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We apply twisted boundary conditions to lattice QCD simulations of three-point correlation functions in
order to access spatial components of hadronic momenta different from the integer multiples of 2�=L. We
calculate the vector and scalar form factors relevant to the K ! � semileptonic decay and consider all the
possible ways of twisting one of the quark lines in the three-point functions. We show that the momentum
shift produced by the twisted boundary conditions does not introduce any additional noise and easily
allows us to determine within a few percent of statistical accuracy the form factors at quite small values of
the four-momentum transfer, which are not accessible when periodic boundary conditions are considered.
The use of twisted boundary conditions turns out to be crucial for a precise determination of the form
factor at zero-momentum transfer, when a precise lattice point sufficiently close to zero-momentum
transfer is not accessible with periodic boundary conditions.

DOI: 10.1103/PhysRevD.73.114504 PACS numbers: 12.38.Gc, 13.20.Eb
1In this case the equivalent background gauge fields are
coupled to the generators in the Cartan subalgebra of the flavor
group U�N�V commuting with the quark mass matrix.
I. INTRODUCTION

In lattice simulations of QCD the spatial components of
the hadronic momenta pj (j � 1, 2, 3) are quantized. The
specific quantized values depend on the choice of the
boundary conditions (BCs) applied to the quark fields.
The most common choice is the use of periodic BCs in
the spatial directions

 �x� êjL� �  �x�; (1)

that leads to

pj � nj
2�
L
; (2)

where the nj’s are integer numbers. Thus the smallest
nonvanishing value of pj is given by 2�=L, which depends
on the spatial size of the (cubic) lattice (V � L3). For
instance a current available lattice may have L � 32a,
where a is the lattice spacing, and a�1 ’ 2:5 GeV leading
to 2�=L ’ 0:5 GeV. Such a value may represent a strong
limitation of the kinematical regions accessible for the
investigation of momentum dependent quantities, like
e.g. form factors.

In Ref. [1] it was proposed to use twisted BCs for the
quark fields

~ �x� êjL� � e2�i�j ~ �x� (3)

which allows us to shift the quantized values of pj by an
arbitrary amount equal to �j2�=L, namely

~p j � �j
2�
L
� pj � �j

2�
L
� nj

2�
L
: (4)

The twisted BCs (3) can be shown [1] to be equivalent to
the introduction of a U(1) background gauge field coupled
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to the baryon number and applied to quark fields satisfying
usual periodic BCs (the Aharonov-Bohm effect). Moreover
in Ref. [2] the twisted BCs were firstly implemented in a
lattice QCD simulation of two-point correlation functions
of pseudoscalar mesons. The energy-momentum disper-
sion relation was checked showing that the momentum
shift 2��j=L is a true physical one.

The aim of the present paper is to explore the use of
distinct twisted BCs for different fermion species in the
calculation of the momentum dependence of lattice three-
point correlators.1 We want both to establish whether
twisted BCs are able to provide in practice form factors
at small values of the momentum transfer not accessible
with periodic BCs, and to estimate the level of statistical
precision that can be achieved. The latter is an important
point because the introduction of twisted BCs leads to a
non-negligible increase of the computational time due to
the need of producing new inversions of the Dirac equation
for each quark momentum. We anticipate that the answer
to both questions is positive: the twisted BCs are able to
provide form factors at small values of the momentum
transfer with a precision comparable to the one attainable
with periodic BCs.

In this work we consider the case of the vector and scalar
form factors relevant to theK ! � semileptonic transition,
which have been recently investigated using periodic BCs
by the quenched simulations of Ref. [3], as well as by the
nf � 2 and nf � 2� 1 dynamical flavor simulations of
Refs. [4,5], respectively. There are two reasons for our
choice.
-1 © 2006 The American Physical Society
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First, the theoretical uncertainty in the determination of
the vector form factor at zero-momentum transfer, f�0�,
presently dominates the corresponding uncertainty in the
extraction of the value of the Cabibbo angle from K‘3

decays. As shown in Ref. [3], an important source of
uncertainty for f�0� comes from the precision in the deter-
mination of the form factor slopes at zero-momentum
transfer. Thus an interesting issue is to check whether the
access to new lattice points at small values of the momen-
tum transfer can improve significantly the precision of the
determination of f�0�.

Second, the approach of Ref. [3] is characterized by the
use of a suitable double ratio of three-point correlators,
which allows us to access in a very precise way the scalar
form factor f0�q

2� at ~q � 0 corresponding to q2 � q2
max �

�MK �M��
2. The precision level of the values of f0�q2

max�
is crucial to achieve the percent accuracy for f�0�.
However, there are cases in which it is not possible to get
a lattice point sufficiently close to q2 � 0 using periodic
BCs. An important example is represented by some of the
form factors entering hyperon semileptonic decays, like
the weak magnetism, the weak electricity, the induced
scalar and pseudoscalar form factors [6]. Thus, we have
carried out an analysis of our lattice data for the K ! �
transition, but excluding the very accurate value f0�q2

max�.
We consider this analysis representative of the cases where
a precise lattice point close to or at zero-momentum trans-
fer is not accessible with periodic BCs.

