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Staggered chiral perturbation theory and the fourth-root trick
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Staggered chiral perturbation theory (S�PT) takes into account the ‘‘fourth-root trick’’ for reducing
unwanted (taste) degrees of freedom with staggered quarks by multiplying the contribution of each sea
quark loop by a factor of 1=4. In the special case of four staggered fields (four flavors, nF � 4), I show
here that certain assumptions about analyticity and phase structure imply the validity of this procedure for
representing the rooting trick in the chiral sector. I start from the observation that, when the four flavors
are degenerate, the fourth root simply reduces nF � 4 to nF � 1. One can then treat nondegenerate quark
masses by expanding around the degenerate limit. With additional assumptions on decoupling, the result
can be extended to the more interesting cases of nF � 3, 2, or 1. An apparent paradox associated with the
one-flavor case is resolved. Coupled with some expected features of unrooted staggered quarks in the
continuum limit, in particular, the restoration of taste symmetry, S�PT then implies that the fourth-root
trick induces no problems (for example, a violation of unitarity that persists in the continuum limit) in the
lowest energy sector of staggered lattice QCD. It also says that the theory with staggered valence quarks
and rooted staggered sea quarks behaves like a simple, partially-quenched theory, not like a mixed theory
in which sea and valence quarks have different lattice actions. In most cases, the assumptions made in this
paper are not only sufficient but also necessary for the validity of S�PT, so that a variety of possible new
routes for testing this validity are opened.
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I. INTRODUCTION

Staggered quarks [1] employ an incomplete reduction of
the lattice doubling symmetry, and therefore have an extra
degree of freedom called ‘‘taste.’’ In four dimensions, a
single staggered field on the lattice produces four tastes in
the continuum limit. It is possible to interpret taste as
physical flavor �u; d; s; c� by explicitly breaking the con-
tinuum taste symmetry with general mass terms [2].
However, that approach leads to a variety of problems
including complex determinants, violations of chiral sym-
metry even in the limit of vanishing light quark masses, and
the necessity of fine tuning. The current standard ap-
proach—and the one assumed in this paper—is to intro-
duce a separate staggered field for each physical flavor, and
then attempt to eliminate the unwanted taste degree of
freedom by taking a root of the staggered fermion deter-
minant. This procedure was proposed by Marinari, Parisi
and Rebbi [3] in a two-dimensional context; a fourth root is
required in four dimensions. Such ‘‘rooted’’ staggered
quarks have been used by the MILC collaboration for
recent dynamical simulations [4], which give good agree-
ment with experiment for many simple hadronic quantities
[5].

There is widespread agreement that, whatever their
practical problems in reproducing the desired four-flavor
mass spectrum, ‘‘unrooted’’ staggered fermion quarks are a
consistent way to simulate four degenerate tastes of quarks
in the continuum limit. But the correctness of the fourth-
root trick to reduce four tastes to one has not been proven,
and there are concerns expressed in the literature about its
use in lattice QCD simulations [6–8]. The difficulties arise
from the fact that taste symmetry is broken at order a2,
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where a is the lattice spacing. This prevents one from
implementing the rooting simply by projecting the local
four-taste staggered Dirac operator onto a local operator in
a single-taste subspace. Without a local Dirac operator,
usual physical properties of a lattice theory such as unitar-
ity or universality are called into question. In the past few
years, many authors have addressed the issue of the validity
of the fourth-root procedure [9–12]. While a proof is still
lacking, the result of these investigations is to make it
rather plausible that staggered quarks with the fourth-root
trick do in fact have the correct continuum limit. At finite
lattice spacing, however, it seems clear that the fourth-root
procedure introduces a variety of unphysical sicknesses.
This follows not only from the renormalization group
approach introduced by Shamir [11], but also from the
staggered chiral theory, as discussed below. The issue is
then to prove that these unphysical effects disappear or
decouple in the continuum limit.

Here, I start with a simpler, but related, problem: What is
the chiral theory that correctly describes rooted staggered
quarks? Lee and Sharpe [13] found the chiral theory that
corresponds to a single unrooted staggered field. In the
current terminology, this is a one-flavor case, with four
tastes. It was generalized to more than one flavor (more
than one staggered field) and called ‘‘staggered chiral
perturbation theory’’ (S�PT) by Aubin and Bernard [14].
Certain, rather noncontroversial, assumptions go into these
derivations. In particular, one needs to know the Symanzik
theory [15] that describes unrooted staggered quarks as one
approaches the continuum limit. In deriving the Symanzik
theory, one assumes that the taste, Lorentz, and translation
symmetries become exact in the continuum, and that the
-1 © 2006 The American Physical Society
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lattice symmetries fit inside the continuum group in a
straightforward way. In addition to theoretical understand-
ing of why this should be the case [2,11,16,17], there is
good numerical evidence for the restoration of these sym-
metries [4,9]. To find the chiral theory for rooted staggered
quarks, an additional assumption is needed. In Ref. [14], it
was proposed that one could represent the effects of the
fourth root by locating the sea quark loops in S�PT, and
then multiplying each one by a factor of 1=4. Here, I take
this prescription as defining what I mean by S�PT for
rooted staggered quarks. The question then becomes: Is
S�PT the correct chiral theory?

In this paper, I show that the validity of S�PT follows
from certain nontrivial assumptions on the phase structure
and mass dependence of the theory. These assumptions
will be introduced as needed; the most important of them
are also collected in the concluding section. While I will
try to argue from simulations and experience for the plau-
sibility of these assumptions, significantly more work is
required to prove and/or numerically test them. On the
other hand, in most cases it will be clear that the assump-
tions are not only sufficient for the validity of S�PT but
also necessary. Tests of the assumptions therefore provide
new means to test S�PT itself.

Note first of all that S�PT for rooted quarks does show
unphysical effects at nonzero lattice spacing. In the pub-
lished literature, this is seen most clearly in Prelovsek’s
calculation of the flavor nonsinglet scalar correlator [18].
On the lattice, she finds intermediate-state contributions
with mass below that of the lightest physical intermediate
state (��). I call this sickness a ‘‘unitarity violation’’ at
finite lattice spacing, since it is due to contributions from
‘‘extra’’ light mesons of various tastes, which only cancel
completely in the continuum limit.1 The flavor-singlet
scalar correlator provides another example of such unitar-
ity violation. It has recently been worked out for the three-
and one-flavor cases, both unrooted and rooted [19].
Because the one-flavor case is a key test of the ideas
discussed in the current paper, I present some relevant
details in Sec. VI. The scalar correlator at nonzero lattice
spacing has intermediate-state contributions from light
pseudo-Goldstone pions, even though a one-flavor theory
should have only a massive pseudoscalar, the �0.
Nevertheless, these unphysical states decouple from the
correlator in the continuum limit.

Thus S�PT captures some sicknesses expected of the
rooted theory at nonzero lattice spacing. But it is not
obvious that S�PT captures all such sicknesses. Perhaps
there are other violations of unitarity, or indeed other more
subtle features of the rooted theory, that should be present
1One might be tempted to describe this sickness as kind of
‘‘nonlocality’’ at finite lattice spacing, because the correlator
decays at long distances at an unphysical rate. I prefer to avoid
that terminology, because its connection with the standard issue
of the locality of a Dirac operator on the lattice is indirect.
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in the corresponding chiral effective theory but are missed
by S�PT. I argue below that no such effects are missed.
The starting point is a special case in which there is
virtually no doubt about the correct chiral theory: a rooted
theory with four degenerate quark flavors. In this case, the
fourth-roots of the four determinants are identical, so their
product just gives the determinant of a single, unrooted
staggered field. (Note that the staggered determinant is
positive, and the algorithmic treatment of the rooting trick
in the simulations gives the positive fourth root [20].) With
the noncontroversial assumptions mentioned above, the
corresponding chiral theory is just the S�PT of Lee and
Sharpe [13].

One can then expand around the degenerate case to treat
the case of nondegenerate masses. For technical reasons,
this requires the use of a partially quenched chiral theory
with valence masses degenerate with those of the sea
quarks. Golterman, Sharpe and Singleton (GSS) [21]
show that the phase structure of a quenched chiral theory
can be subtle, and analogous questions can be raised about
the partially quenched theory. The use of partial quenching
in this paper seems to be safe from any GSS subtleties.
However, since the theory has not yet been investigated in
detail using the GSS methods, I highlight a few places
where complications could conceivably enter. Further in-
vestigation along the lines of Ref. [21] is planned.

The completion of the argument for four nondegenerate
flavors requires nontrivial assumptions about the analytic
structure of the mass dependence. In particular, I need to
assume that there is no essential singularity at zero degen-
eracy in the difference between S�PT and the putative
correct chiral theory. Phase transitions in the chiral theory
at nonzero quark mass differences would also be danger-
ous, although the existing simulations [4] can be put for-
ward as evidence against such phase transitions, at least in
the region of parameter space investigated to date.

To move to the phenomenologically more interesting
case of three light flavors, the mass of one quark can be
taken large. In S�PT, it is quite clear that the heavy quark
will decouple, leaving three-flavor S�PT. However, in the
lattice QCD of rooted staggered quarks, the nature of the
decoupling, while in my opinion plausible, requires an
additional assumption. With this assumption, it follows
that S�PT is the correct chiral description of the rooted
three-flavor theory. The process can then be repeated,
leading to statements about the two- and the one-flavor
theories.

If S�PT is accepted as the correct chiral description, it
provides strong evidence that rooted staggered quarks have
the desired continuum limit, in other words that they are in
the correct universality class. The point is that S�PT
automatically becomes continuum chiral perturbation the-
ory (�PT) in the continuum limit, modulo the usual as-
sumptions on the restoration of taste symmetry in the
continuum limit of unrooted staggered quarks. Therefore,
-2
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this line of reasoning says that the low energy (pseudosca-
lar meson) sector of lattice QCD with rooted staggered
quarks is, in the continuum limit, indistinguishable from
that of ordinary QCD. This would significantly reduce the
‘‘phase space’’ for any possible sicknesses of rooted stag-
gered quarks in the continuum limit.

