of relevant topological fluctuations and show that indeed topological charge sign-
coherent regions are likely to be three-dimensional.
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I. INTRODUCTION

Topology investigations had always been a conspicuous
topic for the lattice community and the recent advances
have indeed put it on solid ground. Both the topological
charge and its density are now computable on thermalized
vacuum configurations and the results already obtained in
pure Yang-Mills theories indicate that the conventional
instanton based models are to be strongly modified. Here
we basically mean the discovery of global topological
charge sign-coherent regions [1] and, what is even more
important for us, the lower dimensionality of these regions
[1–6], which are now believed to be three dimensional.
Note that the lower dimensionality of physically relevant
vacuum fluctuations should not come completely unex-
pected, it had been repeatedly discussed in the recent
past (see, e.g., Refs. [7–9]).

It is important that qualitatively the same picture of
relevant topological fluctuations appeared recently within
a radically different approach introduced and developed in
Refs. [10,11]. Without mentioning all the details and tech-
nicalities involved we note only that the HP1 embedding
method is the nearest to the classical Atiyah-Drinfeld-
Hitchin-Manin (ADHM) investigation of SU(2) gauge
fields topology and essentially reconstructs the topology
defining map S4 ! HP1 � S4, in terms of which both the
topological charge and its density obtain unambiguous and
well-defined meaning. We are not in the position to review
all the results obtained in [10,11], however, it is important
that HP1 embedding allows us to get rid of leading pertur-
bative divergences in various observables. Moreover, it
reproduces the topological aspects of SU(2) Yang-Mills
theory, is fairly compatible with other topology investiga-
tion approaches, and allows us to calculate with amazing
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accuracy the gluon condensate, demonstrating firmly that
its quadratic power correction does not vanish. It is crucial
that the only nontrivial power dependence of HP1 projected
curvature upon UV cutoff is contained in the quadratic
term, which must be encoded in the local structure of the
topology defining map S4 ! HP1. In Sec. II A we argue
that the only possibility to reproduce the observed pattern
of power corrections is to assume that the mapping S4 !
HP1 is highly asymmetric so that the corresponding
Jacobian (which is essentially equivalent to the topological
density) diverges linearly with diminishing lattice spacing.
In turn this divergence implies rather peculiar geometry of
the relevant topological excitations. Namely, we show in
Sec. II B that the topological charge sign-coherent regions
are to be three-dimensional domains embedded into origi-
nal four-dimensional space. Here the consistency check is
provided by the fluctuations of topological charges asso-
ciated with sign-coherent regions.

An attempt to confront the above scenario with the
lattice data brings out a wealth of both technical and theo-
retical issues, which are addressed in Sec. III. In Sec. III A
we present numerical measurements which justify our
conclusion about the local structure of the map S4 !
HP1. The direct measurement of the UV behavior of the
topological density (Secs. III B and III C) necessitates the
invention of a new calculation algorithm, which turns out
to be fast and rather accurate. It allows us to make statis-
tically significant comparison of the theoretical consider-
ations with lattice data and confirms that the characteristic
topological density is indeed divergent, but at most line-
arly, in the continuum limit. As far as the dimensionality of
relevant fluctuations is concerned, we investigate it in
Sec. III D and develop an unambiguous, in fact, method
of its determination. Essentially it is the specially crafted
biased random walk model embedded into the ambient
topological density environment [12]. We argue that the
appearance of critical-like behavior of the model signifies
-1 © 2006 The American Physical Society
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the lower dimensional long-range order present in the
topological density background. We show that a critical
regime does occur and indicates that indeed the density is
concentrated in highly extended submanifolds, the dimen-
sionality of which is compatible with three. Finally, we
investigate the fluctuations of the topological charges as-
sociated with sign-coherent regions and argue that only
three-dimensional domains with linearly divergent topo-
logical density are consistent with theoretical and experi-
mental restrictions imposed on the structure of topological
fluctuations.
II. SCALING OF TOPOLOGICAL DENSITY

A. Gluon condensate, leading power correction and
divergence of topological density

The essence of the HP1 �-model embedding approach is
the assignment of unique configuration of HP1 �-model
fields jqxi to every given SU(2) gauge background A�
(until Sec. III we use continuum notations), where jqxi is
a two-component, normalized hqxjqxi � 1, quaternionic
vector (see Refs. [10,11] for details). The relevant configu-
ration jqxi is defined by the requirement that it provides the
absolute minimum to the functional

F�A; q� �
Z
d4xTr�A� � hqj@�jqi�

2 (1)

for given (fixed) gauge potentials A�. Note that gauge
covariance is maintained exactly since the �-model target
space HP1 is the set of equivalence classes with respect to
jqxi � jqxi�x, �x 2 SU�2�. The uniqueness of the mini-
mum of (1) and the factual absence of Gribov copies
problem was discussed in length in Refs. [10,11] and
here we take it for granted. Therefore the embedded HP1

�-model fields jqxi are unique (although nonlocal) func-
tions of the original potentials. The advantage of the con-
struction is that the gauge fields topology becomes explicit
in terms of jqxi variables. Indeed, the gauge invariant
projectors jqxihqxj provide the map of compactified physi-
cal space S4 into the target space HP1, the degree of which
is equal to the topological charge of the original gauge
background. Furthermore, the local distinction of this map
from the trivial one is the uniquely defined measure of the
topological charge density. One could say that the sole
purpose of the HP1 embedding method is to locally recon-
struct the topology defining map S4 ! HP1, which allows
us to get essentially all the topological aspects of the
original background.

Then it is natural to introduce the HP1 projection

A� ! AHP
� � �hqj@�jqi; (2)

which replaces A� with its best possible approximation by
�-model induced potentials. The striking properties of the
projected fields AHP

� were investigated in detail in Ref. [11].
In particular, it was shown that AHP

� exactly reproduce most
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of the nonperturbative aspects of the original SU(2) con-
figurations, while containing no sign whatsoever of usual
perturbative divergences. To the contrary, the kernel of the
map (2) was shown to correspond to pure perturbation
theory with identically trivial topology and vanishing
string tension. Without mentioning all the aspects and
properties of HP1 projection (2) let us note that it allows
us to calculate with previously inaccessible accuracy the
gluon condensate and its leading power correction. Indeed,
the spacing dependence of HP1 projected gauge curvature
FHP
�� was found to be astonishingly well described by

�
1

2
Tr�FHP

���
2

�
�

4�2

a2 �
�2

6

�
�s
�
G2

�
; (3)

�2 � �61�3� MeV	2;
�
�s
�
G2

�
� 0:0271�10� GeV4;

(4)

where a is the lattice spacing (1=a serves as the UV cut-
off). It is crucial that Eq. (3) does not contain any sign of
usual perturbative contribution of order O�a�4�. Note that
the value of the �2 coefficient turns out to be unexpectedly
small, nevertheless it fits nicely into the known bounds on
the magnitude of the quadratic correction term (see
Ref. [13] for recent review). While the actual numbers
quoted in (4) are not important for the present discussion,
it is crucial that they both are definitely nonzero and there-
fore the spacing dependence of hTr�FHP

���
2i includes only

O�a�2� and O�a0� terms.
To analyze the consequences of Eq. (3) let us consider

point n 2 S4, in the neighborhood of which the map S4 !
HP1 is nondegenerate. In the vicinity of n and its
image m 2 HP1 we introduce local coordinates x� and
y�, � � 0; . . . ; 3 (stereographic projection from points n
and m correspondingly) such that y��x � 0� � 0.
Nondegeneracy means that det�@y=@x	 � 0 and hence
the function y�x� is invertible. From the specific explicit
form of HP1 projected fields (2) we conclude that

AHP
� �x� � �

�
qx

�������� @
@x�

��������qx
�
� J���x�A

inst
� �y�x��; (5)

where J�� � @y�=@x� is the Jacobian matrix, Ainst
� �y� is the

potential of classical Belavin-Polyakov-Shvarts-Tyupkin
(BPST) instanton solution with unit radius