We limit ourselves to quenched simulations where the
generation of gauge configurations is clearly independent
of the BCs applied to the quark fields.2 We expect that the
ability of twisted BCs to provide form factors at small
values of the momentum transfer do not depend on the
use of the quenched approximation, and therefore we are
confident that our findings hold as well also in case of
partially quenched and full QCD simulations.

We obtain the K ! � vector and scalar form factors for
quite small values of the four-momentum transfer, which
are not accessible when periodic BCs are considered,
without introducing any significant additional noise and
within a few percent statistical accuracy. For completeness
we consider all the possible ways of twisting one of the
quark lines in the three-point functions.

When the precise lattice point for f0�q2� at q2 � q2
max is

not included in the analysis, the use of twisted BCs is
crucial to allow a determination of f�0� at a few percent
statistical level. On the contrary, when the very accurate
value f0�q2

max� is included in the analysis, the impact of
twisted BCs on the determination of the K ! � form
2It has been recently shown [7,8] that for many physical
processes, including semileptonic decays, one can impose
twisted BCs on valence quarks and periodic ones for sea quarks,
eliminating in this way the need for producing new gauge
configurations for each quark momentum, since finite-volume
effects remain exponentially small.
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factors and their slopes at zero-momentum transfer turns
out to be marginal, while we remind the reader that it is
expensive for the computational time. This result is due to
the fact that: (i) the precision of the lattice points obtained
with twisted BCs is not comparable to the one that can be
achieved through the double ratio method of Ref. [3] at the
particular kinematical point q2 � q2

max, which in turn is
quite close to q2 � 0 in the simulation of Ref. [3]; (ii) the
use of twisted BCs does not lead to a sufficient improve-
ment of the precision with respect to the nearest spacelike
points obtained with periodic BCs.

The plan of the paper is as follows. In the next section we
briefly discuss the implementation of the twisted BCs for
the evaluation of all the propagators required in this work.
In Sec. III we present the calculation of two- and three-
point correlation functions having twisted quark lines. In
Sec. IV we show our results for the scalar and vector form
factors of the K ! � transition, while in Sec. V we inves-
tigate the impact of the twisted BCs on the determination
of the slopes of the vector and scalar form factors at zero-
momentum transfer. Finally Sec. VI is devoted to our
conclusions.

II. LATTICE QUARK PROPAGATORS WITH
TWISTED BCS

On the lattice, for a given flavor, the quark propagator
S�x; 0� � h �x� � �0�i, where h. . .i indicates the average
over gauge field configurations, satisfies the following
equation X

y

D�x; y�S�y; 0� � �x;0 (5)

where D�x; y� is the Dirac operator whose explicit form
depends on the choice of the lattice QCD action. In what
follows we work with Clover fermions and therefore
D�x; y� is given explicitly by

D�x; y� � �x;y�am0 � 4r� �
1

2

X
�

f�x;y�a�̂�r� ���U��x�

� �x;y�a�̂�r� ���U
y
��y�g

�
cSWr

32

X
�;�

P���x�����x;y; (6)

where U��x� is the gauge link, P���x� is the (symmetric)
plaquette in the ��; �� plane and we have omitted Dirac
and color indices for simplicity.

When the quark field satisfies the twisted BCs (3), the
corresponding quark propagator ~S�x; 0� � h ~ �x� �~ �0�i still
satisfies Eq. (5) with the same Dirac operator D�x; y� but
with different BCs. Following Refs. [1,2] one can redefine
the quark field as  ~��x� � e�2�i ~�� ~x=L ~ �x� in order to work
always with periodic BCs on the fields. In such a way the
new quark propagator S ~��x; 0� � h ~��x�

� ~��0�i satisfies the
following equation
-2
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X
y

D ~��x; y�S ~��y; 0� � �x;0 (7)

with a modified Dirac operator D~��x; y� but periodic BCs.
The new Dirac operator is related to Eq. (6) by simply
rephasing the gauge links

U��x� ! U ~�
��x� � e2�ia��=LU��x� (8)

with the four-vector � given by �0; ~��. Note that the pla-
quette P���x� is left invariant by the rephasing of the gauge

links. In terms of S ~��x; y�, related to the quark fields  �x�
with periodic BCs, the quark propagator ~S�x; y�, corre-
sponding to the quark fields ~ �x� with twisted BCs, is
simply given by