Another consequence of the arguments in this paper is
more technical: If S�PT is valid, the lattice theory with
rooted staggered sea quarks and ordinary staggered va-
lence quarks (the theory in the MILC simulations [4])
behaves like a ‘‘partially quenched’’ theory.2 Effectively,
this means that there are symmetries that connect valence
and sea quarks. As usual for a partially quenched theory,
such symmetries may be broken in a controlled way by
mass differences between valence and sea quarks.
However, the symmetries are not broken by lattice correc-
tions. The theory therefore does not behave like a ‘‘mixed’’
theory, in which valence and sea quarks have different
lattice actions. In the mixed case, there are no symmetries
at finite lattice spacing that connect valence and sea quarks.
The chiral descriptions of mixed theories [23] thus have
terms—vanishing in the continuum limit—that violate
such symmetries. These terms can, for example, lead to
mass splittings between mesons composed of two valence
quarks and those composed of one valence and one sea
quark. I show here that the chiral theory for staggered
valence and rooted staggered sea quarks does not have
such terms; corresponding valence-valence, valence-sea,
and sea-sea mesons are degenerate.

The remainder of this paper is organized as follows: In
Sec. II, I discuss the replica trick in S�PT; this is a system-
atic way to find sea quark loops in the chiral theory and
multiply each by a factor 1=4. Section III then introduces
the notation needed to describe the various theories con-
sidered here, at both the QCD and the chiral levels, and
makes some introductory comments about these theories.
The details of my assumptions and arguments for S�PT in
the four-flavor case are presented in Sec. IV; while the
extension to three or fewer flavors is treated in Sec. V.
Section VI shows in some detail how the one-flavor case
works. I resolve there the apparent paradox of light pseudo-
Goldstone mesons appearing the one-flavor chiral theory.
Consequences of my arguments for the rooted theory at the
QCD level are described in Sec. VII. Finally, I review the
assumptions and conclusions and make some additional
remarks and speculations in Sec. VIII.

II. REPLICA TRICK

In S�PT for rooted staggered quarks, one needs to
identify the presence of sea quark loops in various meson
diagrams, and multiply each such loop by a factor of 1=4.
The sea quark loops were located in Ref. [14] by using the
quark flow approach [24]. While quark flow gives a rather
2In the continuum limit, this was anticipated in Ref. [22].
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intuitive physical picture, it suffers from the disadvantage
in the current case that it is formulated as a series of rules
for tracing flavor indices, not as an algebraic statement.
The replica trick provides an alternative approach that is
systematic and algebraic. It was applied to partially
quenched theories by Damgaard and Splittorff [25] and
was first used for S�PT in Ref. [26].

The replica procedure for rooted S�PT is very simple:
One starts by replicating the sea-quark flavors, replacing
each dynamical staggered field by nR identical copies,
where nR is a (positive) integer. One then calculates
straightforwardly order by order in the corresponding (un-
rooted) S�PT, keeping the nR dependence explicit. Finally,
one sets nR � 1=4.

Note that, at any finite order in S�PT, the nR dependence
is polynomial: It just comes from the sum over the sea
quark indices in meson loops. Therefore, the process of
taking nR !

1
4 is straightforward and unambiguous order

by order. As always in chiral perturbation theory, we treat
the low energy constants (LECs) as free parameters for
each nR. We should not use any relations that hold only for
special values of nR—analogous to those discussed by
Sharpe and Van de Water [27]—to reduce the number of
chiral operators. If it turns out that we are left with some
redundant operators when nR !

1
4 , we can always redefine

the LECs to absorb the redundancy at the end. Within
chiral perturbation theory, we do not worry about (nor do
we have any control over) the dependence of low energy
constants themselves on nR. Such dependence, coming
from an underlying QCD-like theory, would in fact be
nonperturbative in the strong coupling �S and probably
not polynomial in nR.

At the QCD level, it is difficult to give the replica trick
any meaning beyond weak-coupling perturbation theory, in
which the nR dependence is again polynomial. Within
weak-coupling perturbation theory, the replica trick is in
fact somewhat useful, because it provides a convenient
way of keeping track of sea-quark loops. This can aid in
clarifying the argument in Ref. [22] of the validity of the
fourth-root procedure in perturbation theory, and will also
be helpful in Sec. VII B. Nonperturbatively, however, even
if we were to assume that the nR !

1
4 limit should be taken

by analytic continuation, the replica trick would be ambig-
uous since there is no unique continuation from the
integers.

A related comment is that the use of the replica trick for
a chiral theory is valid, a priori, only for order by order
calculations in chiral perturbation theory. We have no
guarantee of its correctness in general nonperturbative
chiral calculations, such as the determination of the correct
vacuum state. However, in the degenerate four-flavor the-
ory, we know the chiral theory (and hence the appropriate
phase) independent of the replica trick. As I move away
from the degenerate limit, I will in any case need to assume
that dependence on quark mass is smooth and no phase
-3
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change occurs (see Sec. IV). Thus, there is no further
restriction coming from the perturbative nature of the
replica trick.

III. THEORIES CONSIDERED; NOTATION

We need some notation to refer to the various versions of
QCD and their corresponding chiral theories. Define a
version of lattice QCD by �nF; nT; nR�LQCD, where nF is
the number of flavors (the number of staggered fields), nT
is the number of tastes per field, and nR is the number of
replicas. The corresponding chiral theories are denoted by
�nF; nT; nR��. If nR is trivially equal to 1 (because the
replica trick is not relevant), it is omitted.

When �nF; nT; nR�� or �nF; nT; nR�LQCD are used in
equations, I am referring specifically to the generating
functionals for these theories, with sources to be discussed
below.

I focus primarily on three versions of QCD, and four
versions of chiral theories:
(i) �
1; 4�� and �1; 4�LQCD: These are the chiral and
QCD theories of a single staggered field (one fla-
vor) with four tastes. By (noncontroversial) as-
sumption, the chiral theory �1; 4�� is just the
S�PT of Lee and Sharpe [13]. No rooting is done
at the QCD level, and no replica trick is necessary
at the chiral level.
(ii) �
nF; 4; nR�� and �nF; 4; nR�LQCD: These are the
theories for nF staggered fields (nF flavors), each
replicated nR times. When nR is indicated explic-
itly, as in this case, it is taken to be an integer only;
no rooting is done. The chiral theories �nF; 4; nR��
are—again by noncontroversial assumption—just
those of Aubin and Bernard [14] for integer (nF �
nR) number of flavors. They are obtained from the
nF flavor chiral theories by replicating the sea-
quark degrees of freedom in the chiral fields.
(iii) �
nF; “1”�� and �nF; “1”�LQCD: These are the chiral
and QCD theories of nF staggered fields (nF fla-
vors) with the

�������
det4
p

taken at the QCD level to
reduce 4 tastes to 1 for each flavor. Since I do not
want to assume here that the rooting procedure is
correct, I write the 1 for tastes in quotation marks.
Then �nF; “1”�� is by definition the chiral theory
generated by �nF; “1”�LQCD. The main point of this
paper is to construct �nF; “1”�� unambiguously.
(iv) �
3I thank Urs Heller for this comment.
nF; 4;
1
4��: This is the chiral theory �nF; 4; nR��,

now implementing the replica trick by taking nR !
1
4 , with the goal of describing rooted staggered
quarks. In the literature (e.g., Refs. [14,26,28–
30]), it is assumed that this procedure produces
the right chiral theory; in other words, it is assumed
that �nF; “1”�� � �nF; 4;

1
4��. Here, I define S�PT

as �nF; 4;
1
4��, and then ask the question of whether

S�PT is indeed the correct chiral theory. Note that I
avoid reference to corresponding QCD theories
114503-4
‘‘�nF; 4;
1
4�LQCD’’ because, as discussed in Sec. II, I

do not know how to give unambiguous meaning
beyond perturbation theory to the replica trick for
those QCD-level theories.
For my arguments, the chiral theories �nF; 4; nR�� are
key objects. On the other hand, the corresponding QCD
theories �nF; 4; nR�LQCD, in particular �4; 4; nR�LQCD, are
introduced for convenience, because they allow one to
keep track more easily of the factors of nR that relate
valence- to sea-quark matrix elements (see Sec. IV).
These QCD-level theories can be eliminated at the expense
of a somewhat less intuitive argument at the chiral level,
related to quark flow. An outline of such an alternative
argument is given in Sec. IV B; it does however seem to
require a weak additional assumption. Because the
�4; 4; nR�LQCD theories are just used formally, it is probably
unnecessary that the standard, broken realization of chiral
symmetry assumed in �4; 4; nR�� actually occurs in
�4; 4; nR�LQCD. The unpleasant fact that asymptotic free-
dom (and presumably spontaneous chiral symmetry break-
ing) is lost for nR > 1 in �4; 4; nR�LQCD seems to be
irrelevant. An easy way to see this is to realize that the
precise correspondence between �4; 4; nR�LQCD and
�4; 4; nR�� can be maintained by an artifice,3 as follows:
Note first that the order of the polynomial dependence on
nR is bounded at a given order in chiral perturbation theory.
This means there is maximum value of nR, nmax

R , that need
be considered in order to determine the polynomial com-
pletely. One can then simply imagine increasing the num-
ber of colors sufficiently to ensure that the QCD theory has
the standard, spontaneously broken, realization of chiral
symmetry for any nR � nmax

R . Recall that the mesonic
chiral theory generated by a given �4; 4; nR�LQCD is inde-
pendent of the number of colors as long as the phase is
unchanged. The numerical values of the LECs do depend
on the number of colors, but we are uninterested in those
values here.

In the next section, I argue that the replica trick produces
the correct chiral theory in the four-flavor case. In other
words, I claim that

�4; “1”�� �
:
�

4; 4;
1

4

�
�
: (1)

This should be taken as a statement about the generating
functionals of the two chiral theories. I use ‘‘�

:
,’’ rather

than ‘‘� ,’’ to compare two chiral theories, because what I
mean is that they are the same functions of the LECs: True
equality would only result if we adjusted the LECs to be
the same.