Ainst
� �y� � �hqj@�jqi �

� �e�e� � �e�e��y�

2�1� y2�
(6)

and e� denotes quaternionic basis. Note that Eq. (5) is local
and crucially depends upon the space-time varying matrix
J��. Furthermore, Eq. (5) relies heavily on the HP1 projec-
tion (2) and would not be valid for generic gauge poten-
tials. The corresponding HP1 projected curvature is
similarly expressible in terms of instantonic field-strength
-2
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FHP
�� � J�1

� J
�2
� Finst

�1�2
; (7)

and therefore at point n 2 S4 we have

1
2 Tr�FHP

���
2 / �Trg�2 � Trg2; (8)

where we have introduced the metric g�� � J�� J
�
� and

skipped inessential numerical factor. Therefore the study
of the projected curvature h12 Tr�FHP

���
2i is equivalent to the

local investigation of the metric g associated with the
topology defining map S4 ! HP1. In terms of strictly
positive eigenvalues �� of g, Eqs. (3) and (8) implyX
�<�

h����i � A�B 
 a�2; A��4
QCD; B��2

QCD;

(9)

where we have generically indicated the IR physical scale
involved in Eq. (3) by �QCD and explicitly kept all powers
of lattice spacing. Evidently, Eq. (9) imposes rather strin-
gent restrictions on the distribution of eigenvalues �� and
requires them to depend highly nontrivially upon the UV
cutoff. However, Eq. (9) is not sufficient to analyze this
dependence in detail. The relation, which provides an
additional input and which is verified numerically in
Sec. III A, readsX

�

h��i � �� 	 
 a�2; ���2
QCD; 	� 1:

(10)

Taken at face value it indicates that generically all the
eigenvalues are quadratically divergent in the limit a!
0. However, it turns out that the simplest ansatz

h�0i � 	 
 a�2; h�ii � �i; i � 1; 2; 3;

�i ��2
QCD;

X
i

�i � �; (11)

is capable not only of reproducing the observed pattern of
power corrections (9) and (10), but also passes stringent
consistency check, which we describe next. Note that
without loss of generality the divergent behavior was as-
cribed to the first eigenvalue. However, it is clear that any
particular enumeration of �� has no invariant meaning.
What is actually meant in Eq. (11) is that only one eigen-
value is quadratically divergent, but it is not possible to
assign a particular number to it before averaging. In order
to convince the reader that (11) is compatible with both (9)
and (10) we note that since �0 and �i depend upon com-
pletely different scales it is legitimate to write

P
h����i �

h�0i
P
h�ii �

P
h�i�ji. Then Eq. (9) becomes

�	 
 a�2 �
X
i<j

h�i�ji � A� B 
 a�2 (12)

and under the quite natural [in view of (11)] assumptionP
h�i�ji ��4

QCD it leads to indeed stringent relation be-
tween various coefficients
114506
� 
 	 � B: (13)
It is evident that this equality is highly nontrivial and is not
guaranteed a priori. If confirmed by lattice measurements
it would imply the validity of the ansatz (11) thus providing
the means to check its self-consistency. As is discussed in
Sec. III A, Eq. (13) is strongly supported by the measure-
ments and is fulfilled with rather amazing accuracy.
Moreover, in that section we also consider along the
same lines the triple correlator

P
�<�<�h������i, for

which the analogous to (9) relation holds and which pro-
vides the additional consistency check similar to (13).
Note, however, that in the latter case the numerical uncer-
tainties are larger and for this reason we do not consider the
triple correlator here.

To summarize, we found that the ansatz (11) reproduces
precisely the observed pattern of leading power divergen-
ces (3), (9), and (10) and is fairly compatible with mea-
sured local characteristics of the topology defining map
S4 ! HP1. Since even the relation (13) is strongly sup-
ported by the data, we are confident that Eq. (11) reflects
correctly the leading UV dependence of the map S4 !
HP1, which therefore turns out to be highly asymmetric
on average. It is worth to note that the standard picture
implies h��i / �2

QCD meaning that unit topological charge
is gathered at large (of order ��1

QCD) distances. The singular
behavior of one eigenvalue h�0i / 1=a2 signifies immedi-
ately that the topological susceptibility 
 � hQ2i=V is
saturated on submanifolds with characteristic four-volume
of order a 
��3

QCD. In other words the topological density is
to be concentrated mostly in three-dimensional domains
embedded into Euclidean four-dimensional space (we re-
turn to this problem in Sec. II B).

The above results have rather dramatic consequences for
the topological density qx. To illustrate this let us consider
hq2i defined as hq2i � limjxj!0hq0qxi. Note that within the
usual approaches this definition is, in fact, ambiguous since
the correlation function hq0qxi is perturbatively dominated
at small distances hq0qxi � �1=jxj8. Hence the perturba-
tive ambiguities make the value of hq2i undefined and the
standard lore is to fix it by the requirement 
 �

R
hq0qxi.

However, it is crucial that the HP1 embedding approach to
the gauge fields topology is factually exempt from pertur-
bation theory. The best illustration is provided by Eq. (3)
and in connection with topological density correlation
function we discuss this in Sec. III C. Therefore for
HP1-based topological density, which in the continuum
limit is given by q / TrFHP ~FHP, the estimate hq0qxi �
�1=jxj8 is not valid and UV behavior of hq2i should be
considered anew. Note also that the possible UV diver-
gence of hq2i could not be subtracted as usual and is not
equivalent to conventional contact terms. From now on and
throughout the paper the topological density qx is always
understood via the HP1 embedding approach.
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In fact, the leading UV behavior of HP1-based topologi-
cal density could be established from Eq. (7). Indeed, from
the well-known properties of the instanton solution it fol-
lows that

q / TrFHP ~FHP / detJ � �det1=2g: (14)

Here it is convenient to introduce the notion of character-
istic topological density �q, which could be defined rigor-
ously as �q2 � hq2i. However, below we will sometimes use
this term and the same symbol �q to denote just the typical
scale of the topological density fluctuations. The justifica-
tion is that as far as the dependence on UV and IR scales is
concerned these definitions essentially coincide. There-
fore, from Eq. (14) we conclude that

�q 2 � hq2i / hdetgi �
�Y
�

��

�
�

�6
QCD

a2 ; (15)

where Eq. (11) had been used. The conclusion is that even
the nonperturbatively defined topological density is diver-
gent in the continuum limit reflecting directly the highly
asymmetric local structure of the topology defining map
S4 ! HP1. Note however that this divergence is incompa-
rable with the usual perturbative one hq2i � 1=a8, which,
in fact, is even nonintegrable. Of course, it is understood
that the very definition of the topological density is arbi-
trary to a large extent (full derivative could always be
added). However, the HP1 embedding method is specified
completely with no free parameters involved. Moreover,
the corresponding topological density is definitely exempt
from perturbative ambiguities so that the divergence (15)
could not be equivalent to the contact term and should be
dealt with accurately. In particular, we argue in the next
section that Eq. (15) implies rather peculiar geometry of
vacuum topological fluctuations.