~S�x; y� � e2�i ~��� ~x� ~y�=LS ~��x; y�: (9)
Κ0 π −

θ2

θ3

s

d d

u

θ1

FIG. 1. Three-point correlation function of the K0 ! ��

semileptonic transition with the various quark lines twisted by
the vectors ~�1, ~�2 and ~�3.
III. TWO- AND THREE-POINT CORRELATION
FUNCTIONS WITH TWISTED QUARK LINES

We are interested in calculating the K0 ! �� form
factors of the weak vector current V� � �s��u, which are
defined through the relation

h��p0�jV�jK�p�i � f��q
2��p� p0�� � f��q

2��p� p0��;

(10)

where q2 � �p� p0�2. As usual, we express f��q2� in
terms of the so-called scalar form factor

f0�q2� � f��q2� �
q2

M2
K �M

2
�
f��q2� (11)

with f0�0� � f��0�.
From Eq. (10) the form factors can be expressed as

linear combinations of hadronic matrix elements of time
and spatial components of the weak vector current. The
latter can be obtained on the lattice by calculating two- and
three-point correlation functions

CK�� �tx; ty; ~p; ~p0� �
X
~x; ~y

hO��ty; ~y�V̂��tx; ~x�O
y
K�0�i

� e�i ~p� ~x�i ~p
0�� ~x� ~y�; (12)

CK����t; ~p� �
X
~x

hOK����t; ~x�O
y
K����0�ie

�i ~p� ~x; (13)

where Oy� � �d�5u, OyK � �d�5s are the operators interpo-
lating �� and K0 mesons, and V̂� is the renormalized
lattice vector current

V̂ � � ZV

�
1� bV

ams � am‘

2

�
� �s��u� cV@� �s���u�;

(14)

where ZV is the vector renormalization constant, bV and cV
are O�a�-improvement coefficients and the subscript ‘
114504
refers to the light u (or d) quark. In what follows we always
use degenerate u and d quarks.

Using the completeness relation and taking tx and �ty �
tx� large enough, one gets

CK�� �tx; ty; ~p; ~p
0� ���!

tx!1
�ty�tx�!1

������������
ZKZ�
p

4EKE�

�h��p0�jV̂�jK�p�ie�EKtx�E��ty�tx�; (15)

CK����t; ~p� ~p0�� ���!
t!1

ZK���
2EK���

e�EK���t; (16)

where EK �
����������������������
M2
K � j ~pj

2
q

, E� �
������������������������
M2
� � j ~p

0j2
p

and�����������
ZK���

p
� h0jOK����0�jK���i. Then it follows

CK�� �tx; ty; ~p; ~p
0�

CK�tx; ~p�C
��ty � tx; ~p

0�
���!
tx!1

�ty�tx�!1

h��p0�jV̂�jK�p�i������������
ZKZ�
p : (17)

Consequently the hadronic matrix elements
h��p0�jV̂�jK�p�i can be obtained from the plateaux of
the left-hand side of Eq. (17), once ZK and Z� are sepa-
rately extracted from the large-time behavior of the two-
point correlators (16).

In terms of the strange and light quark propagators
Ss�x; y� and S‘�x; y� the two-point correlator
CK����t; ~p� ~p0�� becomes

CK����t; ~p� ~p0�� �
X
~x

hTr	S‘�x; 0��5Ss�‘��0; x��5
ie
�i ~p� ~p0�� ~x

(18)

where Ss�‘��0; x� � �5S
y
s�‘��x; 0��5. Analogously the three-

point correlator CK�� �tx; ty; ~p; ~p0� becomes
-3
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CK�� �tx; ty; ~p; ~p
0� �

X
~x

hTr	�‘�x; 0; ty; ~p
0���Ss�0; x�
ie

�i ~q� ~x

(19)

where the generalized propagator ��x; 0; ty; ~p
0� satisfies

the equation [9]X
z

D�x; z���z; 0; ty; ~p0� � �5S�x; 0�e�i
~p0� ~x�tx;ty : (20)
114504
Using the twisted propagators, ~S and ~�, Eqs. (18)–(20)
hold as well taking into account the corresponding change
of the quantized momenta (pj ! ~pj). The new two- and
three-point correlators can be always expressed in terms of
quark propagators satisfying periodic BCs, namely,
Eq. (7). For the case of our interest and adopting in what
follows the convention that the values of the momenta ~p
and ~p0 are always given by multiples of 2�=L, we get
CK
0

�
t;

2�
L
� ~�3 � ~�1� � ~p

�
�
X
~x

hTr	S
~�3
d �x; 0��5S

~�1
s �0; x��5
ie

�i ~p� ~x

C�
�

�
t;

2�
L
� ~�3 � ~�2� � ~p0

�
�
X
~x

hTr	S
~�3
d �x; 0��5S

~�2
u �0; x��5
ie

�i ~p0� ~x

(21)

CK
0��

�

�
tx; ty;