One also needs to be careful about what sources (equiv-
alently, external fields) one is allowing in the Green’s
functions on both sides of equations such as Eq. (1). For
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example, there are more sea-quark fields available in the
�4; 4; nR�� theory, from which �4; 4; 1

4�� is obtained, than
there are in the �4; “1”�� theory. Unless explicitly stated
otherwise, such generating functionals should be taken to
describe partially quenched theories, with sources coupled
to valence fields only. Ghost (bosonic) fields, degenerate
with the valence fields and required to cancel the valence
determinant, are also implicit. When I need to make the
sources explicit, I will include any valence sources �
among the arguments, for example �nF; nT; nR;��LQCD.
Identical staggered valence fields with identical valence
sources are always assumed on both sides of equations
relating generating functionals.
IV. DETAILS OF THE ARGUMENT FOR FOUR
FLAVORS

The key ingredient is the observation that, when there
are four degenerate flavors (four staggered fields with
equal masses), the rooting procedure clearly reduces the
four-flavor theory to a one-flavor theory. In other words,
instead of acting on tastes and (presumably) reducing the
four tastes per flavor to one taste per flavor, we can think of
the rooting in this case as acting on flavor and reducing
four fields to one, without affecting the tastes. Let the quark
mass matrix be M. The condition of degeneracy is M �
�mI, where �m is a number and I is the identity matrix in

flavor space. It then follows that:

�4; “1”�LQCD

��������M� �mI
� �1; 4�LQCD

�������� �m
(2)

�4; “1”��

��������M� �mI
�
:
�1; 4��

�������� �m
�
:
�
4; 4;

1

4

�
�

��������M� �mI
: (3)

The last equivalence in Eq. (3) is manifest order by order in
S�PT: Since the result for any physical quantity is poly-
nomial in the number of degenerate flavors, taking 4nR
degenerate flavors and then putting nR � 1=4 gives the
same chiral expansion as a one-flavor theory.

One can make a stronger statement than Eq. (3) by
adding sources and computing specific Green’s functions
in the degenerate case. In order to keep the arguments
simple, I generally use only taste-singlet scalar sources,
which are all that are necessary to allow us to move beyond
the degenerate mass limit. For writing explicit terms in the
chiral theory, however, it will be convenient below to
include pseudoscalar sources temporarily, since it is linear
combinations of scalar and pseudoscalar source that trans-
form simply under chiral transformations. One can also
easily generalize to sources of arbitrary taste if desired.

I start by adding introducing the scalar sources into the
sea-quark sector of the QCD-level theory �4; “1”�LQCD. Let
�i�x� be the sea quark field of flavor i at space-time point
x. For convenience, I work in the taste representation [17],
with taste (and spin) indices on � implicit, but there is no
114503
reason why one cannot work directly with the one-
component staggered fields instead. The source s�x� is
taken to be a Hermitian matrix in flavor space. The mass
and source terms are then:

�m ��i�x��i�x�� ��i�x�s
ij�x��j�x�; �4;“1”� case; (4)

where sums over flavor indices i, j are implied.
One needs to state precisely here what is meant by a

rooted-staggered theory with sources. In this paper, I al-
ways mean: (1) introduce the sources into the correspond-
ing unrooted theory; (2) integrate the sea quark fields to get
a determinant that is a function of the sources; (3) replace
the determinant by its fourth root. Derivatives with respect
to the sources, if desired, are taken only after step (3).

Now introduce the same sources into the replica QCD
theories �4; 4; nR�LQCD, with the specification that a given
source couples equally to all replicas. We have:

�m ��r
i �x��

r
i �x�� ��r

i �x�s
ij�x��r

j�x�; �4;4;nR� case: (5)

Sums over the replica index r � 1; 2; . . . ; nR, as well as the
flavor indices i and j, are implied.

When the sources are nonzero (which includes the case
of nondegenerate quark masses as a special case), we do
not yet know that �4; 4; 1

4�� is the right chiral theory. One
could imagine that there are extra terms in �4; “1”�� that
vanish in the limit s � 0. So I define the difference to be an
unknown functional V�s�:

�4; “1”; s�� �
:
�4; 4; 1

4; s�� � V�s�; (6)

where V�0� � 0. As far as we know at this point, V�s�
could be quite sick. For example, it could generate
Euclidean correlation functions with unphysical decay
rates (unphysical intermediate states), even in the contin-
uum limit.

There are further restrictions on V�s� coming from the
fact that the two chiral theories must be equivalent when
there is exact flavor symmetry. We must have V�s� � 0
whenever s�x� is proportional to the identity in flavor space
or can be brought there by an SU�4�L 	 SU�4�R chiral
flavor rotation. Therefore it takes some care even to write
down a possible term in V�s�.

I temporarily add a Hermitian pseudoscalar source p�x�
to the theories. For example, corresponding to Eq. (4) is

i ��i�x��5p
ij�x��j�x�; �4; “1”� case: (7)

The spurion combinations h 
 �mI � s� ip and hy 

�mI � s� ip transform simply under chiral rotations L 2
SU�4�L and R 2 SU�4�R:

h! LhRy; hy ! RhyLy: (8)

If

h�x� � c�x�U; hy�x� � c��x�Uy; (9)

where U 2 SU�4� is a constant matrix and c�x� is a
-5
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c-number function, then h�x� and hy�x� can be made every-
where proportional to the identity by the chiral rotation
R � U, L � I and there is exact flavor symmetry, unbro-
ken by masses or sources.

We can now look for possible terms in V, at first ex-
pressed as functionals of h and hy. An example that
satisfies the above requirements is

~V1 �
Z
d4xd4y

�
1

��M2

�
x;y

�
Tr�h�x�hy�x�h�y�hy�y��

�
1

4
Tr�h�x�hy�x��Tr�h�y�hy�y��

�
(10)

where Tr is a flavor trace, and 1=M a distance scale that
might not go to zero in the continuum. For example, one
could have M � k�QCD, where k is some constant. In the
worst case, M might not even correspond to the mass of
any physical particle in QCD.

Removing the pseudoscalar source p�x� and keeping
only the lowest nonvanishing term in s, one gets the
following example of a possible contribution to V�s�:

V1 � 4 �m2
Z
d4xd4y

�
1

��M2

�
x;y

�
Tr�s�x�s�y��

�
1

4
Tr�s�x���s�y��

�
(11)

The goal is of course to prove that V�s� actually vanishes.

A. Expansion around the degenerate theory

If we take derivatives of the generating functionals with
respect to s and evaluate them at s � 0, we will have
Green’s functions for degenerate quark masses. At the level
of the chiral theories, I claim that Eqs. (2) and (3) (modulo
some technical assumptions) actually imply the stronger
statement: Y

n

@
@sinjn�xn�

�4; “1”; s��

��������s�0

�
: Y

n

@
@sinjn�xn�

�
4; 4;

1

4
; s
�
�

��������s�0
(12)

for any given combination of derivatives with respect to s.
A difficulty in proving Eq. (12) is that, as soon as the

sources are taken to be nonzero in order to compute the
derivatives, we no longer know that �4; “1”�� and �4; 4; 1

4��
are the same. Further, I must avoid the use of �4; 4; 1

4�LQCD,
which is not well defined. Finally, I cannot use �1; 4�LQCD

easily as an intermediate step, because sea quark sources
with nontrivial flavor (sij) cannot be inserted into a one-
flavor theory.

The need for nonzero sea-quark sources in Eq. (12) can
be circumvented by using valence sectors, in other words,
by considering the partially quenched version of Eqs. (2)
and (3). I thus introduce into all theories of interest an
arbitrary number nV of staggered valence fields q�, where
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� � 1; 2; . . . nV is the valence flavor index. These have
degenerate mass �m and are coupled to valence sources
���, giving mass and source terms as follows:

�m �q��x�q��x� � �q��x��
���x�q��x�; (13)

with sums over � and� implied. The valence-quark source
��� is exactly analogous to the sea-quark source sij; they
only differ in the type of quarks to which they couple.

I also introduce nV corresponding ghost (bosonic)
quarks, again with degenerate mass �m. These ghosts do
not couple to the ��� source, so that derivatives with
respect to ��� produce Green’s functions made purely of
(fermionic) valence quarks. When ��� � 0, the valence
and ghost determinants cancel.

The partially quenched version of Eq. (2) remains valid,
since the valence/ghost sectors are identical on both sides,
and the sea-quark determinants are equal as long as the sea-
quark source s vanishes (giving degenerate masses):

�4; “1”; s � 0; ��LQCD � �1; 4; s � 0; ��LQCD; (14)

where sea and valence sources are indicated explicitly.
The equality of generating functionals must also be true

for the corresponding chiral theories:

�4; “1”; s � 0; ��� �
:
�1; 4; s � 0; ���; (15)

This follows by definition of what it means to be the
corresponding chiral theory. I am assuming that such par-
tially quenched chiral theories exist. But note that the
starting LQCD theories both have local actions, so this
appears to be a rather safe assumption. I am not claiming,
however, that I know explicitly how to calculate ghost or
valence Green’s functions in either of these chiral theories.
My expectation is that the ‘‘naive’’ meson Feynman rules,
which follow from the methods of Ref. [22], are probably
correct. However, to prove that would require an analysis
along the lines of Ref. [21] to determine the proper saddle
point for the mesons constructed from valence or ghost
quarks, around which the chiral perturbation theory can be
developed. Such an analysis is in progress.