B. Dimensionality of topological fluctuations

The problem to be addressed in this section is the
geometrical properties of the relevant vacuum topological
fluctuations and, in particular, their dimensionality. It is
crucial to discuss first the term ‘‘relevant’’ above. Note that
any particular distribution of topological density in finite
volume V could be divided unambiguously into the sign-
coherent qx _ 0 regions so that the total charge is given by

Q �
Z
q �

Z
q>0

q�
Z
q<0

q � Q� �Q�; (16)

where the relative sign ofQ�,Q� was made explicit in the
last equality (Q� > 0). Physics-wise it is natural to identify
the relevant fluctuations with domains possessing topologi-
cal density larger than or of order �q � hq2i1=2. Indeed �q is
the only scale inherent to the density distribution and
clearly the domains with jqj * �q give major contribution
to the topological charges Q�. As far as the volumes of
these domains are concerned, it seems natural to estimate
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them as

V� � Q�= �q: (17)

Note that Eq. (17) is, in fact, the definition of the quantities
V� and is not unique. Other ‘‘reasonable’’ definitions
would differ in details, however, Eq. (17) seems to be
indeed generic as far as the leading UV/IR dependence is
concerned. Note also that (17) does not imply any specific
properties of the volumes V�, in particular, V� � V� � V.
For mean-squared topological charge the decomposition
(16) implies

hQ2i / hQ2
�i � hQ�Q�i; (18)

where we have generically assumed that hQ2
�i � hQ2

�i.
Since the topological susceptibility 
 is a priori postulated
to be finite in the continuum limit, we have

hQ2
�i � hQ�Q�i

V
� �q2 hV

2
�i � hV�V�i

V
��4

QCD: (19)

Keeping in mind the ultraviolet divergence of �q, Eq. (15),
we conclude that the independent fluctuations of the vol-
umes V� are strictly prohibited. Instead the magnitudes of
V� and V� are to be tuned up to the order O�a2�

h�V� � V��
2i � a2��2

QCD 
 V; (20)

since otherwise the topological susceptibility would di-
verge in the continuum limit. It is important that, contrary
to the case of zero-point fluctuations, for nonperturbatively
defined topological density there are no arguments
which would guarantee the exact generic cancellation of
divergent terms in the integral Q �

R
q. In fact, the fine

tuning assumption (20) is not new, similar in spirit obser-
vations were made already in the recent past (see, e.g.,
Refs. [5,8,9,14]). However, we would like to reformulate
the problem so that explicit powers of lattice spacing do not
appear. Indeed, Eq. (20) implicitly assumes that the vol-
umes V� are four-dimensional and is satisfied identically if
the topological density is distributed in three-dimensional
domains V�3�� � V�=a, which are allowed to fluctuate on
the scale of �QCD

h�V�3�� � V
�3�
� �

2i � V=�2
QCD: (21)

Note that (21) is not the real solution, but rather the
reformulation, of the fine tuning problem. Indeed, although
the explicit spacing dependence is gone, the three-
dimensional structure of topological fluctuations in D �
4 YM theory is equivalent, in fact, to a sort of fine tuning.

In order to make the presentation more coherent, let us
return to Eq. (18). We could easily bypass Eq. (20) assum-
ing that the charges Q� fluctuate independently

hQ�Q�i � hQ�ihQ�i � hQ�i2: (22)

Then Eq. (19) translates into
-4



TABLE I. Simulation parameters.

	 a, fm Lt Ls Vphys, fm4 Nconf Nconf
q

2.4000 0.1193(9) 16 16 13.3(4) 198 70
2.4273 0.1083(15) 16 12 3.8(2) 250 80
2.4500 0.0996(22) 14 14 3.8(2) 200 80
2.4750 0.0913(6) 16 16 4.6(1) 380 75
2.5000 0.0854(4) 18 16 3.92(7) 200 75
2.5550 0.0704(9) 20 20 3.9(2) 80 80
2.6000 0.0601(3) 28 28 8.0(2) 65 60
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hQ2
�i � hQ�i

2

V
/
hQ�i
V
� �q
hV�i
V
��4

QCD; (23)

where the validity of central limit estimate

hQ2
�i � hQ�i

2 / hQ�i (24)

was supposed. Then the relation between ultraviolet be-
havior of characteristic topological density and the dimen-
sionality of the corresponding fluctuations could be given
as follows. Assume that �q is of order a�� and that the
dimensionality of the topological fluctuations is D so that
V� � a4�D 
 V�D�� , where V�D�� is spacing independent.
Then


� a4���D 

hV�D�� i
V
��4

QCD (25)

and the relation between UV behavior of the characteristic
topological density and the dimensionality of the relevant
topological fluctuations follows

�q� a��; dim�V�	 � 4� �: (26)

However, it is clear that the argumentation relies heavily on
the assumption that the fluctuations of the topological
charges Q� obey Eq. (22) [as well as Eq. (24), which,
however, seems to be less restrictive]. A priori Eq. (22) is
by no means evident and being confronted with experi-
mental lattice data provides the stringent test of the above
scenario. Various experimental aspects of the problem are
addressed in the next section. Here we note only that
Eqs. (15) and (22) imply the three-dimensional structure
of vacuum topological fluctuations. Evidently, the reversed
argumentation could also be given, namely, the dimension-
ality of sign-coherent topological charge fluctuations de-
termines the leading ultraviolet behavior of characteristic
topological density provided that Eq. (22) is valid. We
stress that the essence of the above presentation is the
factual absence of leading perturbative divergences in
HP1 projected fields and in the corresponding topological
density. One could convince oneself that in the case of
perturbatively dominated topological density, �q� a�4,
the assumption (20) (with a2 replaced by a8 on the right-
hand side) holds true, while Eq. (22) is violated and reads
instead hQ�Q�i � hQ2

�i. The conclusion is that Eqs. (15),
(22), and (24) are indeed crucial to validate the lower
dimensionality of the topological charge fluctuations.

III. CONFRONTING WITH LATTICE DATA

In this section we describe in detail the results of our
numerical investigations of the scenario outlined above. In
Sec. III A we study the lattice spacing dependence of the
eigenvalues of the metric associated with the topology
defining map S4 ! HP1 and discuss in detail the results
announced in Sec. II A. In Sec. III B the topological density
at various scales is considered; we show that even the
simplest approach indeed qualitatively confirms the diver-
114506
gence of characteristic topological density in the contin-
uum limit. Section III C is devoted to the investigation of
the hq0qxi correlation function from which we deduce the
scaling law of the characteristic topological density. Then
in Sec. III D we propose a method, which includes essen-
tially no free parameters and allows us to directly establish
the dimensionality of topological fluctuations. Finally in
Sec. III E the topological charges associated with sign-
coherent domains are shown to fluctuate indeed indepen-
dently thus providing the self-consistency check of the
above scenario.

The numerical measurements were performed on 7 sets
(Table I) of statistically independent SU(2) gauge configu-
rations generated with standard Wilson action. Most of the
configurations listed in Table I are the same as were used in
Refs. [10,11] (except for the set at 	 � 2:555). The last
column in Table I represents the number of configurations
on which we calculated the bulk topological charge den-
sity. Note that the number of analyzed configurations at
each spacing is indeed rather large, which is due to the new
algorithm used to evaluate the topological density (the
algorithm is described in the appendix). The lattice spacing
values quoted in Table I were partially taken from
Refs. [15] and fixed by the physical value of SU(2) string
tension

����
�
p
� 440 MeV. Note that for 	 � 2:4273 and

	 � 2:555 the lattice spacings and corresponding rather
conservative error estimates were obtained via interpola-
tion in between the points quoted in [15].

A. Local structure of the map S4 ! HP1

The local structure of S4 ! HP1 mapping is character-
ized by the corresponding Jacobian J�� [see (5), (7), and
(14)], however in this section we concentrate on the in-
duced metric g�� � J�� J

�
� and its strictly positive eigen-

values ��, � � 0; . . . ; 3. As we noted already, any
particular enumeration of �� has no invariant meaning so
that the meaningful observables associated with g�� can-
not depend upon the ordering. Let us first describe the
actual numerical procedure used to extract the spectrum
f��g at any particular lattice point x, at which we know the
unit five-dimensional vector nAx 2 HP1, A � 0; . . . ; 4 as
well as the analogous quantities at the neighboring sites
nAx�� 2 HP1. In accord with what had been said in Sec. II A
-5
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we introduce stereographically projected coordinates y�x ,
y�x�� such that y�x � 0 and then consider the discretized
approximation to the Jacobian

J�� �x� � a�1 
 �y�x�� � y
�
x � � a�1 
 y�x��; (27)

from which the metric and its spectrum f��g are obtained
straightforwardly. It goes without saying that we con-
fronted the quantity �

P
�<�����	�x� with �12 Tr�FHP

���
2	�x�

on each configuration and found that Eq. (8) is satisfied
almost identically at every lattice site.