2�
L
� ~�3 � ~�1� � ~p;

2�
L
� ~�3 � ~�2� � ~p0

�
�
X
~x

e�i ~q� ~xhTr	�
~�2; ~�3
ud �x; 0; ty; ~p

0���S
~�1
s �0; x�
i

C�
�K0

�

�
tx; ty;

2�
L
� ~�3 � ~�1� � ~p;

2�
L
� ~�3 � ~�2� � ~p0

�
�
X
~x

e�i ~q� ~xhTr	�
~�2; ~�3
sd �x; 0; ty; ~p

0���S
~�1
u �0; x�
i

(22)
where ~q � ~p� ~p0 and the generalized propagator �
~�2; ~�3
q2q3

is
solution of the modified equationX

z

D
~�2
q2
�x; z��

~�2; ~�3
q2q3
�z; 0; ty; ~p0� � �5S

~�3
q3
�x; 0�e�i ~p

0� ~x�tx;ty :

(23)

To help visualize the notation used for the �-vectors the
three-point correlator relevant for the K0 ! �� semilep-
tonic transition is depicted in Fig. 1.

Note that in the right-hand side of Eqs. (21)–(23) the
exponentials do not contain any �-vector because of
Eq. (9).

IV. RESULTS FOR THE K ! � FORM FACTORS

We have generated 100 quenched gauge field configu-
rations on a 243 � 56 lattice at � � 6:20 (corresponding to
an inverse lattice spacing equal to a�1 ’ 2:6 GeV), with
the plaquette gauge action. Using nonperturbatively
O�a�-improved Wilson fermions we have chosen quark
masses corresponding to one pair of the values adopted
in Ref. [3], namely k 2 f0:1339; 0:1349g.

Using K and � mesons with quark content (ksk‘) and
(k‘k‘), respectively, two different K ! � correlators
(CK�� ) have been computed, using both ks < k‘ and ks >
k‘, corresponding to the cases in which the kaon (pion) is
heavier than the pion (kaon). Using the same combinations
of quark masses, also the three-point �! K correlations
(C�K� ) have been calculated. Finally, two nondegenerate
K ! K and two degenerate �! � three-point functions
have been evaluated.

As for the critical hopping parameter, we have adopted
the value kc � 0:135 820�2� found in Ref. [3] using the
axial Ward identity, and we have chosen the time insertion
of the vector current equal to ty � T=2, which allows us to
average the three-point correlators between the left and
right halves of the lattice. Using the degenerate K ! K and
�! � transitions, for which the vector form factor at
zero-momentum transfer is known to be equal to unity
because of vector current conservation, the values of the
renormalization constant ZV and of the O�a�-improvement
parameter bV , appearing in Eq. (14), are found to be in
good agreement with the corresponding results of Ref. [3].
Finally, we adopt for the improvement coefficient cV the
same nonperturbative value cV � �0:09 used in Ref. [3].
Throughout this paper the statistical errors are evaluated
using the jackknife procedure.

As shown in Ref. [3] the scalar form factor f0�q2� can be
calculated very efficiently at q2 � q2

max � �MK �M��
2

using a double ratio of three-point correlation functions
with both mesons at rest, namely

R0�tx; ty� �
CK�0 �tx; ty; ~0; ~0�C

�K
0 �tx; ty; ~0; ~0�

CKK0 �tx; ty; ~0; ~0�C
��
0 �tx; ty; ~0; ~0�

���!
tx!1

�ty�tx�!1

	f0�q2
max�


2 �MK �M��
2

4MKM�
: (24)

For q2 � q2
max the form factors f��q2� and f0�q

2� can be
determined from the matrix elements of the time and
spatial components of the vector current, h�jV̂0jKi and
h�jV̂ijKi (i � x, y, z), that in turn can be extracted from
the plateaux of the left-hand side of Eq. (17) (as discussed
in the previous section). However, such a plain strategy
leads to a determination of f0�q2� with a quite poor preci-
sion (see Ref. [3]). Therefore in order to achieve a much
-4
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better accuracy we follow Ref. [3] and introduce a suitable
ratio of the spatial and time components h�jV̂0jKi and
h�jV̂ijKi, normalized by the corresponding degenerate
K ! K transition, namely

Ri0 �
h�jV̂ijKi

h�jV̂0jKi

hKjV̂0jKi

hKjV̂ijKi
; (25)

which allows us to access the ratio f��q2�=f��q2�.
First of all, as a consistency check of our run, we have

evaluated the two- and three-point correlation functions
(18) and (19) setting all the three �-vectors to zero and
adopting the same values of ~p and ~p0 used in Ref. [3],
where a different, larger set of 230 quenched gauge con-
figurations were employed. The results obtained for both
f0�q2

max� and the scalar and vector form factors at q2 �

q2
max are nicely consistent within the statistical errors. In

what follows we will label these results as ‘‘� � 0’’. Then,
the two- and three-point correlation functions (21) and (22)
have been evaluated choosing always ~p � ~p0 � 0 and
making three different kinematical choices that correspond
to assuming nonvanishing only one out of the three