In discussing Eq. (3), I claimed that the equivalence of
the �1; 4�� and �4; 4; 1

4�� theories is ‘‘manifest’’ order by
order in S�PT. In the presence of valence/ghost fields and
sources, the corresponding statement is almost certainly
still true. Even if the saddle point for ghost mesons (or
valence) mesons is nontrivial, it is very difficult to see how
it could be affected, order by order, by the difference
between having one sea-quark flavor or having 4nR degen-
erate sea flavors and then putting nR � 1=4. Combined
with Eq. (15), this gives

�4; “1”; s � 0; ��� �
:
�

4; 4;
1

4
; s � 0; �

�
�
: (16)

In the limit s � 0 � �, all quarks, both valence and sea,
are degenerate. This means one can relate Green’s func-
tions constructed from sea-quark fields to those con-
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structed from valence fields, or equivalently, relate deriva-
tives with respect to s to those with respect to �. This is not
completely straightforward, however. In the (4,‘‘1’’) the-
ory, derivatives with respect to s bring down factors of 1=4

from
���������������������������������
det�D� �m� s�4

p
� exp1

4 ln�D� �m� s�. When
more than one contraction (more than one term resulting
from the derivatives) is possible, different contractions will
be associated with different numbers of factors of 1=4. The
power of 1=4 is just the number of quark loops implied by
the contractions.
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On the other hand, with arbitrary nV , we can always
adjust the flavors of the valence sources being differenti-
ated so that only one contraction is possible. This means
we can always write an arbitrary derivative of the generat-
ing functional with respect to s as a linear combination of
derivatives with respect to �, each term being multiplied
by �14�

L, where L is the number of valence loops in the term.
The following two examples should clarify what I mean;
take flavors i � j and � � � and do not sum over repeated
indices:
@
@sij�x�

@
@sji�y�

�4; “1”; s; � � 0�LQCD

��������s�0
� �

1

4
htr�Gj�x; y�Gi�y; x��i �

1

4

@

@����x�

@

@����y�
�4; “1”; s � 0; ��LQCD

����������0

(17)
@

@sii�x�
@

@sii�x�
�4; “1”; s; � � 0�LQCD

��������s�0
� �

1

4
htr�Gi�x; y�Gi�y; x��i �

�
1

4

�
2
htr�Gi�x; x��tr�Gi�y; y��i

�

�
1

4

@

@����x�

@

@����y�
�

�
1

4

�
2 @
@����x�

@

@����y�

�
�4; “1”; s � 0; ��LQCD

����������0
(18)
where Gi�y; x� is the propagator of a quark of flavor i from
x to y, expectation values are taken in the �4; “1”�LQCD

theory with M � �mI and vanishing sources, and the traces
are over taste and spin indices. Note that the two sides of
Eq. (17) or Eq. (18) are just two different ways of express-
ing the expectation value of the same combination of quark
propagators, so no subtleties of partial quenching à la
Ref. [21] can interfere with the equality.

With enough derivatives with respect to s, there will
always be enough repeats in sea quark flavor indices that
more than one contraction contributes. On the other hand,
since we have an arbitrary number of valence quarks at our
disposal, we can always arrange the valence flavors in the
derivatives with respect to � so that only one contraction
occurs.

In the �4; 4; nR�LQCD theory, equations very similar to
Eqs. (17) and (18) hold, with the simple replacement 1

4!

nR. The factors of nR are produced by the sum over replicas
for each quark loop.

For an arbitrary kth derivative of �4; “1”�LQCD or
�4; 4; nR�LQCD with respect to s, we therefore can write:
Yk
n�1

@
@sinjn�xn�

�4; “1”; s; � � 0�LQCD

��������s�0
�
X
C

�
1

4

�
LC Yk

n�1

@

@��
C
n�Cn �xn�

�4; “1”; s � 0; ��LQCD

����������0
(19)

Yk
n�1

@
@sinjn�xn�

�4; 4; nR; s; � � 0�LQCD

��������s�0
�
X
C

�nR�
LC
Yk
n�1

@

@��
C
n�Cn �xn�

�4; 4; nR; s � 0; ��LQCD

����������0
(20)

where C labels a particular contraction with LC valence-quark loops, and the valence flavor indices �Cn and�Cn are adjusted
to make only that contraction possible. The key point in Eqs. (19) and (20) is that the same arrangements of valence flavor
indices and powers LC work in both cases.

We now pass to the chiral theory in both cases, giving:

Yk
n�1

@
@sinjn�xn�

�4; “1”; s; � � 0��

��������s�0
�
X
C

�
1

4

�
LC Yk

n�1

@

@��
C
n�Cn �xn�

�4; “1”; s � 0; ���

����������0
(21)

Yk
n�1

@
@sinjn�xn�

�4; 4; nR; s; � � 0��

��������s�0
�
X
C

�nR�LC
Yk
n�1

@

@��
C
n�Cn �xn�

�4; 4; nR; s � 0; ���

����������0
(22)

At any finite order in chiral perturbation theory, both sides of Eq. (22) are polynomial in nR. Therefore the limit nR !
1
4 is

well defined: Yk
n�1

@
@sinjn�xn�

�
4; 4;

1

4
; s; � � 0

�
�

��������s�0
�
X
C

�
1

4

�
LC Yk

n�1

@

@��
C
n�Cn �xn�

�
4; 4;

1

4
; s � 0; �

�
�

����������0
(23)
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The right-hand sides of Eqs. (21) and (23) are now equal
by Eq. (16). On the left-hand sides, the valence and ghost
contributions cancel completely since � � 0, so we may
eliminate those fields. This proves Eq. (12).

B. Assumptions and results in the four-flavor theory

Equation (12), together with the definition of V�s�,
Eq. (6), imply that V�s� and all of its derivatives vanish
at s � 0: Yk

n�1

�
@

@sinjn�xn�
V�s�

���������s�0
� 0: (24)

Thus terms like V1 in Eq. (11) are ruled out. Indeed, if V�s�
is assumed to be an analytic function,4 with any number of
isolated singularities, it follows that V�s� � 0 everywhere.
In other words, Eq. (1) is true under this assumption.
Normally one expects that when a function is expanded
in a Taylor series around some point, the expansion will
have a finite radius of convergence, given by the location of
the closest singularity. But here, every term in the expan-
sion is zero, so we can continue past any purported isolated
singularity, and thereby show that the singularity is ac-
tually absent.

Note that �4; 4; 1
4��, as a limit of the replica theories when

nR !
1
4 , is only defined order by order in chiral perturba-

tion theory. By definition, therefore, the vacuum state of
�4; 4; 1

4�� has the standard broken realization of chiral sym-
metry that appears in �4; 4; nR��. We know this is the
correct nonperturbative vacuum in the degenerate limit,
because there one can use the chiral theory �1; 4��, for
which no replica trick is needed. Now, if V�s� really
vanishes everywhere, then �4; 4; 1

4�� is the correct chiral
theory even for nondegenerate masses, and the vacuum
must therefore remain the standard one. Thus the assump-
tion of analyticity includes the assumption that there is no
phase change in �4; “1”�� as a function of s.

Of course, the assumption of analyticity of V�s� is a
nontrivial one. It could go wrong in two ways. First of all,
there may be a connected ‘‘line’’ of singularities, an actual
‘‘domain boundary’’ that prevents one from extending
V�s� � 0 arbitrarily far from s � 0. Of course, �PT or
S�PT must eventually break down for large enough quark
masses, so it is meaningless to imagine extending Eq. (1) to
mass differences that put one or more masses outside the
range of chiral perturbation theory. But here I am talking
about possible singularities that would prevent extending
V�s� � 0 over the whole range where S�PT applies. If
such a boundary occurred, it would probably imply a phase
change: that the true ground state for �4; “1”�� changes
discontinuously from the ground state assumed by
4At this point it is sufficient for my purposes to restrict s to a
constant matrix, just giving the mass differences. Therefore V
can be thought of as a function, not a functional, and there is no
subtlety with concepts such as analyticity.
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�4; 4; 1
4��. Although I cannot rule out this possibility from

first principles, it seems rather unlikely that a phase change
would produce small enough discrepancies to have es-
caped detection in the MILC simulations and their com-
parison with S�PT predictions [4]. But the effects of a
phase change that occurred outside the (rather wide) range
of masses or lattice spacings studied by MILC would
probably not have been noticed. In addition, since the
MILC simulations involve three flavors, the logical possi-
bility exists that a phase change occurs with four flavors
but disappears when the fourth quark is decoupled. On the
positive side, note that �4; 4; 1

4�� automatically becomes
standard continuum �PT in the continuum limit (see
Sec. VII A). Therefore, if V�s� � 0 outside some mass
region, we must at least have V�s� ! 0 in the continuum
limit to avoid the bizarre scenario in which �4; “1”�LQCD is
a valid four-flavor QCD theory in some range of quark
mass differences but not outside this range.

A second way that the analyticity assumption could go
wrong would be the presence of essential singularities in
V�s� for all values of s such that the flavor symmetry is
exact. For example, one could imagine that V�s� /
exp��1=V2

1 �. Although I cannot rule them out at this point,
such singularities seem implausible to me, since we are
expanding around a massive theory in Euclidean space and
there are thus no obvious infrared problems. Note that I am
not assuming that �4; “1”�� and �4; 4; 1

4�� separately are
analytic in s around s � 0 (or any other degenerate point),
only that their difference is. In Sec. VIII, I speculate on a
possible proof of the absence of an essential singularity in
V�s� at s � 0.

The assumption that V�s� is analytic is equivalent to the
assumption that the expansion of V�s� around s � 0 is
convergent. The reader may therefore object that this as-
sumption is too strong, since we do not expect convergent
weak coupling expansions in quantum field theories. It is
therefore useful to review why we believe that usual weak-
coupling expansions are at best asymptotic. The main
reason comes from the factorial growth of large orders in
perturbation theory [31]. In the current case, however, the
large orders terms in perturbation theory of V�s� in s are
not growing factorially—in fact they are all zero. An
alternative line of reasoning for QED is due to Dyson
[32]. He argued that the expansion in � around � � 0
must be asymptotic because �< 0 leads to an unstable
vacuum and therefore cannot be smoothly connected to the
�> 0 region. In fact, this argument has been shown to be
flawed [33], since it is possible to define the theory con-
sistently for �< 0 and to obtain it by analytic continuation
from �> 0. In any case, however, we have no similar
reason to suspect that the difference of the chiral theories
(or either of the chiral theories itself) becomes unstable as
soon as nonzero mass differences are turned on.