The lattice spacing dependence was measured for three
ordering insensitive observables associated with g��

M 1�a� �
X
�

h��i; (28)

M 2�a� �
X
�<�

h����i; (29)

M 3�a� �
X

�<�<�

h������i: (30)

The results of our measurements are presented on Fig. 1
and indicate strongly that UV behavior of all these quan-
tities is well described by

Mn � �n � 	n 
 a
�2; n � 1; 2; 3;

�n ��2n
QCD; 	n ��2�n�1�

QCD :
(31)

It is remarkable that the observed pattern of power correc-
tions is universal and for each correlator (28)–(30) in-
cludes only terms of order O�a0� and O�a�2�.

What is even more important here is that the numerical
data (31) is in perfect qualitative agreement with the as-
sumption (11). Moreover, the actual numerical values of
the coefficients �n, 	n provide the self-consistency check
 0

0.2

0.4

0.6

0.8

 1

1.2

1.4

1.6

1.8

 0  0.002  0.004  0.006  0.008  0.01  0.012

a2, fm2

10 ⋅ a2 ⋅ M1(a), fm0

a2 ⋅ M2(a), fm-2

0.1 ⋅ a2 ⋅ M3(a), fm-4

FIG. 1 (color online). Scaling of the correlators Mn,
Eqs. (28)–(30), with diminishing lattice spacing. Lines represent
the best fits according to Eq. (31).
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of the ansatz (11). Indeed, considering Eq. (31) for n � 1
and n � 2 we obtain

�1 
 	1 � 	2;
X
i<j

h�i�ji � �2; (32)

while the combination of n � 2 and n � 3 cases leads to

	3 � 	1 

X
i<j

h�i�ji � 	1 
 �2: (33)

Evidently, Eqs. (32) and (33) are highly nontrivial and their
numerical validity would definitely signify the correctness
of the ansatz (11). As far as the numerical values of the
relevant coefficients are concerned, the outcome of the best
fits according to Eq. (31) is

a2 
 �1 � 11:8�3�; 	1 � 0:018�2�;

a4 
 �2 � 87�3�; a2 
 	2 � 0:24�2�;

a4 
 	3 � 2:1�2�:

(34)

One can see that these numbers are in the perfect agree-
ment with Eq. (32)

�1 
 	1

	2
� 0:9�1�; (35)

and are compatible with Eq. (33)

	1 
 �2

	3
� 0:8�2�; (36)

although the deviation from unity and numerical uncer-
tainty is larger in the latter case.

The conclusion is that numerical data supports strongly
the assumption (11) so that indeed the topology defining
map S4 ! HP1 is likely to be highly asymmetric. One of
the relevant eigenvalues is divergent in the continuum limit
and seems to depend only on the ultraviolet cutoff. On the
other hand, the remaining eigenvalues are sensitive solely
to the infrared scale and show no divergences near the
continuum limit.

Finally, we note that it is tempting to consider along the
same lines the fourth order correlator M4 � h

Q
��i and

then relate via Eq. (15) its spacing dependence with leading
UV behavior of the topological density. In turns out that
numerically M4�a� is indeed compatible with (31), how-
ever, we refrain to rely on (15) at finite lattice spacing The
point is that Eq. (15) is certainly valid in the limit a! 0,
provided that M4 stays constant in physical units.
However, due to the suspected power divergence the cor-
rections to Eq. (15) are difficult to estimate.

B. Topological fluctuations at various scales

As was repeatedly stressed in Refs. [10,11] any discus-
sion of the topological charge density within the lattice
settings inevitably introduces a particular cutoff �q on the
magnitude of the density so that q�x� is equated to zero if
-6
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jq�x�j<�q. Indeed, the most straightforward argument
here is that in the numerical simulations the density is
always known with finite accuracy. Thus the numerical
precision provides the finest possible cutoff which in
physical units evidently scales like �q / a

�4. Moreover,
the introduction of (often implicit) finite �q is inherent to
all studies of the gauge fields topology. For instance, the
chiral fermions based topological density, which is given
by the sum of Dirac eigenmodes  � contributions, is
usually either restricted to lowest modes, � <� / �QCD,
or is considered for all modes available on the lattice, � &

1=a. Therefore the actual problem is not the presence of the
cut �q, it is introduced always. The physically meaningful
question is the spacing dependence �q � �q�a� and the
above examples illustrate two extreme cases �q / a

�4 and
�q / �4

QCD.
It is crucial that the scaling law �q�a� could be taken at

will and we are going to exploit this freedom to study the
spacing dependence of the topological density. Indeed, if
the characteristic topological density �q stays constant in
physical units then the volume density of points at which
jq�x�j>�q,

���q� �
1

V

X
x

�
1; jq�x�j>�q

0; otherwise
; (37)

should also be lattice spacing independent for �q / �4
QCD.

Note that the lattice units had been used in (37) and that
���q� is dimensionless, positive, bounded ���q� � 1
quantity, unrelated to the volumes V� discussed in
Sec. II B. It is clear that the divergence �q� a�� would
result in the divergent behavior ���q� � a

�� of the vol-
ume density [16] for physical cut �q / �4

QCD, while ���q�

is to be almost spacing independent for similarly divergent
cut �q / �4

QCD 
 �a�QCD�
��. Therefore the most straight-

forward way to analyze the spacing dependence of the
characteristic topological density is to tune the scaling
law �q�a� until the volume density ���q� becomes con-
stant at various lattice resolutions.

Unfortunately, this approach does not allow us to inves-
tigate the dependence �q�a� precisely. Indeed, on the lattice
we could only probe a finite set of scaling laws �q�a�,
moreover the corresponding estimates of ���q� are always
biased. However, it is crucial that the correct qualitative
picture could easily be obtained this way. We performed
the measurements of the volume density ���q� at various
lattice spacings using three different scaling laws

��n�q / �4
QCD 
 �a�QCD�

�n; n � 0; 1; 2; (38)

where the numerical coefficients were chosen in such a
way that ��n�q � �200 MeV	4, n � 0, 1, 2 at a �
0:1193 fm (this particular choice is motivated below).
The results of our measurements are presented on Fig. 2
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from which it is clear that the volume density of points with
jqxj>��0�q � �200 MeV	4 is rapidly rising with diminish-
ing lattice spacing. Contrary to that the linearly divergent
cut on the topological density, ��1�q � 1=a results in the
almost spacing independent volume density ����1�q � 

0:35. On the other hand, once the quadratically divergent
cut ��2�q � 1=a2 is imposed the quantity ����2�q � diminishes
almost linearly with vanishing lattice spacing and in the
limit a! 0 becomes compatible with zero. The conclu-
sion is that the characteristic magnitude of the topological
density is indeed singular in the continuum limit, the
leading divergence is compatible with linear one

�q / �3
QCD=a (39)

and is in accord with theoretical expectations (15).
Let us discuss the qualitative structure of topological

fluctuations at various cuts �q, which appears to be rather
simple [10,11]. For utterly small values of �q there are
typically only two large (percolating) regions of sign-
coherent topological density, each of which occupies al-
most half of the lattice volume and carries rather large
topological charge Q�, Eq. (16). With rising cutoff the
volume density of percolating regions diminishes, while
the number of small sign-coherent lumps rapidly grows.
Finally a sort of percolation transition happens at which the
percolating regions cease to exist and become indistin-
guishable from the small lumps. After that point the vol-
ume distribution of sign-coherent regions become
universal (�q independent) and is described by rather
remarkable power law. However, the physics changes dras-
tically at the lumps percolation transition. Namely, the
string tension, associated with HP1 projected fields and
which accounts for the full SU(2) string tension in the
continuum limit, vanishes. Already from this observation
we expect that the most physically important topological
-7
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fluctuations are represented by the largest (at given cutoff
�q) lumps in topological density and it is natural to focus
exclusively on their dimensionality. Note that the actual
values of the cuts (38) were taken to be always below the
lumps percolation transition in the whole range of lattice
spacings considered.

However, at any fixed cutoff �q the structure of the
lumps is very complicated and their dimension is, in fact,
not a well-defined concept. Indeed, the notion of dimen-
sionality makes sense only as a scaling relation since at any
fixed lattice spacing the lumps occupy some finite fraction
of the volume. Actually the situation is much worse since
the very definition of the lumps requires introduction of the
cutoff �q, the spacing dependence of which is not fixed.
Moreover, admitting the lower dimensionality of sign-
coherent regions, their volume fraction is not obliged to
be finite in the continuum limit, hence even the spacing
dependence of lumps localization degree (which might be
expressed in terms of inverse participation ratio or similar
quantities) would not reveal their dimensionality.