�-vectors of Fig. 1. Defining Q � 2�j ~�j=L, EK ���������������������
M2
K �Q

2
q

and E� �
��������������������
M2
� �Q2

p
we consider
(i) K
inematics A: ~�1 � ~� � 0 and ~�2 � ~�3 � 0 ()
~pK � 2� ~�=L, ~p� � ~0)

f��q2� �
1

2M�

�
h�jV̂0jKi �

EK �M�

Q
h�jV̂ijKi

�

f0�q2� � f��q2�

�
1�

q2

M2
K �M

2
�

�
�EK �M��Ri0 � �MK � EK�
MK � EK � �EK �M��Ri0

�

q2 � M2
K �M

2
� � 2M�EK

� q2
max � 2M��EK �MK�; (26)
(ii) K
3For sake of simplicity we do not report explicitly the defini-
tion of the quantity R��tx; ty� appearing in Fig. 2 for each
kinematics. It suffices to say that it is defined in terms of the
left-hand side. of Eq. (17) for the various components of the
weak current which should be combined to determine the vector
inematics B: ~�2 � ~� � 0 and ~�1 � ~�3 � 0 ()
~pK � ~0, ~p� � 2� ~�=L)

f��q
2� �

1

2MK

�
h�jV̂0jKi �

E� �MK

Q
h�jV̂ijKi

�

f0�q
2� � f��q

2�

�
1�

q2

M2
K �M

2
�

�
MK � EK � �E� �MK�Ri0
MK � EK � �E� �MK�Ri0

�

q2 � M2
K �M

2
� � 2MKE�

� q2
max � 2MK�E� �M��; (27)
form factor in the various kinematics [see Eqs. (26)–(28)]. In������������������q
(iii) K

kinematics C R��tx; ty� is defined as Ri�tx; ty� [see Eq. (28)].
inematics C: ~�3 � ~� � 0 and ~�1 � ~�2 � 0
() ~pK � ~p� � 2� ~�=L)
114504-5
In this case the vector form factor is given by
f��q

2� � h�jV̂ijKi=2Q; however a more accurate
determination can be obtained by constructing a
double ratio similar to the one in Eq. (24), but using
the spatial components of the weak vector current,
namely

Ri�tx; ty� �
CK�i �tx; ty; ~pK; ~p��C

�K
i �tx; ty; ~p�; ~pK�

CKKi �tx; ty; ~pK; ~pK�C
��
i �tx; ty; ~p�; ~p��

���!
tx!1

�ty�tx�!1

	f��q2�
2 (28)

and

f0�q2� � f��q2�

�
1�

q2

M2
K �M

2
�

1

EK � E�

�

�
2EK
Ri0
� EK � E�

��

q2 � �EK � E��
2: (29)
Notice that in kinematics C, by varying j ~�j, the values of
q2 are always positive in the range 0–q2

max.
We consider two values of j ~�j, namely j ~�j �

0:225, 0.70. The first value leads to a difference������������������������������������������
M2
K��� � �2�j

~�j=L�2
q

�MK��� just exceeding the statisti-
cal errors, while the second one simply gives rise to a value
of q2 which is approximately half of the minimum, non-
vanishing value attainable for spacelike q2 with periodic
BCs.

For each of the above values we consider two different
orientations: ~� � �1; 0; 0� � j ~�j (asymmetric) and ~� �
�1; 1; 1� � j ~�j=

���
3
p

(symmetric). In this way we can check
whether either spatially asymmetric or symmetric momen-
tum shifts lead to different noises. We have found no
significant difference.

In Table I we have collected the values of the meson
masses, the SU(3)-breaking parameter (M2

K �M
2
�) and of

q2
max in lattice units that characterize our simulation. We

remind the reader that for each value of ~� a new inversion
of Eq. (7) is required with a computational time similar to
the one needed for the inversion of Eq. (5) at ~� � 0.

The quality of the plateaux used for extracting the vector
form factor f��q2� can be appreciated in Fig. 2 for three
representative cases corresponding to � � 0 and ~� �
�0:7; 0; 0� in kinematics A and C.3 Note that in the latter



TABLE I. Values of the hopping parameters ks and k‘, a2�M2
K �M

2
��, and a2q2

max.

ks � k‘ aMK aM� a2�M2
K �M

2
�� a2q2

max

0:1339� 0:1349 0.3025(20) 0.2419(24) �0:03299�26� 0.003 67(8)
0:1349� 0:1339 0.3025(20) 0.3556(15) �0:03495�30� 0.002 82(8)
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kinematics the use of the double ratio (28) allows us to
reduce strongly statistical fluctuations.