Of course, arguing that we have no reason to expect
nonanalyticity in V�s� is far from proving that V�s� is
-8
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analytic. This remains an assumption. Note that it can be
turned around: if V�s� is not analytic then, from Eq. (24),
V�s� � 0, so S�PT for four flavors must be incorrect.

As mentioned in Sec. III, the QCD-level theories
�4; 4; nR�LQCD are used in Sec. IVA for convenience; if
desired, their use can be eliminated at the expense of an
additional weak assumption about the partially quenched
chiral theory. I now sketch that argument; the example
presented in Sec. VI can be used as an illustration of this
kind of analysis. One needs to derive Eq. (22) directly in
the chiral theories. It is not hard to see how to prove this at
the chiral level, using a technique that is basically quark-
flow analysis. Since the (vector) flavor and replica symme-
tries are exact in �4; 4; nR��, one can always follow the
replica indices though the S�PT diagrams, starting on one
source index and continuing until one reaches another
source index (on the same or a different source). Each
such loop corresponds exactly to a quark loop at the
QCD level and produces one factor of nR. The same
analysis then needs to be repeated for diagrams with va-
lence quark indices. Note that this argument assumes that,
at the chiral level, mesons made from (fermionic) valence
or sea quarks have identical Feynman rules, except for the
counting factors coming from replication. The ordinary,
bosonic, symmetries relating fermionic valence and sea
quarks should guarantee this, as long as such symmetries
are not spontaneously broken in the chiral theories. Since a
rigorous analysis of the partially quenched chiral theory
along the lines of Ref. [21] is still lacking, this absence of
symmetry breaking must be taken as an assumption at this
point if one wants to do without the use of the QCD-level
theories �4; 4; nR�LQCD. However, it is difficult to see how it
could go wrong.
5One should also be close enough to the continuum that the
taste-splittings are relatively small, so that a non-Goldstone
meson made from light quarks is significantly lighter than any
meson with a charm quark. This makes the MILC ‘‘coarse’’
lattice, with splittings as large as 450 MeV in the chiral limit,
rather problematic; while the ‘‘fine’’ lattices (largest splittings
250 MeV), should be acceptable.
V. EXTENSION TO FEWER THAN FOUR FLAVORS

The most interesting cases phenomenologically are
three light flavors �u; d; s�, or, at extremely low energies,
two light flavors �u; d�. To extend the above argument to
nF < 4, we can start by taking one the mass of one of the
four quarks large and using decoupling ideas [34]. Call this
quark the charm quark, with mass mc. The difficult point
here is that the relation Eq. (1) can only be used where
chiral perturbation theory is applicable, so we cannot just
take mc ! 1 on both sides of Eq. (1) and then appeal to
decoupling.

In the real world, we know that the effective coupling of
�PT for the strange quark is roughly M2

K=�8�
2f2

��  0:2
[35], with f� � 131 MeV. So it is likely that �PT breaks
down completely for quark masses that are not very much
larger than the physical strange quark mass, mphys

s . For
concreteness, imagine the breakdown occurs at 2mphys

s ,
in other words for meson masses greater than 700 MeV,
which is the mass of a ‘‘kaon’’ made with a strange quark
of mass 2mphys

s . I want to decouple the charm quark from
114503
S�PT before this breakdown occurs, say at mc  1:5mphys
s .

Since there is not a lot of room between this value of mc

and mphys
s , it is useful to consider first the case where ms is

significantly smaller than mphys
s . I try to argue that this

nF � 3 case is correctly described by �3; 4; 1
4��.

With mu, md, and ms all small, I increase mc to mc 

1:5mphys
s . Modulo the assumptions discussed in Sec. IV B,

the relation �4; “1”�� �
:
�4; 4; 1

4�� should continue to hold
for mc in this range. I then integrate out (decouple) the
charm quark degree of freedom from the chiral theory
�4; 4; 1

4��. The procedure is completely analogous to the
way the strange quark is decoupled from the continuum
SU�3�L 	 SU�3�R chiral theory to obtain the SU�2�L 	
SU�2�R theory [35]. Since this process is perturbative,
there is little doubt that what remains after the charm quark
is decoupled will be the Nf � 3 chiral theory, �3; 4; 1

4��.5

Nevertheless, a check of this assumption in S�PT would be
reassuring, and is planned [36].

Thus I expect �4; “1”�LQCD with mc  1:5mphys
s to be

described at low energy by the chiral theory �3; 4; 1
4��.

This should remain true as mc increases further, say until
mc  2mphys

s , which is nominally the largest mass for
which Eq. (1) applies.

Consider what happens to �4; “1”�LQCD as mc continues
to increase beyond the applicability of Eq. (1). When mc
gets to be of order of the cutoff,mc  1=a, one expects that
it will decouple in the usual way from the QCD-level
theory, leaving �3; “1”�LQCD. The only effect of the charm
quark should be renormalizations of the �3; “1”�LQCD cou-
plings. The decoupling would be virtually certain if
�4; “1”�LQCD were a normal theory described by a local
lattice action. Because of the rooting procedure, though,
there may be some doubt as to whether decoupling actually
occurs. We can avoid this concern by increasing mc still
further, until mc � 1=a. At that point, mc is much larger
than all eigenvalues of the Dirac operator D, and��������������������������

det�D�mc�
4
p

becomes independent of the gauge field.
Therefore the charm quark certainly decouples from
�4; “1”�LQCD, leaving �3; “1”�LQCD.

I am now ready to state the main assumption of this
section: As mc is increased from 2mphys

s to mc � 1=a,
the low energy physics of �4; “1”�LQCD is unaffected, except
perhaps by renormalizations of the LECs. Here ‘‘low en-
ergy physics’’ means the physics of particles with masses
and energies � 700 MeV. An alternative way of stating
the assumption is to say that Eq. (1) continues to be mean-
-9
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ingful as mc is increased from 2mphys
s to mc � 1=a, as

long as �4; 4; 1
4�� is interpreted to mean the chiral theory

with the charm quark decoupled, and these theories are
only used at low energy.

I believe the assumption is plausible because the chiral
theory shows that mc is already decoupled from the low
energy physics by mc  1:5mphys

s . I am simply assuming
that it stays decoupled as its mass is increased further.

The conclusion then follows immediately: �3; 4; 1
4�� is

the correct chiral theory for �4; “1”�LQCD at mc  2mphys
s .

By assumption, it remains the correct theory as mc is
increased to� 1=a, at which point �4; “1”�LQCD becomes
�3; “1”�LQCD. Thus

�3; “1”�� �
:
�
3; 4;

1

4

�
�
: (25)

Note that my decoupling assumption is not only suffi-
cient for Eq. (25), but also necessary. Any new physical
effects entering in the region 2mphys

s & mc & 1=a are au-
tomatically violations of the chiral theory �3; 4; 1

4��.
For the moment, Eq. (25) is only true for the three

masses mu, md, ms � mphys
s , because these masses needed

to be kept small in order to provide a clean decoupling
when mc  1:5mphys

s . A line of reasoning parallel to that in
Sec. IV B can now be applied: Once Eq. (25) is known to be
valid for some range of quark masses, then the difference
between the two theories must vanish everywhere if it is
analytic. The analyticity could be violated by a phase
boundary at some values of the quark mass differences.
However, I can again point to the MILC simulations [4] as
evidence against a phase boundary within the region of
parameter space that has been studied.

The arguments (and assumptions) of this section may
now be repeated to show �2; “1”�� �

:
�2; 4; 1

4�� and
�1; “1”�� �

:
�1; 4; 1

4��.

VI. RESOLUTION OF A PARADOX IN THE
ONE-FLAVOR THEORY

An interesting paradox arises from the final result of the
previous section for nF � 1. Because of the anomaly, a
theory with a single quark flavor should have no light
(pseudo) Goldstone bosons, but only a heavy pseudoscalar,
the �0. On the other hand, the S�PT for a single rooted
staggered flavor contains 16 pseudoscalars (‘‘pions’’), of
which only one, the taste-singlet, is heavy. The weightings
of the contributions of the different pions in this rooted
theory have factors of 1=4 compared to those in the un-
rooted, four-taste theory, but all the pions certainly con-
tribute in both rooted and unrooted cases at finite lattice
spacing. Even in pure-glue correlation functions, the light
pions will appear as intermediate states.6
6I thank Andreas Kronfeld for emphasizing to me the impor-
tance of addressing this paradox.
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If my previous arguments are correct, then we know the
chiral theory for a single flavor of rooted staggered quarks,
and it will produce the correct chiral theory in the contin-
uum limit for QCD with a single flavor. The only way out
of the paradox is therefore that the light pions decouple
from physical correlation functions in the continuum limit.
In this section, I present a particular example to show in
detail how the decoupling takes place at leading order in
the chiral theory. This is a special case of the calculations
of scalar, isoscalar correlators for various numbers of
flavors worked out in Ref. [19], and will be discussed in
more detail there.

Gluon or glueball interpolating fields at physical mo-
menta (� 1=a) couple only to taste-invariant combina-
tions of the quark fields. To mock up a pure-glue
correlation function, we add a taste-singlet scalar source
to the rooted one-flavor theory:

L source � s�z� ���z���z�: (26)

Here s�z� is basically the same as the sources considered
previously in Eq. (4), except that there are no flavor indices
since nF � 1.

The generating functional of this theory, �1; “1”�LQCD, is
obtained by computing the fermion determinant in the
presence of the source s, taking its fourth root, and then
integrating over gauge fields. In order to show explicitly
the factors resulting from the rooting, I will take the Rth

power of the determinant, and only set R � 1=4 at the end.
The generating functional is thus given by:

�1; “1”�LQCD �

R
DA expf�SG�A� � R tr�ln�D�m� s��gR
DA expf�SG�A� � R tr�ln�D�m��g

(27)

where D is the Dirac operator for the staggered field, m is
its mass, A represents the gauge fields, with action SG�A�,
and DA is the gauge measure. As usual, one should
imagine that additional valence quark fields (and the cor-
responding commuting ghost quark fields to cancel the
valence determinant [37]) are included as needed.