It is clear that the crucial obstacle in lumps dimension-
ality definition is the necessity to impose the cutoff on the
topological density. The concept of the dimensionality of
topological fluctuations would become unambiguous pro-
vided that we could get rid of explicit �q and hence reject
the language of the lumps. This program is implemented in
Sec. III D. However before going into detail let us study the
divergence (39) more quantitatively and consider the to-
pological density correlation function.

C. hq0qxi correlation function

It is was discussed in brief in Sec. II A that considering
the magnitude of the characteristic topological density
defined by �q2 � limx!0hq0qxi one has to prove that �q
indeed makes sense and is not equivalent to the contact
term inherent to the perturbation theory. It was stated
without proof that this is the case for HP1-based topologi-
cal density. In this section we present the corresponding
data and investigate the correlation function hq0qxi. Note
that the correlator hq0qxi is known to be negative at any
nonvanishing distance [17] provided that the definition of
the topological density is local (see also Refs. [1,3,4] for
discussions). However, the requirement of locality is a
priori violated in the HP1 embedding approach so that
hq0qxi, jxj � 0 is not obliged to be negative. We could
only hope that the intrinsic nonlocality is not so violent and
extends up to some distance R0 fixed in physical units.
Note that this expectation is not completely groundless.
Indeed, many nonperturbative observables, defined via
HP1 projection and studied in Refs. [10,11], do not reveal
any pathology and reproduce, in fact, the corresponding
results in the full theory. Actually the degree of nonlocality
of HP1 method could be estimated from the behavior of
heavy quark potential measured at a � 0:0601 fm in [11]
and it turns out to be of order R0 & 0:2 fm. On the other
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hand, the investigation of the hq0qxi correlation function
allows us to find R0 rather precisely and check its scaling
properties.

Generically we expect that the correlator hq0qxi is to be
positive up to the distance R0 and then should become
negative provided that R0 is finite. Remarkably enough
these expectations are precisely confirmed by the measure-
ments. The positive core of hq0qxi correlation function at
small jxj is presented in physical units on Fig. 3. It is
apparent that the points at various spacings are well de-
scribed by the exponential jxj-dependence

hq0qxi / e
�jxj=Rqq ; jxj & R0: (40)

Note that due to the logarithmic scale used on this plot the
data sets are terminating at the same physical distance, for
larger jxj the correlation function becomes negative.
Therefore the degree of nonlocality inherent to HP1 em-
bedding method is given roughly by

R0 & 0:4 fm (41)

and is indeed constant in physical units as is evident from
Fig. 3. Moreover, the almost perfect scaling of various data
sets indicates once again that HP1 projected fields do not
contain any trace of the perturbation theory. Indeed, the
mixture with perturbative contributions would lead to no-
table �� 1=jxj8 terms and would result in rather abrupt
deviation from the exponential behavior. On the other
hand, at large distances, jxj * R0, the correlation function
hq0qxi indeed becomes negative as is illustrated on Fig. 4.
It is important that the negative part of the hq0qxi correlator
does not show any singularity in the limit a! 0, in par-
ticular, it has nothing to do with usual perturbative
dependence.

Let us consider the scaling properties of the correlation
length Rqq, Eq. (40). As might be expected already from
Fig. 3, Rqq decreases with diminishing lattice spacing. In
more detail, the dependence Rqq�a� is presented on Fig. 5,
-8
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from which it is apparent that the correlation length is
likely to be a linear function of a with rather small con-
tinuum value

Rqq � 0:037�1� fm: (42)

As is apparent from the above presentation, the short
distance behavior of the hq0qxi correlation function is
definitely exempt from the perturbative uncertainties and
in the limit jxj ! 0, the characteristic topological density

�q 2 � hq2i � lim
jxj!0
hq0qxi (43)

has nothing to do with contact terms inherent to the usual
approaches. Therefore let us consider the dependence of �q
upon the ultraviolet cutoff. The results of our measure-
ments are presented on Fig. 6 from which it is clear that
HP1-based characteristic topological density still diverges
in the continuum limit. However, this divergence has noth-
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ing in common with perturbatively expected O�a�8� be-
havior, in fact, it is much weaker and is compatible only
with linear or quadratic dependence

hq2i � bn � cn 
 a
�n; n � 1; 2: (44)

Unfortunately, our data points do not distinguish these
power laws and are adequately described by either the
linear (
2

n�1 � 0:9) or quadratic (
2
n�2 � 1:5) one.

Nevertheless, the ultraviolet divergence of characteristic
topological density �q� a�� within the HP1 embedding
method could be considered as firmly established.
Moreover, we are confident that the corresponding power
exponent is close to unity, � & 1, and is in accord with
theoretical expectations (15) and the estimate (39) obtained
earlier.

D. Dimensionality of topological charge fluctuations

1. Biased random walk model and the choice
of parameters

In this section we introduce the model, which allows us
to investigate directly the dimensionality of the relevant
topological fluctuations. Although the resulting method is
not entirely rigorous, its ambiguity reduces to only one free
parameter, the choice of which we thoroughly discuss.
Generically the idea is to consider some dynamical system,
the evolution of which is sensitive to the dimensionality of
the ambient space. Then if we embed somehow this system
into the topological density background, its evolution will
reveal the effective number of available dimensions, which
is to be naturally associated with the dimensionality of the
relevant topological fluctuations. The simplest dynamical
system of this sort could be constructed on the top of the
usual diffusion equation, which in turn is equivalent to the
model of random walks. Then the dependence upon the
external environment could be introduced by making
-9
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the hopping probabilities to be the local functions of the
ambient space characteristics; the models of this sort are
known as biased random walks. Correspondingly, the ef-
fective dimensionality D as is seen by biased random
walkers is referred to as diffusion dimension. The purpose
of this section is to precisely formulate and investigate this
approach.

We start from the observation that the introduction of the
cutoff �q on the topological density (see Sec. III B) was
aimed solely to separate the inevitably present noise (ut-
terly small values of qx) from the relevant fluctuations,
which are associated with relatively large values of qx.
Although the choice of particular �q indeed makes the
notion of ‘‘small’’ and ‘‘large’’ well defined, the geometry
of the resulting lumps in topological density strongly de-
pends upon the cut. It is apparent that the weak point here is
sharpness of the dimension four cut, it would be much
advantageous to remove the small topological density re-
gions softly, making the lumps geometry much more ro-
bust with respect to the parameters involved. It turns out
that a slightly modified diffusion model is indeed suitable
to achieve this. Namely, we propose to modify the diffu-
sion equation by allowing the random walk to hop towards
the regions of higher topological density with larger proba-
bility. In the language of the diffusion equation, which
describes the propagation of heat, this amounts to the
introduction of a space-time dependent diffusion coeffi-
cient (thermal conductivity), which vanishes in the regions
of small topological density, and hence heat is allowed to
spread only within the domains of large jqxj. Then the
decay rate of the initial heat pulse, which is the same as the
return probability for corresponding biased random walk,
essentially reflects the number of available dimensions
within the topological fluctuations and hence is to be
identified with their dimensionality.