In Fig. 3 our results for the form factors f��q2� and
f0�q

2�, obtained at ks � 0:1349 and k‘ � 0:1339 for the
three kinematics A, B and C as well as for � � 0, are
reported, while in Fig. 4 the relative statistical errors,
�f��q2�=f��q2� and �f0�q2�=f0�q2�, are shown. It can
be seen that the use of twisted BCs allows to explore the
θ

θ

θ

FIG. 2 (color online). Time dependence of the quantity
R��tx � t; ty � T=2� providing at large time distances the vector
form factor f��q2� (see footnote 3 in the text), calculated with
periodic BCs (� � 0) at a2q2 � �0:067 (full squares), and with
twisted BCs ( ~� � �0:7; 0; 0�) at a2q2 � �0:034 in kinematics A
(open diamonds) and a2q2 � 0:0022 in kinematics C (open
dots). The plateaux are taken from t=a � 11 to t=a � 17. The
values of the hopping parameters are ks � 0:1349 and k‘ �
0:1339.

θ θ

FIG. 3 (color online). Results for the form factors f��q2�
(a) and f0�q

2� (b) obtained for various values of q2 at ks �
0:1349 and k‘ � 0:1339. Full squares correspond to � � 0,
while open diamonds, triangles and dots correspond to the three
kinematics A, B and C, respectively.
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low-q2 region without introducing any significant addi-
tional noise.

The statistical error of the results obtained at � � 0
quickly decreases as q2 increases in the spacelike region,
reaching a minimum value of ’ 3% at a2q2 ’� �0:05 for
both f��q

2� and f0�q
2�. The results obtained using

kinematics A and B are totally consistent with each other
and the statistical error remains almost constant ( ’ 4%).
Note that the precision obtained in kinematics A and B
is not better than the one of the nearest points obtained at
� � 0.

Vice versa a significant improvement in the precision
can be achieved using kinematics C thanks to the double
ratio (28), which allows to determine f��q2� with a statis-
tical error of ’ 0:3%. For the scalar form factor the corre-
sponding accuracy is only ’ 1:5% due to the larger
fluctuations of the ratio (25), but it is still better than the
precision achieved with kinematics A and B. The smallest
statistical uncertainty ( ’ 0:07%) remains the one at q2 �
q2

max thanks to the double ratio (24) that involves the time
component of the weak vector current with all mesons at
rest.
V. SLOPES OF f��q2�AND f0�q
2� AT q2 � 0

In this section we analyze the momentum dependence of
the vector and scalar K ! � form factors in order to
understand the impact of the introduction of the twisted
BCs in the determination of the form factors as well as of
their slopes at zero-momentum transfer. As already noted
in Ref. [3] the results for f��q2� can be very well described
by a pole-dominance fit, where the slope agrees well with
the inverse of the K�-meson mass square for each combi-
nation of the simulated quark masses. The results for
f0�q

2� can be parametrized using different functional
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FIG. 4 (color online). As in Fig. 3 but for the relative statistical
errors �f��q

2�=f��q
2� (a) and �f0�q

2�=f0�q
2� (b).
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TABLE II. Values of the vector form factor at zero-momentum
transfer f�0� � f��0� � f0�0� and of the slope parameters 	0

and 	� of the polar fits (30), obtained using different sets of
values of f��q2� and f0�q

2�, including always the very accurate
value of f0�q

2� at q2 � q2
max. The values of the hopping parame-

ters are ks � 0:1349 and k‘ � 0:1339.

Lattice data set f�0� 	0=a
2 	�=a

2

� � 0 0.9907(19) 3.2(5) 5.9(8)
� � 0� kin. A, B 0.9920(17) 2.8(5) 5.6(7)
� � 0� kin. C 0.9910(16) 3.1(5) 6.0(8)
� � 0� kin. A, B, C 0.9921(15) 2.7(4) 5.6(7)

TABLE III. The same as in Table II but excluding in the data
sets the value of f0�q

2� at q2 � q2
max.

Lattice data set f�0� 	0=a
2 	�=a

2

� � 0 1.107(105) 5.2(2.1) 8.1(2.4)
� � 0� kin. A, B 1.089 (47) 4.7(8) 7.7(9)
� � 0� kin. C 0.9934(23) 3.3(6) 6.0(8)
� � 0� kin. A, B, C 0.9966(25) 3.0(5) 5.5(7)
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forms, like the ones adopted in Ref. [3]. However, for our
purposes it suffices to consider the case of a polar fit for
both f��q2� and f0�q2�. We have checked that our final
findings remain unchanged if instead of a polar fit a linear
or quadratic q2-dependence for f0�q2� is considered.

