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Using the QCD factorization approach, we reexamine the two-body hadronic charmless B-meson
decays to final states involving a pseudoscalar (P) and a vector (V) meson, with inclusion of the penguin
contractions of spectator-scattering amplitudes induced by the b! Dg�g� (where D � d or s, and g�

denotes an off-shell gluon) transitions, which are of order �2
s . Their impacts on the CP-averaged

branching ratios and CP-violating asymmetries are examined. We find that these higher order penguin
contraction contributions have significant impacts on some specific decay modes. Since B! �K�, K�
decays involve the same electroweak physics as B! �K puzzles, we present a detailed analysis of these
decays and find that the five R-ratios for the B! �K�, K� system are in agreement with experimental
data except for R��K��. Generally, these new contributions are found to be important for penguin-
dominated B! PV decays.
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I. INTRODUCTION

The study of hadronic charmless B-meson decays can
provide not only an interesting avenue to understand the
CP violation and the flavor mixing of quark sector in the
standard model (SM), but also powerful means to probe
different new physics scenarios beyond the SM. With the
operation of B-factory experiments, a huge amount of
experimental data on hadronic B-meson decays has been
analyzed with appreciative precision. To account for the
experimental data, theorists are urged to gain deep insight
into the mechanism of rare hadronic B-meson decays, and
to reduce theoretical uncertainties in determining the flavor
parameters of the SM from experimental measurements.

In the past years, much progress has been made in
understanding the hadronic charmless B-meson decays:
several novel methods, such as the ‘‘naive’’ factorization
(NF) [1], the perturbative QCD method (PQCD) [2], the
QCD factorization (QCDF) [3], and the soft collinear
effective theory (SCET) [4], have been proposed; in addi-
tion, some model-independent methods based on (approxi-
mate) flavor symmetries have also been used to analyze the
rare hadronic B-meson decays [5,6]. These methods usu-
ally have quite different understandings of the rare had-
ronic B-meson decays, and hence the corresponding
predictions are also quite different. A general comparison
between these various methods can be found, for example,
in Ref. [7]. Since we shall adopt the QCDF approach in this
paper, we would only focus on this approach below.

The QCDF approach, put forward by Beneke et al. a few
years ago, has been used widely to analyze the two-body
hadronic B-meson decays [3,8–13]. The essence of the
approach can be summarized as follows: since the b quark
mass is much larger than the characteristic scale of had-

ronic interaction, �QCD, to leading power in the heavy
quark expansion, the hadronic matrix elements relevant
to two-body hadronic B-meson decays can be factorized
into perturbatively calculable hard-scattering kernels and
universal nonperturbative parts parametrized by the form
factors and the meson light-cone distribution amplitudes
(LCDAs). This scheme has incorporated elements of the
NF approach (as the leading contribution) and the hard-
scattering approach (as the subleading corrections), and
provides a powerful and systematical means to compute
the radiative (subleading nonfactorizable) corrections to
the NF approximation for the hadronic matrix elements.
In particular, the strong phases, which are very important
for studying the CP violation in B-meson decays, are
calculable from the first principle. Detailed proofs and
arguments can be found in Ref. [3], and current status
and recent developments of this approach have also been
reviewed recently in [14].

In a recent work [13], we have studied the higher order
penguin contractions of spectator-scattering amplitudes
induced by the b!Dg�g� transitions (where D � d or s,
depends on the specific decay mode, and the off-shell
gluons g� are either emitted from the internal quark loops,
external quark lines, or split off the virtual gluon of the
penguin diagrams), and investigated their impacts on the
CP-averaged branching ratios and CP-violating asymme-
tries of B!��, �K decays. It has been found that these
higher order penguin contraction contributions are not
negligible in two-body hadronic B-meson decays, particu-
larly in the penguin-dominated B! �K decays. Thus,
combining the findings in the literature [15–18], it would
be worthy to take into account these higher order penguin
contraction contributions to the exclusive hadronic
B-meson decays. This encourages us to further investigate
their impacts on the hadronic charmless B!PV (where P
and V denote pseudoscalar and vector mesons, respec-
tively) decays.
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B! PV decays are closely related to their PP counter-
parts because of their similar flavor structures; however,
these modes have apparent advantages in some cases. For
example, due to the less penguin pollution, B! �� decay
modes are more suitable than B! �� ones for extracting
the weak angle � of the unitarity triangle of the Cabibbo-
Kobayshi-Maskawa (CKM) matrix [19]. Studies on two-
body hadronic B! PV decays are therefore very helpful
to deepen our understandings of the rare hadronic B-meson
decays. Earlier theoretical studies on B! PV decays
based on various approaches can be found, for example,
in Refs. [20,21]. With the accumulation of new experimen-
tal data and the theoretical improvements, these B! PV
decay modes have also been reanalyzed recently [6,10–
12]. In this paper, we will reexamine these hadronic charm-
less B! PV decays within the framework of QCDF ap-
proach and take into account the higher order penguin
contractions of spectator-scattering amplitudes as men-
tioned above. Here we do not consider the decay modes
with an � or �0 meson in the final states, since in this case
there are many additional unknown parameters pertaining
to these two particles, such as their contents, mixing an-
gles, and the anomaly g� g� ��0� coupling, which would
hinder us from getting reliable theoretical predictions.