In fact, this general idea fixes almost uniquely the ran-
dom walk model which we would like to investigate. It is
convenient to start directly from the microscopic rules of
the biased random walk, which require that the probability
px;x�� to hop from point x to the neighboring site x�� is
monotonically rising scale free function of the topological
density magnitude at x��

px;x�� �
jqx��j�P

�
�jqx��j� � jqx��j��

; (45)

where the power exponent � > 0 could not be fixed a
priori and remains a free parameter of the model. Note
that in this section we exclusively consider the local mag-
nitude jqxj of the topological density; to lighten the nota-
tions the corresponding modulus sign will be omitted.
From Eq. (45) it is straightforward to obtain the continuum
diffusionlike equation, which determines the probability
P�t; x� to reach the point x during the proper time interval t
provided that at t � 0 walker starts at x � 0 (see, e.g.,
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Ref. [18])

@t� �
1
8q
�2�@x�q

2�@x�	; ��t; x� � P�t; x�=q2��x�;

(46)

where the initial condition is P�0; x� � ��x�. However,
Eq. (46) is not yet the usual diffusion equation, in particu-
lar, the decay rate of the initial perturbation (return proba-
bility in the random walk language) is not guaranteed to be
P�t; 0� / t�D=2. To get the correct interpretation of (46) we
introduce new coordinates 
�x� according to

@
�=@x� � q2� 
 ��� : (47)

In the particular case of the one-dimensional problem, (47)
allows the explicit solution 
�x� �

R
x q2�, where the lower

integration limit is taken at an arbitrary fixed point. It is
important that 
 is a single valued function of x almost
everywhere, moreover, its range is determined by the
magnitude of the topological density. Indeed, the regions
of utterly small jqxj are squeezed to almost one point by the
map (47) regardless how large these regions were in x
space. It is crucial that the term ‘‘small’’ above obtains
unambiguous and physically correct meaning of relative
smallness since only the relative variation of the topologi-
cal density does matter. Indeed, Eq. (46) is evidently scale
invariant under q! �q and is equivalent to usual diffusion
equation for everywhere constant qx. In terms of new
coordinates, Eq. (46) takes the standard form

@t� �
1
8@
 �q

4�@
�	: (48)

We conclude therefore that the diffusion process (45), (46),
and (48) takes place in the regions of relatively large
topological density and hence should reflect properly the
dimensionality of underlying topological background.
Moreover, the decay rate of the initial perturbation is given
by

��t; 0� / t�D���=2; (49)

where D��� is the diffusion dimension of the topological
fluctuations and we have explicitly indicated that the di-
mension defined this way depends nontrivially upon not
yet fixed parameter � to be discussed next.

The nontriviality of the dependence D��� is evident
since in the limit �! 0 the model (45) and (46) reduces
to standard unbiased random walk with

D��! 0� � 4; (50)

while at �! 1 the microscopic probability (45) allows
hopping only towards largest neighboring jqxj. Hence the
walker is trapped eventually at the local maxima of topo-
logical density distribution and

D��! 1� � 0; (51)

regardless of the background. Already from this observa-
tion it is apparent that without an additional physical input
-10
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the model (45) and (46) would be essentially useless since
at various � it reflects, in fact, different properties of the
underlying background. For instance, the limiting behavior
(50) implies that the topological density distribution is
such that qx � 0 only on measure zero set, while (51) is
valid generically, provided qx is not identically constant.
Therefore the actual problem is not the arbitrariness of the
� parameter, but rather the not yet posed physical question
we are trying to investigate.

In order to gain a physical insight it is crucial to retain
the qualitative picture of vacuum topological excitations
outlined in Sec. III B. It was argued that physically most
important fluctuations are associated with percolating sign-
coherent regions, the ultimate qualitative properties of
which are the significant internal topological density and
extremely large linear extent. It goes without saying that
we are interested precisely in the geometry of these sign-
coherent domains. However, the percolating lumps are not
equivalent to just the regions of largest topological density
as is revealed by the percolation transition eventually
appearing with rising �q cutoff. Even at large �q one finds
individual ‘‘hot spots’’ of small but nonvanishing volume
which indeed possess the largest topological density.
Consider now the decay rate of the initial heat pulse in
the model (46) at large but finite �, so that the effective
thermal conductivity is nonzero only within the topological
density hot spots. Evidently, in this regime the equilibra-
tion time teq is finite and is dictated by the typical size of
the hot spots being much smaller than the squared lattice
size L

teq � L2 for �� �� (52)

(the definition of �� will become clear in a moment). Note
that the distinct feature of this regime is that the double
logarithmic plot of ��t; 0� significantly bends upwards at
teq and therefore we expect generically that

� > ��:
@2 ln��t; 0�

@�lnt�2
> 0; (53)

reflecting, in particular, the drop in the effective thermal
conductivity outside the hot spots. Evidently, at these �
values we are not probing the percolating lumps geometry,
the random walks are confined within the regions of largest
topological density.

Let us now gradually diminish the � parameter. The
positive jump in the logarithmic derivative @ ln�=@ lnt,
the location of which we still denote by teq, would become
smaller respecting the diminishing difference of thermal
conductivities inside and outside the hot spots. Note that
neither of the corresponding diffusion dimensions at t _

teq could be identified with the dimensionality of sign-
coherent regions since the random walks are still too
sensitive to the local irregularities of topological density
even within the coherent domains. It might happen that at
the particular value � � �� the double logarithmic plot of
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��t; 0� degenerates into the straight line so that teq 
 L2

and

� � ��:
@2 ln��t; 0�

@�lnt�2
� 0; t & L2: (54)

Note that at this point the only relevant dimensional pa-
rameter is the lattice size. Therefore the model becomes
essentially scale free and its dynamics in the vicinity of ��

is reminiscent of the disorder driven conductor-insulator
transition of condensed matter systems. It is crucial that at
the critical point � � �� the heat starts to propagate with
constant rate over largest available distances, but since the
thermal conductivity is significant only within the lumps,
the heat transfer goes through the percolating sign-
coherent regions. In turn the condition (54) implies that
local inhomogeneity of the topological density within the
percolating lumps is inessential. Therefore it seems that
only at the critical point (54) we indeed could obtain a
consistent reflection of the relevant topological fluctuations
in the biased random walks model.

The existence of at least one critical value, �� � 0,
follows from (50), but it is a trivial one and surely exists
for arbitrary background qx. However, it is crucial that the
above qualitative picture of vacuum topological fluctua-
tions hints on the existence of nontrivial critical coupling
�� > 0, which could arise entirely due to the low-
dimensional long-range order present in the topological
density distribution. For suppose that the topological
charge sign-coherent regions are indeed lower dimensional
objects possessing relatively large uniform topological
density and extending through all the volume. Then at
the particular � � �� the effective thermal conductivity
would be nonzero only within the percolating regions, the
lower dimensionality of which forbids the appearance of an
additional scale in the heat propagation problem. Thus at
this point the random walks model indeed contains no
dimensional parameter apart from the lattice size and
Eq. (49) is fulfilled, while the corresponding diffusion
dimension is to be identified naturally with the dimension
of sign-coherent regions. Note that the lower dimension-
ality is crucial here, for regions of finite thickness the
critical point (54) does not exist. In fact, the analogous
but reversed argumentation could also be given, namely,
the appearance of nontrivial critical point (54) signifies the
presence of lower dimensional long-range order in the
topological density background.

Note that the restriction to sign-coherent regions is
automatic in our approach. Indeed, as far as the model
(46) is concerned, it was considered in the continuum limit
assuming differentiability of qx. Hence the domains qx _

0 are separated by regions with vanishing thermal conduc-
tivity. On the lattice the situation is more involved, but
since the HP1-based topological density is definitely
exempt from perturbative contributions we could be almost
confident that the same argumentation applies.
-11
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To summarize, the proposed biased random walk model
seems to be efficient to investigate the structure of perco-
lating topological density regions only at the critical points,
at which its dynamics becomes effectively scale free. We
argued that the qualitative picture of the relevant topologi-
cal fluctuations obtained earlier suggests the existence of
nontrivial critical point, at which the diffusion dimension is
to be identified naturally with the percolating regions
dimensionality.

2. Diffusion dimension of percolating lumps

Prior to presenting the results of our measurements let us
discuss the lattice specific features of the above biased
random walk model, which complicate the numerical
evaluation of the percolating lumps dimensionality. For
any particular � value the solution of Eq. (46) could be
constructed straightforwardly by implementing the random
walk process, the rules of which are completely specified
by (45). The only subtlety here is the choice of the random
walk starting point. Indeed, to improve the statistics it is
desirable to consider

��t; 0� �

R
d
0��0; 
0; t; 
0�R

d
0

�
Z
dx0��0; x0; t; x0�

q8��x0�R
q8� ; (55)

where ��0; x0; t; x� is the probability to reach the point x
during the proper time t starting at x0. Equation (55) means
that the random walk starting point in x space is to be taken
with probability / q8�.