Thus our results have been parametrized using the fol-
lowing momentum dependencies

f��q
2� �

f�0�

1� 	�q2 ; f0�q
2� �

f�0�

1� 	0q2 ; (30)

where f�0� � f��0� � f0�0�, 	0 and 	� are fitting pa-
rameters. We have determined the values of such three
parameters through a 
2-minimization procedure applied
to different sets of lattice data, namely: (i) data obtained
using periodic BCs only (� � 0); (ii) addition of the results
corresponding to kinematics A and B; (iii) data at � � 0
plus those corresponding to kinematics C only; (iv) full set
of lattice points (� � 0 plus kinematics A, B and C). In
Table II we have reported the values obtained for f�0�, 	0

and 	� for each choice of the data set. It can be seen that
the impact of the lattice points corresponding to twisted
BCs appears to be marginal and the extracted values of
f�0�, 	0 and 	� have almost the same accuracy as the one
obtained using simply the lattice data calculated with
periodic BCs. The usefulness of the twisted BCs is thus
spoiled by the absence of a significant improvement of the
accuracy as well as by the non-negligible increase of the
computational time required for the inversions of Eq. (7)
for each choice of ~�.

This finding can be traced back to the following facts:
(i) the presence of the very accurate value of f0�q2� at q2 �
q2

max in all the data sets considered (such a data point is by
far the most accurate one [see the right-most point in
Fig. 4(b)] and also the values of q2

max are quite small [see
Table I]); and (ii) the use of twisted BCs does not lead to a
sufficient improvement of the precision with respect to the
nearest spacelike points obtained with periodic BCs.

As mentioned in the Introduction, there are cases of
phenomenological interest where a lattice point at zero-
momentum transfer is not accessible with periodic BCs.
An important example is represented by some of the form
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factors entering hyperon semileptonic decays, like the
weak magnetism, the weak electricity, the induced scalar
and pseudoscalar form factors [6]. Thus, in order to clarify
the role played by the ~� � 0 lattice points, we have re-
peated the fitting procedure for the same lattice data sets
but excluding always the very accurate value f0�q2

max�.
This analysis is expected to be representative of the cases
where a precise lattice point close to or at zero-momentum
transfer is not accessible. Our results are reported in
Table III.

The following comments are in order:

(i) u
-7
sing the data set � � 0 (only periodic BCs) the
values of f�0� and of the slopes are now more
poorly determined. The statistical uncertainties
turn out to be ’ 10%, ’ 40% and ’ 30% for f�0�,
	0 and 	�, respectively. Note that the accuracy
obtained for f�0� is almost 3 times the precision
of the nearest spacelike points ( ’ 3%);
(ii) t
he accuracy improves by a factor of ’ 2 when the
data corresponding to kinematics A and B are in-
cluded. Note that the accuracy of f�0� is now
comparable to the one of f at the ~� � 0 points ( ’
4%), due to the fact that the latter are quite close to
q2 � 0. Clearly the ’ 5% precision achieved for
f�0� is not enough for phenomenological applica-
tions to the K‘3 decay. However such a level of
accuracy is highly desirable for other observables,
like hyperon semileptonic form factors;
(iii) t
he inclusion of the quite accurate points obtained
in kinematics C (with or without those of
kinematics A and B) leads to a remarkably good
determination of f�0� and the slopes 	0 and 	�,
obtaining a precision competitive with that reported
in Table II, where the very precise value f0�q2

max� is
included.
We have also performed the analysis of our lattice
simulations at ks � 0:1339 and k‘ � 0:1349. The results
obtained are similar to the ones shown in Figs. 2–4 and in
Tables II and III. Our findings about the impact of the
twisted BCs remain unchanged. The same is true also for
the K ! K and �! � transitions, where q2

max vanishes,
f��q2� � 0 and f�0� � 1 because of vector current con-
servation. Note that for degenerate transitions, like the ones
needed for the nucleon magnetic and the neutron electric
dipole form factors, the kinematics A and B precisely
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coincide, while the kinematics C does not add any new
information.

We mention that there are other cases of phenomeno-
logical interest where a lattice point at zero-momentum
transfer is not accessible with periodic BCs. For instance,
the nucleon magnetic form factor GM�q2� is related to the
matrix elements of the spatial components of the electro-
magnetic current, which are proportional to the value of the
momentum transfer. Therefore, the nucleon magnetic mo-
ment GM�q

2 � 0� is not directly accessible with periodic
BCs and it should be determined by a ‘‘long’’ extrapolation
to q2 � 0 (see Ref. [10]). Another example is the neutron
electric dipole moment as determined with the strategies
described in Refs. [11,12], which require again a long
extrapolation of the CP-violating neutron form factor
F3�q

2� to q2 � 0.4 In such cases however the introduction
of twisted BCs is not trivial, because the current involved,
the electromagnetic one, is not flavor changing. One can
speculate that, by introducing an additional flavor and
suitable interpolating fields, the application of the twisted
BCs to the additional flavor, at least for quenched simula-
tions, might provide the form factor of interest at quite
small values of the four-momentum transfer. The applica-
tion of twisted BCs to electromagnetic transitions requires
therefore a careful treatment, which is well beyond the
scope of the present work.