Note that R in Eq. (27) is a parameter appearing in the
QCD-level generating function. It is logically independent
from nR, which is the number of sea-quark replicas and is
introduced (later) as a way of representing the rooting trick
at the chiral level. Of course, in the end we want to set both
R and nR to 1=4.

I want to calculate

G�x� y� �
�
@

@s�x�
@

@s�y�
�1; “1”�LQCD

�
s�0
�

�
@

@s�x�

	 �1; “1”�LQCD

�
s�0

�
@

@s�y�
�1; “1”�LQCD

�
s�0
:

(28)

The second term subtracts off the limit at infinite separa-
tion, proportional to h ���i2. What remains is just the
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connected part of the correlation function at the QCD level.
We are interested in the lightest particles that appear as
intermediate states in the decay of G�x� y� at large jx�
yj.

There are two possible contractions contributing to the
first term in G�x� y�, as in Eq. (18); while there is only
one contraction in each of the factors in the second term.
Introducing valence quarks q�, degenerate with the sea
quarks, and corresponding valence sources ���, I rewrite
the contributions in terms of valence quark contractions.
With � � �, one has

G�x� y� � R
�

@

@����x�

@

@����y�
�1; “1”�LQCD

�
��0

� R2

�
@

@����x�
@

@����y�
�1; “1”�LQCD

�
��0

� R2

�
@

@����x�
�1; “1”�LQCD

�
��0

	

�
@

@����y�
�1; “1”�LQCD

�
��0

(29)
Here and below the sea quark source s has been set to zero.
The contractions in Eq. (29) are shown in Fig. 1. The

first term (multiplied by R) is pictured in Fig. 1(a); the
second term (multiplied by R2), in Fig. 1(b). Arbitrary
numbers of gluon propagators and sea quark loops are
implied, except that the third term in Eq. (29) is taken
into account by omitting disconnected contributions to
Fig. 1(b).

By the arguments of this paper, we should be able to
calculate the low-mass contributions to G�x� y� using the
appropriate S�PT. That theory is �1; 4; nR��, with nR set to
1=4 after the calculation to implement the replica trick. I
append to �1; 4; nR�� the valence degrees of freedom asso-
ciated with the two flavors � and � in Eq. (29), as well as
the corresponding two commuting ghost quarks. Including
taste degrees of freedom, the symmetry group of �1; 4; nR��
is then SU�4nR � 8j8�L 	 SU�4nR � 8j8�R. Following the
notation of [14], I define a meson field �, which is a
�4nR � 16� 	 �4nR � 16� Hermitian matrix, and the uni-
tary matrix � � exp�i�=f�, where f is the LO pion decay
constant. With a and b flavor indices, running over both
valence and sea flavor, we may write
β

(a) (b)

β β βα

α α α

FIG. 1. Valence quark contractions in the scalar propagator
G�x� y�, corresponding to Eq. (29). The solid dots represent the
source �. Only the valence quark lines are shown; completely
disconnected contributions to (b) should be omitted.
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�ab �
X16

��1

��
abt�; (30)

where the ��
ab correspond to mesons of specific taste and

flavor, and t� are the 16 taste generators
ft�g � fI; �	; �	
�	> 
�; �	�5; �5g: (31)

with �	 the 4	 4 taste matrices that correspond to the
Dirac gamma matrices. All quarks (sea and valence) are
degenerate, with mass m.
G�x� y� will be calculated at leading order (LO) in

S�PT. The valence source � couples exactly like the
valence mass term, giving a contribution to the LO
Euclidean chiral Lagrangian:

L source � �
1
4	f

2��� tr���� � �y���; (32)

where	 is the chiral condensate, � and � are valence flavor
indices (summed over valence-quark, but not ghost-quark,
flavors), and tr indicates a trace over taste indices only.
There are also terms quadratic in � appearing in the next-
to-leading order Lagrangian; they may be ignored because
they contribute only to contact terms in G�x� y� to the
order we are working.

To convert Eq. (29) to the chiral level, we just replace
�1; “1”�LQCD with �1; 4; nR��. Then, using Eq. (32), and
expanding � and �y to second order in �, we have

G�x� y� � R	2h��
�a�x��

�
a��x��

�0

�b�y��
�0

b��y�i

� R2	2h��
�a�x���

a��x��
�0

�b�y��
�0

b��y�iconn;

(33)

where there are implicit sums over the taste indices � and
�0, as well as over the (generic) flavor indices a and b, but
not over the valence flavor indices � � �. The subscript
‘‘conn’’ on the second term means that only those meson
contractions that connect the source points x and y should
be included. This restriction arises from the cancellations
due to the last term in Eq. (29). [The first term Eq. (33)
does not need a conn subscript because the valence indices
require that all contractions connect x to y.] Cancellations
of the disconnected pieces are also responsible for the
absence in Eq. (33) of contributions from the 1 terms in
the expansion of ���y.

Figure 2 shows the LO (one-loop) meson diagrams
contributing to Eq. (33). The crosses indicate a presence
of one or more ‘‘hairpin’’ vertices, which can appear on
flavor-neutral meson lines. In the quark-flow sense, propa-
gators without hairpin vertices are connected; while those
with at least one hairpin are disconnected. (See, for ex-
ample, Fig. 1 in the first reference in [14].) Note however
that even a hairpin diagram is connected in the QCD (or
meson) sense, since gluons connect the two quark lines.

In S�PT, hairpin vertices are of two types: The first is
due to the anomaly and affects only taste-singlet meson
propagators. In the notation of Ref. [14], it has strength
4m2

0=3 for arbitrary numbers of flavors. The anomaly con-
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β
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β
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α
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j

α

β

α

β

FIG. 3. Quark-flow diagrams corresponding to the S�PT con-
tributions of Fig. 2. Not shown are two additional diagrams that
are very similar to (b) and (c) but have the roles of valence
quarks � and � interchanged. Diagrams (a) and (d) have no
hairpin vertices and correspond to Fig. 2(a); diagrams (b) and (c)
have one hairpin vertex and correspond to Fig. 2(b); while
diagram (e), with two hairpin vertices, corresponds to
Fig. 2(c). In meson lines with hairpin vertices, a summation of
sea-quark loop insertions is implied.

(c)(a) (b)

FIG. 2. Lowest order S�PT meson diagrams coming from
Eq. (33), and corresponding to Fig. 1. As in Fig. 1, a solid dot
is a source, �. The cross represents one or more insertions of a
hairpin vertex, and hence indicates a meson propagator that is
disconnected as a quark-flow diagram.

7I use Latin indices from the middle of the alphabet �i; j; . . .�
for sea quark flavors (replicas, here), Greek indices ��;�; . . .� for
fermionic valence quark flavors, and Latin indices from the
beginning of the alphabet �a; b; . . .� for generic valence or sea
flavors.
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tribution to the mass-squared of the �0 is proportional to
m2

0, with the proportionality constant depending on the
total number of flavors (more precisely in this case, on
the number of replicas nR). The second kind of hairpin is
due to the taste-violating operators that appear in S�PT.
These hairpins affect only taste-vector and taste-axial-
vector mesons at LO, and have strength proportional to
a2. Because of the explicit factors of a2, the contributions
of such taste-violating hairpins automatically vanish in the
continuum limit. Since I am interested in the restoration of
physical unitarity in the continuum, I omit the taste-
violating hairpins here; they of course are included in a
complete LO calculation [19].

We now go to momentum space. The (quark-flow) con-
nected propagator carrying Euclidean momentum p is

h��
ab��p��

�0

b0a0 �p�iconn �
a;a0b;b0�;�0

p2 �M2
�

; (34)

where M� is the tree-level mass of a taste-� meson

M2
� � 2	m� a2��; (35)

with �� the taste splitting. All quarks are degenerate so
there is no need to specify the flavor in Eq. (35).

Keeping only the taste-singlet disconnected meson
propagator, we have

h��
ab��p��

�0

b0a0 �p�idisc � a;bb0;a0�;I�0;ID
I�p�; (36)

where [14]

D I�p� � �
4m2

0

3

1

�p2 �M2
I �

1

�p2 �M2
�0I
�
; (37)

with

M2
�0I
� M2

I � nR
4m2

0

3
: (38)

Note that, by definition, MI is the mass of any taste-singlet
meson before including the effect of the anomaly hairpin.
Thus all 16 of the masses listed in Eq. (35), including MI,
become equal in the continuum limit. The �0I, on the other
hand, is the one meson that is a flavor (more precisely,
replica) singlet as well as a taste singlet. Its mass M�0I

can
be found either by diagonalizing the complete LO mass
matrix including the anomaly term, or by summing the
geometric series of hairpin interactions.
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One could take the limitm2
0 ! 1 in Eq. (37) to decouple

the �0, since it is at least as heavy as particles we have
integrated out of the chiral theory (e.g., the �). However, I
prefer to leave m0 finite so we may see explicitly how the
�0 remains after all the light mesons cancel in the contin-
uum limit.

I now consider the meson contractions that contribute to
Eq. (33). Although it is not necessary to use a quark-flow
picture here, since adjustment for the rooting is automati-
cally taken into account by setting nR � 1=4, quark flow
gives a nice physical picture. In Fig. 3, I therefore show the
quark-flow diagrams that correspond to various meson
contractions. Figure 3(a)–3(c) come from the R term in
Eq. (33). Note that, like Fig. 1(a) from which they arise,
Fig. 3(a)–3(c) have a single valence-quark loop connecting
the sources (shown by solid dots). Similarly, Fig. 3(d) and
3(e) come from the R2 term in Eq. (33), and, like Fig. 1(b),
have two separate valence-quark loops.