Therefore the crucial problem is how to find the relevant
�� value numerically and estimate the accuracy of its
determination. For any fixed � we measured ��t; 0� by
first taking some random starting point, chosen with / q8�

probability, and considering in accord with (45) the walk
of total length 8 
 103. Then the quantity ��t; x� �
P�t; x�=q2�x� was constructed for each random walk and
averaged with respect to 
 V=2 different starting points
per configuration (V is the lattice volume). We checked
that the statistics are large enough so that our results do not
change if more random walks are considered. Figure 7
represents the double logarithmic plot of the quantity
��t; 0� obtained on our 	 � 2:500 set at three close �
values, � � f0:25; 0:27; 0:30g, as well as the same quantity
measured at � � 0:1 and � � 0:8. Note that for readability
reasons different graphs are slightly shifted with respect to
each other. As far as the data points at � � 0:1 and � � 0:8
are concerned, they definitely correspond to the regimes
�� �� and �� ��, respectively. Indeed, the first graph
significantly bends downwards at t 
 10–20 in apparent
disagreement with both Eq. (53) and (54). However, it is
demonstrated below that negative second logarithmic de-
rivative of ��t; 0� is a generic feature of the diffusion
model in random environment. Note that at � � 0:1 the
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system indeed equilibrates eventually at teq of order few
hundred, which is similar to squared size of the lattice used
in this calculation. On the other hand, at � � 0:8 the
system starts to equilibrate at teq 
 20� L2 and the cor-
responding graph has positive second derivative in accord
with Eq. (53).

The inspection of the intermediate � values reveals that
� � 0:25 data points essentially lie on one single line,
while the data set at � � 0:30 seems to deviate upwards
from linear dependence. Note that the consideration of
� � 0:27 points are rather inconclusive, apparently the
data just begins to bend aside the pure power law.
Therefore the relevant �� value seems to be located around
�� 
 0:25. We could estimate �� more rigorously by con-
sidering the quality of power law (49) fits at different �. We
fitted our data to Eq. (49) in the range t < 100, the resulting

2=n:d:f: values are presented on Fig. 8. It is apparent from
this figure that fits favor the critical value �� � 0:26�2�,
where rather conservative errors coming from Fig. 8 are
quoted.

In order to convince the reader that graphs on Fig. 7 are
indeed directly related to the underlying geometry of to-
pological fluctuations, let us consider the same model (45)
and (46) with the same parameters, but in the genuinely
random external environment. Such a background, which
is the ‘‘nearest’’ to one on Fig. 7, could be obtained by
random permutation of the topological density records on
each configuration. We did this with our 	 � 2:500 data
set and then performed the identical measurements of
��t; 0� at � � f0:10; 0:27; 0:80g. The corresponding
double logarithmic plots are presented on Fig. 9 and differ
violently from that on Fig. 7. The most crucial observation
is that the second derivative for all graphs stays negative
implying that the reasoning of Sec. III D 1 is inapplicable
for randomly permuted topological density. Of course, this
-12



TABLE II. Estimated �� values for various data sets from
Table I.

	 2.4000 2.4273 2.4500 2.4750 2.5000 2.5550 2.6000
�� 0.27(3) 0.27(3) 0.27(4) 0.27(4) 0.26(2) 0.27(3) 0.28(3)

 1.4
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 1.8
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χ2 /n
.d

.f

γ

FIG. 8 (color online). Quality of the power law fits of the
return probability ��t; 0� to Eq. (49) in the range t < 100 at
various � values. Measurements were performed on 	 � 2:500
data set.
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is not surprising since all the coherent structures are gone
in the present case. The only limit in which the second
logarithmic derivative of ��t; 0� vanishes is given either by
Eq. (50), D � 4, or Eq. (51), D � 0. We conclude there-
fore that without random permutations, the nontrivial criti-
cal point �� arises most likely due to the presence of long-
range order in the topological density.

We performed the measurements of the relevant ��

values for all our data sets listed in Table I. It goes without
saying that indeed in each case the biased random walk
return probability at � � �� strictly obeys the power law
(49). The resulting estimations of corresponding �� values
are summarized in Table II. It is remarkable that the
estimates of �� appear to be spacing independent well
within the quoted numerical uncertainties. It is true that
the presented errors might be overestimated, however, we
 1e-05

 0.0001

 0.001

 0.01

 0.1

 10  100

Φ
(t

,0
)

t

γ = 0.10
γ = 0.27
γ = 0.80

FIG. 9 (color online). Return probability ��t; 0�, Eqs. (45) and
(46), calculated on 	 � 2:500 data set with random permutation
of topological density records on each configuration.
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are confident that ���a� dependence could not be revealed
by the above method. Apparently this is due to the fact that
the � parameter is dimensionless so that the violent power
dependence on the lattice spacing is unlikely to appear.

Once the relevant �� value is determined for each data
set, it is straightforward to estimate the dimensionality of
sign-coherent percolating regions of the topological den-
sity. By construction the corresponding fits to Eq. (49) are
practically perfect for every	 so that we do not present full
details of the fitting procedure. The point which should be
discussed, however, is D���� error estimation. In fact, the
uncertainty coming from the fits to Eq. (49) is negligible
compared to the ambiguity in �� values. Therefore the
errors in D���� were obtained by repeating the fits to
Eq. (49) at minimal and maximal �� within the correspond-
ing error bands. Finally, we note that all fits were per-
formed in the range t < 100.

The dimensionality of percolating sign-coherent regions
of topological density measured with the above procedure
at various lattice spacings is summarized on Fig. 10.
Remarkably enough the diffusion dimension D���� seems
to be almost independent upon the lattice resolution well
within the uncertainties. Its continuum value could be
estimated from fit to constant behavior, which indicates
in turn that D���� is definitely smaller than 4. Instead the
numerical data suggests strongly that the diffusion dimen-
sion of the relevant topological fluctuations is

D � D���� � 3:07�3�; (56)
 2

 2.5

 3

 3.5

 4

 0.05  0.06  0.07  0.08  0.09  0.1  0.11  0.12

D
(γ

* )

a, fm

FIG. 10 (color online). Diffusion dimensions D����, Eqs. (45),
(46), and (49), at various lattice spacings. Line represents the fit
to the constant behavior.
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which seems to be in full agreement with their proposed
three-dimensional structure. Equation (56) is in agreement
with both theoretical expectations and experimental data
on the topological density. What is still to be considered is
the internal consistency of the scenario outlined in our
paper, which is expressed by Eqs. (22) and (24); this is
the subject of the next section. Note, however, that the
diffusion dimension is not the only definition of the di-
mensionality. It is still worthwhile to confirm Eq. (56) with
other methods.

E. Consistency check

As was discussed in Sec. II B the crucial equations
which relate the divergence of characteristic topological
density �q and the dimensionality D of the relevant topo-
logical fluctuations are

hQ�Q�i � hQ�ihQ�i; (57)

hQ2
�i � hQ�i

2 / hQ�i; (58)

where the charges Q� are to be calculated without any
cutoff �q imposed. Moreover, the spacing independence of
(57) and (58) (if confirmed by the data) allows us to put
rather stringent restrictions on both �q and D. As far as the
lattice measurements are concerned, Fig. 11 represents the
ratios

A �Q�� �
hQ�Q�i
hQ�ihQ�i

�circles�;

B�Q�� �
hQ2
�i � hQ�i

2

hQ�i
�squares�;

(59)
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

1.1

 0.06  0.07  0.08  0.09  0.1  0.11  0.12

a, fm

A(Q±)
B(Q±)

FIG. 11 (color online). Fluctuations of the topological charges
Q� at various lattice spacings. Circles: spacing (in)dependence
of the ratio A�Q��, Eq. (59); squares: the magnitude of Q�
relative fluctuations characterized by B�Q��, Eq. (59).
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as functions of lattice spacing, where to improve the sta-
tistics the generic equalities hQ2

�i � hQ
2
�i, hQ�i � hQ�i

were used in calculation of B�Q��. As is evident from that
figure, Eq. (57) is satisfied identically in the whole range of
considered spacings while the proportionality coefficient
entering Eq. (58) does not depend upon the lattice resolu-
tion well within numerical errors. Therefore the validity of
Eq. (26) is firmly established. Let us summarize the emerg-
ing qualitative picture of vacuum topological fluctuations
which arises from the numerical data restricted by (26).