VI. CONCLUSIONS

We have investigated the application of twisted bound-
ary conditions to quenched lattice QCD simulations of
three-point correlation functions in order to access spatial
components of hadronic momenta different from the inte-
ger multiples of 2�=L. The vector and scalar form factors
relevant to the K ! � semileptonic decay have been eval-
uated by twisting in all possible ways one of the quark lines
in the three-point functions. We have found that the mo-
4A direct determination of the form factor F3�q
2� at q2 � 0

can be obtained with the approach proposed in Ref. [13].
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mentum shift produced by the twisted boundary conditions
does not introduce any additional noise and easily allows
us to determine within a few percent statistical accuracy
the form factors at quite small values of the four-
momentum transfer, which are not accessible when peri-
odic boundary conditions are considered. We are confident
that these findings are independent of the use of the
quenched approximation, so that they will hold as well
also in case of partially quenched and full QCD
simulations.

We have studied the impact of twisted boundary con-
ditions on the precision of the determination of the K ! �
form factors and their slopes at zero-momentum transfer.
We have found that: (i) when the precise lattice point for
f0�q

2� at q2 � q2
max is not included in the analysis, the use

of twisted BCs is crucial to allow a determination of the
form factor at zero-momentum transfer at a few percent
statistical level; (ii) when the very accurate value f0�q

2
max�

is included in the analysis, the impact of twisted BCs turns
out to be marginal, while we remind the reader that it is
expensive for the computational time. The latter result is
due to the fact that: (i) the precision of the lattice points
obtained with twisted BCs is not comparable to the one that
can be achieved for f0�q

2
max�; (ii) the use of twisted bound-

ary conditions does not lead to a sufficient improvement of
the precision with respect to the nearest points obtained
with periodic boundary conditions.

We stress that there are cases of phenomenological
interest where a lattice point at zero-momentum transfer
is not accessible with periodic BCs, like e.g. the case of the
weak magnetism, the weak electricity, the induced scalar
and pseudoscalar form factors entering hyperon semilep-
tonic decays.

ACKNOWLEDGMENTS

The authors gratefully acknowledge V. Lubicz,
M. Papinutto and G. Villadoro for many useful discussions
and comments.
[1] P. F. Bedaque, Phys. Lett. B 593, 82 (2004).
[2] G. M. de Divitiis, R. Petronzio, and N. Tantalo, Phys. Lett.

B 595, 408 (2004).
[3] D. Becirevic et al., Nucl. Phys. B705, 339 (2005); Nucl.

Phys. B, Proc. Suppl. 140, 387 (2005). See also for
hyperon semileptonic decays: Eur. Phys. J. A 24, 69
(2005).

[4] C. Dawson, T. Izubuchi, T. Kaneko, S. Sasaki, and A.
Soni, Proc. Sci., LAT2005 (2005) 337 [hep-lat/0510018];
N. Tsutsui et al. (JLQCD Collaboration), Proc. Sci.,
LAT2005 (2005) 357 [hep-lat/0510068].

[5] M. Okamoto (Fermilab Lattice Collaboration), hep-lat/
0412044.

[6] D. Guadagnoli, V. Lubicz, M. Papinutto, and S. Simula,
Report No. RM3-TH/06-7 (unpublished).

[7] C. T. Sachrajda and G. Villadoro, Phys. Lett. B 609, 73
(2005); J. M. Flynn, A. Juttner, and C. T. Sachrajda
(UKQCD Collaboration), Phys. Lett. B 632, 313 (2006).
-8



LATTICE STUDY OF SEMILEPTONIC FORM FACTORS . . . PHYSICAL REVIEW D 73, 114504 (2006)
[8] P. F. Bedaque and J. W. Chen, Phys. Lett. B 616, 208
(2005).

[9] G. Martinelli and C. T. Sachrajda, Nucl. Phys. B316, 355
(1989).

[10] M. Gockeler et al. (QCDSF Collaboration), Phys. Rev. D
71, 034508 (2005).
114504
[11] E. Shintani et al., Phys. Rev. D 72, 014504 (2005).
[12] F. Berruto, T. Blum, K. Orginos, and A. Soni, Phys. Rev. D

73, 054509 (2006).
[13] D. Guadagnoli, V. Lubicz, G. Martinelli, and S. Simula,

J. High Energy Phys. 04 (2003) 019; D. Guadagnoli and
S. Simula, Nucl. Phys. B670, 264 (2003).
-9