When a and b in Eq. (33) are sea quark flavors i and j,7

connected meson propagators are only possible for the
term proportional to R in Eq. (33), and require i � j. (In
the R2 term the flavors do not match up.) This generates
Fig. 3(a), which is proportional to nR due to the sum over
sea quark flavors j.
-12



STAGGERED CHIRAL PERTURBATION THEORY AND . . . PHYSICAL REVIEW D 73, 114503 (2006)
When a and b are valence quark indices, connected
contractions like those in Fig. 3(a) are also possible, but
there is a cancellation between valence quarks and ghost
quarks, as follows in the quark-flow picture from the fact
that Fig. 3(a) has a virtual loop.

One additional contraction with only connected meson
propagators comes from the R2 term in Eq. (29) when a �
� and b � �. In the quark flow picture, this gives diagram
Fig. 3(d), which is constructed entirely from valence
quarks and therefore generates no factors of nR.

Contractions with a single disconnected meson propa-
gator are generated only by the R term in Eq. (33). It gives
diagram Fig. 3(b) or the �$ � version when a � b � �
114503
or a � b � �, respectively. Similarly, it gives diagram
Fig. 3(c) or the �$ � version when a � �, b � � or a �
�, b � �, respectively. These four terms, which corre-
spond at the meson level to Fig. 2(b), can be seen to have
the same numerical value after adjusting the loop momen-
tum assignment.

Finally, the R2 term in Eq. (33) gives diagram Fig. 3(e)
when a � � and b � �. There is an overall symmetry
factor of 2 in this case.

We can now add the various contributions to ~G�q�, the
Fourier transform of G�x� y�, resulting in:
~G�q��	2
Z d4p

�2��4

�
�RnR�R

2�
X
�

1

�p2�M2
����p�q�

2�M2
��
�

2R�4m2
0=3�

�p2�M2
I ���p�q�

2�M2
I �

�
1

p2�M2
�0I

�
1

�p�q�2�M2
�0I

�

�
2R2�4m2

0=3�2

�p2�M2
I ���p�q�

2�M2
I ��p

2�M2
�0I
���p�q�2�M2

�0I
�

�
; (39)
The first term in the integrand of Eq. (39) comes from
Figs. 3(a) and 3(d), which give the RnR and the R2 con-
tributions, respectively; the second term, from Figs. 3(b)
and 3(c), and their �$ � versions; the last term, from
Fig. 3(e). Note that the negative sign of the anomaly hair-
pin, Eq. (37), makes the second term negative and leads to
the possibility of cancellations among the various light
pions. It is not an accident that the hairpin is negative: It
is required in order to give a positive mass to the �0 when
the geometric series of insertions is summed.

Using, from Eq. (38),

4m2
0

3
�

1

nR
��p2 �M2

�0I
� � �p2 �M2

I ��

�
1

nR
���p� q�2 �M2

�0I
� � ��p� q�2 �M2

I ��; (40)

one can rewrite Eq. (39) in a form that shows more clearly
how the continuum limit works:

~G�q� � 	2
Z d4p

�2��4

�
2R2

n2
R

1

�p2 �M2
�0I
���p� q�2 �M2

�0I
�

� �RnR � R
2�
X
�

1

�p2 �M2
����p� q�

2 �M2
��

�

�
4R
nR
�

2R2

n2
R

�
1

�p2 �M2
I ���p� q�

2 �M2
I �

�

�
2R
nR
�

2R2

n2
R

��
1

�p2 �M2
I ���p� q�

2 �M2
�0I
�

�
1

�p2 �M2
�0I
���p� q�2 �M2

I �

��
: (41)
Setting R � 1=4 � nR, the last term of Eq. (41) vanishes
immediately. The light pions then contribute only in the
second and third terms. In the continuum limit all 16 of the
light masses M� become degenerate, and these two terms
cancel also. The remainder, the first term in Eq. (41),
comes from the exchange of two heavy singlet mesons
(�0I), and indeed has the same normalization as would be
found for this correlation function using a continuum one-
flavor chiral theory. This resolves the apparent one-flavor
paradox, showing that it does not provide a counterexam-
ple to the arguments of this paper.

VII. CONSEQUENCES

A. Health of the rooted theory

With the usual assumption that taste symmetry is re-
stored in the continuum limit for unrooted staggered
quarks, �nF; 4; nR�� becomes ordinary chiral perturbation
theory for 4nF � nR ‘‘flavors’’ in the continuum limit. This
follows immediately from the fact that, for a given combi-
nation of quark flavors, all 16 taste pions become degen-
erate in the continuum limit (before the effects of the
anomaly are included, which affects only the taste singlet,
flavor singlet meson, as always). Then taking nR !

1
4 order

by order necessarily produces standard, continuum �PT
for nF flavors. All existing S�PT calculations
[13,14,18,28–30] have this expected continuum limit.

The statement that �nF; 4;
1
4�� is the correct chiral theory

for �nF; “1”�LQCD (for nF � 4) therefore has important
implications for the validity of the rooting procedure itself.
Since S�PT becomes standard �PT in the continuum limit,
the low energy (light pseudoscalar meson) sector of
-13
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nF-flavor lattice QCD with rooted staggered quarks is, in
the continuum limit, indistinguishable in its structure from
that of ordinary nF-flavor QCD. There are no violations of
unitarity, and no introduction of unphysical nonlocal
scales.

Of course, the chiral perturbation theory arguments
presented in this paper do not address possible sickness
due to rooting that would appear in sectors of the theory not
described by �PT. Nevertheless, the extension of my argu-
ments to at least some sectors other than that of the light
pseudoscalar mesons seems possible. In particular, heavy-
light physics can be described by the addition of a valence
heavy quark with a nonstaggered action to the existing
S�PT framework [28]. As such, the arguments in Sec. IV
should also apply in the heavy-light case with nF � 4 sea
quarks, implying that it too is free from unphysical effects
in the continuum limit. Further, I see no obvious problems
with an extension to nF < 4, since the heavy-quark can be
treated by heavy quark effective theory at both the QCD
and the chiral level, and thus does not introduce a new scale
that would interfere with decoupling. The case of baryons,
described by staggered heavy-baryon chiral perturbation
theory [30], also seems straightforward for nF � 4.
However, the artifice of increasing the number of colors
at the QCD level is not applicable in this case, because it
changes the nature of the baryons. Therefore, any counting
arguments like those in Sec. IVA would need to be per-
formed at the chiral level only. In addition, it is not obvious
that one can use decoupling to analyze the nF < 4 cases,
since we would now have the baryon mass scale at the
QCD level between 700 MeV and 1=a.

One caveat should be added to the discussion of this
section: Since the chiral expansion expresses physical
quantities in terms of unknown LECs, the statement that
S�PT is valid does not by itself imply that the LECs
generated by the rooted-staggered theory take on their
correct (real QCD) values in the continuum limit. On the
other hand, in the four-flavor case we do know that the
LECs are correct in the degenerate case. This follows from
universality since the degenerate action is local. But the
LECs are by definition mass independent, so if S�PT is
indeed the right chiral theory for four nondegenerate fla-
vors, the LECs are per force also correct. With fewer than
four flavors, though, my assumptions on decoupling do not
appear to be strong enough to continue to guarantee correct
LECs. For that one would need to show universality at the
lattice QCD level (see, for example, Ref. [11]), or to argue
from the agreement of rooted staggered simulations with
experiment [5]. Of course, numerical checks against ex-
periment are not proofs, and they run the risk, at least in
principle, of confounding small violations of universality
due to rooted staggered quarks with small violations of the
standard model. Such checks will become more convincing
when one can see agreement between at least two different
lattice fermion approaches.
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B. A mixed theory?

In current dynamical staggered simulations [4], the
fourth-root trick is applied to the sea quarks, while the
valence quarks are described by ordinary staggered fields.
In this section, I call this situation a ‘‘rooted-staggered
theory’’ for simplicity. Because valence and sea quarks
are treated differently, it has been suggested [7] that
rooted-staggered theories fall into the class called
‘‘mixed,’’ where the valence and sea quarks have funda-
mentally different lattice actions. In mixed theories the
mass renormalizations of sea and valence quarks are differ-
ent, meaning, in particular, that there is no simple way to
ensure that sea and valence quarks have the same physical
mass. Further, the continuum symmetries that would rotate
valence and sea quark into each other are violated by
discretization effects. This implies, for example, that
even if the quark masses are adjusted to make the mass
of a meson with two valence quarks equal to the mass of a
meson with two sea quarks, the mass of a meson with one
valence and one sea quark will be different by O�a� or
O�a2� terms. Such terms show up in new operators in the
�PT for the mixed theory [23].

I claim, however, that the rooted-staggered case is not a
mixed case, but in fact resembles much more closely a
partially quenched theory, where the symmetries between
valence and sea quarks are violated only by explicit differ-
ences in quark masses.

First of all, I sketch a proof that the renormalization of
sea and valence quark masses are the same to all orders in
(weak-coupling) perturbation theory. Imagine we have
determined the mass counterterm for a valence quark up
to an including a given order in perturbation theory. I need
to show that the same mass counterterm will work to
renormalize the mass on a sea quark line that appears as
a loop inside some other diagram. Go inside the diagram,
and draw a box around a self-energy insertion on a sea
quark line. As remarked in Sec. II, the replica trick shows
that the rooting procedure simply multiplies each sea quark
loop by 1=4 in perturbation theory, so the self-energy
insertion as well as the associated mass counterterms on
that line are all multiplied by the same overall factor of
1=4, compared to the corresponding self-energy insertion
and mass counterterms on a valence line. Thus the same
counterterms work in both cases. Of course there may be
additional factors of 1=4 for any sea quark loops that
appear in sub-sub-diagrams. But these will be the same
for a sea quark line as for a valence line.