It is apparent that the most confidential data is available
for the characteristic topological density. The theoretical
arguments based on the existence of the quadratic correc-
tion to the gluon condensate as well as the obtained nu-
merical data suggest strongly that the topological density is
divergent at most linearly in the continuum limit

�q� a��; � & 1: (60)

On the other hand, the dimensionality of topological fluc-
tuations is still not firmly established and is plagued by
theoretical uncertainties. Various estimations made both in
this paper and in the literature [1–6] suggest that it is of
order three

dim�V�	 
 3: (61)

It is remarkable that Eqs. (60) and (61) overlap only at one
point consistent with Eq. (26)

� � 1; dim�V�	 � 3: (62)

Given that Eqs. (57) and (58) are fulfilled with amazingly
high accuracy we are forced to the conclusion that (62) is
the only values consistent with both theoretical consider-
ations and numerical data.

IV. CONCLUSIONS

In this paper we further developed the SU(2) gauge
fields topology investigation method, based on the embed-
ding of HP1 �-model into the given gauge background
[10,11]. Our prime purpose was to exploit the remarkable
properties of HP1 projected fields found in [11], namely,
the factual absence of leading perturbative divergences and
simultaneous existence of nontrivial quadratic power cor-
rection to the gluon condensate. It is clear that these strik-
ing features of the projected fields are to be encoded into
the local structure of the topology defining map S4 ! HP1

and hence should be reflected in the corresponding topo-
logical density. The extended analysis of leading power
corrections performed in this paper allows us to conclude
that the topological density is likely to be linearly divergent
in the continuum limit. Note that this divergence has
nothing to do with short distance perturbative singularities
and is much weaker. The divergence of the topological
-14
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FIG. 12 (color online). Cumulative distribution of VMC�T� and
Vdet�T� (see text).
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density by itself is almost an academic problem since it is
not directly observable. However, combined with the re-
quirement of ultraviolet finiteness of topological suscepti-
bility it leads to rather dramatic consequences for the
geometry of relevant topological fluctuations. Namely,
we argued that the topological charge is to be concentrated
in three-dimensional submanifolds of four-dimensional
Euclidean space. This is the only conclusion compatible
with physical topological susceptibility, numerically estab-
lished pattern of power corrections and which does not
necessitate explicit fine tuning of the Yang-Mills theory at
UV scale. Moreover, the fine tuning assumption is testable
and if it does not happen, then one could derive rather
stringent relation between the divergence of the topologi-
cal density and the dimensionality of submanifolds, which
support the most of the topological charge. Note, however,
that the lower dimensionality of topological fluctuations
could also be considered as a sort of fine tuning, in which
the explicit powers of UV cutoff are traded for unusual
geometric properties. Qualitatively our results are in ac-
cord with modern trends in the literature, which discuss the
lower dimensionality of physically relevant vacuum fluc-
tuations [7,9] and, in particular, of the topological density
sign-coherent regions [1–6,14].

The actual experimental verification of this scenario
turned out to be rather intricate both conceptually and
technically; we believe that all these problems were ade-
quately addressed in our paper. The technical achievement
is the development of a fast and rather precise numerical
algorithm of topological density evaluation, which allowed
us to investigate the problem on the convincing statistical
level. While the UV behavior of the topological density
could be studied directly, the dimensionality of relevant
topological fluctuations is a much more involved problem,
which consists essentially in physical interpretation of the
term relevant above. We argued that the natural approach is
to embed a dynamical system into the topological density
background, the evolution of which is sensitive to the
dimensionality of ambient space. The simplest system of
this sort could be constructed on the top of the usual
random walk model and depends upon one dimensionless
parameter. Then the phase structure of the system and
location of its critical-like points is ultimately related to
the long-range properties of the underlying background
and, in particular, to the dimensionality of sign-coherent
topological regions.

As far as the results of numerical experiments are con-
cerned, our data show unambiguously that nonperturba-
tively defined characteristic topological density is
divergent in the continuum limit. Moreover, we were able
to obtain the upper bound on its leading spacing depen-
dence. At the same time, the dimensionality D of the
relevant topological fluctuations was shown to be decid-
edly less than four and is compatible with D � 3. Here the
assumed absence of the fine tuning becomes crucial and we
showed that it indeed does not happen. Instead the topo-
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logical charges associated with sign-coherent regions fluc-
tuate independently. We conclude therefore that the only
possibility to satisfy all the restrictions is to have linearly
divergent topological density distributed in three-
dimensional domains.
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APPENDIX

Here we describe in details the numerical algorithm used
in this paper to calculate the topological charge density.
The general formulation of the problem could be found in
Refs. [10,11]. Essentially it reduces to the evaluation of the
volume V�T� of 4-dimensional spherical tetrahedron T
embedded into S4 with vertices nAi given in terms of five
i � 0, . . ., 4 unit five-dimensional A � 0; . . . ; 4 vectors,
� ~ni�

2 � 1.
It is clear that for near vanishing V�T� the volume is

given by V�T� � detAi�nAi 	. Thus the volume of finite
tetrahedron could be found by triangulating it into the set
of small tetrahedra and summing up the infinitesimal vol-
umes. In fact, our method works recursively until the
determinant estimation of the volume of input tetrahedron
is larger than 10�6; this way we indeed obtain the optimal
performance. However, the determinant-based volume es-
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timation is reliable and uniform only if the angles between
all input vertices are small enough, e.g. � ~ni; ~nj�> 0. In this
case it suffices to place a new triangulation vertex at ~m /P
i ~ni and complete the recursion cycle. However, this

procedure must be modified if there are at least two input
vertices i and j for which � ~ni; ~nj�< 0. Indeed, in this case
the above recursions converge nonuniformly and eventu-
ally lead to almost degenerate tetrahedra with large volume
but still almost vanishing determinant. The needed modi-
fication is to take the new vertex at ~m / ~ni � ~nj which
guarantees that eventually we will get � ~ni; ~nj�> 0 8 i; j.

Let us note that for given accuracy of the determinant
volume estimation for small tetrahedra (which is 10�6 in
our case) the volume of the original tetrahedron is eval-
uated, in fact, with finite bias which is due to the sphericity
of every small tetrahedron. However for small enough
volumes the sphericity could be accounted for by simple
rescaling of the determinant estimation. To calibrate the
present algorithm we compared it with our previous
Monte Carlo based method. To this end we generated 5�
104 random spherical tetrahedra and applied both algo-
rithms to each of them thus obtaining Monte Carlo VMC�T�
and determinant-based Vdet�T� volume estimations.
Figure 12 represents the cumulative distribution of
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VMC�T�, Vdet�T�, which turns out to be astonishingly nar-
row and is fairly compatible with linear dependence

VMC�T� � � 
 Vdet�T�; � � 1:1285�5�; (A1)

where the optimal value of � coefficient results from the
best linear fit. Note that the plot on Fig. 12 is restricted to
V�T� & 5 
 10�3, which is far beyond the maximal value of
topological density even for our largest spacing; however,
the linear dependence (A1) remains valid even at larger
V�T�. Thus we are confident that the new triangulation
method is definitely compatible with old Monte Carlo
approach in the relevant range of lattice spacings.

Finally, we performed the same check as one described
in [11]. Namely, we confronted the global topological
charge, which could be found unambiguously for each
our configuration with one calculated with present algo-
rithm. It turns out that they agree in all cases with no
exceptions. Moreover, we found that the determinant-
based algorithm gives even narrower distribution of Qfloat

around integer numbers compared to that of the old
Monte Carlo based approach. We conclude therefore that
the new method of the topological density calculation is
superior to the old one both in accuracy and performance.
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