The argument in the proceeding paragraph is based on
weak-coupling perturbation theory. Could there be ‘‘mixed
effects’’ that show up only nonperturbatively? I cannot
answer that question for general nonperturbative effects,
but I can answer it—modulo the assumptions in Secs. IV
and V—for the large class of effects described by the
chiral theories. The appropriate chiral theory is
�nF; 4;

1
4��, which is obtained order by order from
-14
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�nF; 4; nR��. The latter theories have symmetries inter-
changing valence and sea quarks. For nV flavors of valence
staggered quarks, the full symmetry group is in fact
SU�4nRnF � 4nVj4nV�L 	 SU�4nRnF � 4nV j4nV�R. The
taste symmetries are broken on the lattice at O�a2�, but
the ‘‘flavor subgroup’’8 U�nRnF � nVjnV�‘ 	U�nRnF �
nV jnV�r is exact up to quark mass terms. Extra chiral
operators that would split valence-sea mesons from sea-
sea or valence-valence mesons are forbidden by these
symmetries. Since such operators are absent for all nR,
they can have no effect when we take nR !

1
4 . In particu-

lar, corresponding sea-sea, valence-valence, and valence-
sea mesons are all degenerate (when the quark masses are
degenerate) in �nF; 4; nR��, and therefore in �nF; 4;

1
4��.

Thus, at least within the context of chiral perturbation
theory, the rooted-staggered theory behaves like a partially
quenched theory, not like a mixed theory.

One does have to be careful in defining the word ‘‘cor-
responding’’ in the previous paragraph. The valence sector
of a rooted-staggered theory is ‘‘richer’’ than the sea sector,
in that it includes particles in the continuum limit whose
sea-sector analogues have decoupled from the physical
theory. This is not surprising, since the purpose of the
fourth root is to reduce four sea quark tastes to one, and
there is no fourth root taken in the valence sector. A simple
example of this behavior can be seen from the result in
Sec. VI. If one adds together the valence contractions in
Eq. (29) without the extra factor of R relating the last two
terms to the first, then one gets a valence Green’s function
with no sea-quark analogue. Intermediate light (pseudo-
Goldstone) mesons will appear as intermediate states of
this Green’s function in the continuum limit. In this sense,
the rooted-staggered theory, is inherently ‘‘partially
quenched,’’ even in limit of equal valence and sea masses.
In a normal partially quenched theory, one can always take
more valence quarks than there are sea quarks, so one has
the option of creating valence states that have no analogue
in the sea-quark sector. The main difference here is that one
has no choice in the matter: The physical sea-quark sub-
space is always a proper subspace of the complete theory in
the continuum limit.
VIII. CONCLUSIONS AND DISCUSSION

Under certain assumptions that I repeat below, I have
shown in this paper that staggered chiral perturbation
theory (S�PT) correctly describes the low energy physics
of four or fewer flavors of rooted staggered quarks. The
S�PT theory �nF; 4;

1
4�� takes into account the fourth-root

procedure by the replica trick (or equivalently, by quark-
8This flavor subgroup is described in the first paper in
Ref. [14], but is there called the ‘‘residual chiral group.’’ It has
been generalized here to take into account the partially quenched
context.
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flow analysis). At finite lattice spacing, S�PT reproduces
unphysical features of the rooting that may perhaps best be
described as violations of unitarity, with unwanted inter-
mediate states contributing to amplitudes. This is clearly
seen in Ref. [18] or in the example presented in Sec. VI
[19].

Because S�PT becomes standard �PT in the continuum
limit, the unitarity violations seen in S�PT at nonzero a
must go away when a! 0. If S�PT is indeed the correct
chiral theory for rooted staggered quarks, then this implies
that the low energy (pseudoscalar meson) sector of lattice
QCD with rooted staggered quarks is, in the continuum
limit, indistinguishable in its structure from that of ordi-
nary QCD. There are no violations of unitarity, and no
introduction of unphysical nonlocal scales. This would not,
by itself, show that the rooting procedure is valid, because
there could be problems in sectors of the theory not de-
scribed by chiral perturbation theory. Nevertheless, it
would significantly reduce the possible ways in which
rooted staggered quarks could go wrong.

My S�PT results also give support to the statement that
the theory with staggered valence quarks and rooted stag-
gered sea quarks is not a mixed theory. Like a partially
quenched theory with the same action for the valence and
sea quarks, the rooted-staggered theory has flavor symme-
tries rotating sea and valence quarks into each other. These
symmetries may be broken in the usual way by mass terms,
but they are not broken by lattice corrections.

The starting point of my argument was the observation
that four flavors of degenerate staggered quarks simply
reduce to a single flavor when the fourth root of the
determinant is taken. To make use of this observation, I
needed several assumptions, the most important of which
are:
(1) T
-15
he taste symmetry is restored in the continuum
limit of the normal, unrooted-staggered theory.
(2) T
he difference V�s� between the S�PT theory for
four flavors �4; 4; 1

4�� and the true chiral theory
�4; “1”�� is analytic in s (for space-time independent
s), up to possible isolated singularities.
(3) A
s a single quark mass (‘‘charm’’) is increased
beyond the point at which it has decoupled from
the chiral theory to a scale much larger than the
lattice cutoff, the low energy physics of �4; “1”�LQCD

is unaffected, except perhaps by renormalizations of
the LECs.
I consider assumption (1) to be noncontroversial, and
there is a lot of numerical evidence for it, but it has not
been rigorously proven. The renormalization group meth-
ods of Shamir [11] seem to me the best way to make
progress on this issue.

Assumption (2) is used in Sec. IV to move from degen-
erate to nondegenerate masses in the four-flavor case. The
most important ‘‘obstruction’’ here would seem to be the
possible existence an essential singularity in V�s� at s � 0;
I speculate below on how this possibility might be elimi-
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nated. Note that the existence of such singularity immedi-
ately would imply that S�PT is incorrect. A second way
the assumption could be violated would be the presence of
a phase boundary at a finite distance from s � 0. This
would imply the existence of a region of mass differences
in which S�PT is valid, and another region of larger mass
differences in which S�PT is invalid. Generically, I would
expect an abrupt change like this to cause significant
effects that would likely have been noticed in simulations
if they occurred within the parameter ranges studied. Both
types of potential analyticity violations certainly merit
further investigation, however.

Assumption (3) allows me in Sec. V to extend the result
in the four-flavor case to the more interesting cases
with fewer than four light flavors. It should be possible to
test this assumption numerically by simulating a four-
flavor theory in appropriate mass range and seeing if it
is describable at low energy by the proper chiral theory
with a decoupled charm quark, �3; 4; 1

4��. Such tests are
under consideration by the MILC Collaboration and may
be performed in the near future. The main uncertainty
is the precision at which these tests could be made,
which would strongly influence how convincing they
would be.

To investigate a possible essential singularity, I restrict
myself to diagonal sources, constant in space-time. In other
words, I consider a function V of the four mass differences
from the degenerate mass �m. To correspond with the
previous notation, I write V � V�ŝ�, with ŝij 
 ij�j and
�j � mj � �m. Considering ŝ to be complex, the arguments
in Sec. IVA still go through formally, although one may
want to put the system in finite volume to avoid any
dangers from

R
d4x with constant sources. We then have

a complex function V�ŝ�, all of whose complex derivatives
vanish at ŝ � 0. This would forbid essential singularities
in V�ŝ�, which do not have well-defined complex deriva-
tives.

What would be needed to make such an argument rea-
sonably rigorous? On the S�PT side, we are defining
�4; 4; 1

4�� in (chiral) perturbation theory, so I do not expect
problems at any finite order in adding small, complex �j to
the masses in Euclidean space. On the other hand, we do
not know what �4; “1”�� is a priori, so we would need to
add �j to the masses in the QCD-level theory �4; “1”�LQCD.
The main problem there seems to be that a complex ŝ
makes the determinant complex. The issue of how one
chooses the phase of the fourth root thus becomes relevant,
as it is for the case of nonzero chemical potential [38].
Unlike the chemical potential case, however, the imaginary
part of �j adds a constant amount to all eigenvalues of
flavor j. Furthermore, �j may be taken very small, i.e.,
much less than both �m and �QCD. I am hopeful therefore
that any phase ambiguities can be shown to be manageable,
but that remains to be seen. A further difficulty could come
in trying to ‘‘match’’ �4; “1”�LQCD onto �4; 4; 1

4�� in order to
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turn statements about smoothness of each theory separately
into statements about V�s�.

I conclude with a two additional comments:

(i) B
-16
ecause the ‘‘wrong’’ mesons, which may be lighter
than the physical states, contribute to correlation
functions at nonzero lattice spacings in S�PT, the
infinite-distance limit of some quantities may not
commute with the continuum limit. This order of
limits issue is very similar to that concerning the
chiral and continuum limits, described in Ref. [39].
It is not a practical problem, since of course only
finite distances are relevant to simulations, and the
extrapolation can be taken in the proper order with
the aid of S�PT.
(ii) T
here is nothing in my argument that �4; 4; 1
4�� is the

correct chiral theory for four flavors of fourth-rooted
staggered quarks that is really dependent on the fact
that we are taking the fourth root. The same argu-
ments would also imply that �3; 4; 1

3�� is the chiral
theory for three flavors of staggered quarks for
which the third root is taken. The decoupling argu-
ments in Sec. V (which presumably still apply)
would say further that �nF; 4;

1
3�� gives the chiral

theory for nF < 3 flavors of third-rooted staggered
fields. There is no contradiction here: �nF; 4;

1
3��

describes a sick theory, even in the continuum limit,
except for the uninteresting case of 3 degenerate
flavors. Since a staggered field always has four
tastes, only a fourth (or square) root the root can
describe an integer number of flavors (and therefore
a local action) in the continuum limit. The nF � 1
example from Sec. VI provides a simple illustration:
the contributions from light pions in the second and
third lines of Eq. (41) vanish in the continuum if and
only if nR � R � 1=4. (I ignore the trivial case R �
0, as well as nR � R � �1=4, which violates the
spin-statistics theorem.) Even nR � R � 1=2 leaves
some light-pion contributions, as it should since that
is really a two-flavor case.
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