This paper is organized as follows. Section II is devoted
to the theoretical framework. In this section, we first give
the relevant formulas describing the decay amplitudes of
hadronic B! PV decays at next-to-leading order in �s,
and then take into account contributions of the higher order
penguin contractions of spectator-scattering amplitudes
induced by the b! Dg�g� transitions. In Sec. III, we
give our numerical results for CP-averaged branching
ratios and CP-violating asymmetries, and discuss the im-
pacts of the higher order corrections on these quantities.
Detailed analysis of the interesting decays B! �K� and
B! K� are also presented in this section. Finally, we
conclude with a summary in Sec. IV. Some useful functions
and the input parameters used in this paper are collected in
Appendices A and B, respectively.

II. THEORETICAL FRAMEWORK FOR B! PV
DECAYS

A. The effective Hamiltonian for hadronic B-meson
decays

Using the operator product expansion (OPE) and the
renormalization group equation (RGE), the low energy
effective Hamiltonian for hadronic charmless B-meson
decays in the SM can be written as [22]

 H eff �
GF���

2
p

X
p�u;c

��0�p

�
C1Q

p
1 � C2Q

p
2 �

X
i�3;...;10

CiQi

� C7�Q7� � C8gQ8g

�
� H:c:; (1)

where �p�VpbV�ps (for b! s transition) and �0p�VpbV�pd

(for b!d transition) are products of the CKM matrix
elements, and the unitarity relation ���0�t ��

�0�
u ��

�0�
c has

been used. The effective operators, Qi, governing a given
decay process, can be expressed explicitly as follows:

(i) Current-current operators:

 Qp
1 � � �pb�V�A� �Dp�V�A;

Qp
2 � � �pibj�V�A� �Djpi�V�A;

(2)

(ii) QCD-penguin operators:

 Q3 � � �Db�V�A
X
q

� �qq�V�A;

Q4 � � �Dibj�V�A
X
q

� �qjqi�V�A;

Q5 � � �Db�V�A
X
q

� �qq�V�A;

Q6 � � �Dibj�V�A
X
q

� �qjqi�V�A;

(3)

(iii) Electroweak penguin operators:

 Q7 � � �Db�V�A
X
q

3

2
eq� �qq�V�A;

Q8 � � �Dibj�V�A
X
q

3

2
eq� �qjqi�V�A;

Q9 � � �Db�V�A
X
q

3

2
eq� �qq�V�A;

Q10 � � �Dibj�V�A
X
q

3

2
eq� �qjqi�V�A;

(4)

(iv) Electromagnetic and chromomagnetic dipole op-
erators:

 Q7� �
�e

8�2 mb
�D��	�1� �5�F�	b;

Q8g �
�gs
8�2 mb

�D��	�1� �5�G
�	b;

(5)

where � �q1q2�V�A � �q1���1� �5�q2, i, j are color indices,
eq is the quark electric charge in units of jej, and a
summation over q � u, d, s, c, b is implied. For b! d
transition induced decay modes, D � d, while for b! s
transition induced ones, D � s.

The Wilson coefficients Ci��� in Eq. (1) represent all the
physics contributions higher than the scale ��O�mb�.
Numerical results for these coefficients evaluated at differ-
ent scales can be found in Ref. [22].

B. Decay amplitudes at next-to-leading order in �s
With the low energy effective Hamiltonian given by

Eq. (1), the decay amplitude for a general hadronic charm-
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less B! PV decay can be written as

 hPVjH eff jBi �
GF���

2
p

X
p�u;c

��0�p CihPVjQ
p
i jBi: (6)

Then, the most essential theoretical problem in the calcu-
lation of the decay amplitude resides in the evaluation of
the hadronic matrix elements of the local operators con-
tained in the effective Hamiltonian, hPVjQp

i jBi. With the
QCDF approach, they could be simplified to a large extent.
To leading power in �QCD=mb, but to all orders in pertur-
bation theory, these hadronic matrix elements obey the
following factorization formula [3]:
 

hPVjQp
i jBi � FB!P� TI

V;i � fV�V � A
B!V
0 TI

P;i � fP�P

� TII
i � fB�B � fP�P � fV�V; (7)

where �M are the LCDAs of the meson M, the * products
indicate convolutions of the LCDAs and the hard-
scattering kernels TI;II

i . FB!P� and AB!V0 denote the
heavy-to-light B! P and B! V transition form factors,
respectively. A graphical representation of this formula is
shown in Fig. 1.

When the power-suppressed O��QCD=mb� terms are
neglected, TI;II

i are dominated by hard gluon exchanges,
and hence calculable order by order in perturbative QCD.
The relevant Feynman diagrams contributing to these hard-
scattering kernels at next-to-leading order in �s are shown
in Fig. 2. The kernel TI

M;i starts at tree level and, at next-to-
leading order in �s, contains the subleading ‘‘nonfactoriz-
able’’ corrections coming from the vertex-correction dia-
grams Figs. 2(a) and 2(d) and the penguin diagrams
Figs. 2(e) and 2(f). The kernel TII

i contains the hard non-
factorizable interactions between the spectator quark and
the emitted mesonM2. Its lowest order contributions are of
order �s and can be depicted by the hard spectator-
scattering diagrams Figs. 2(g) and 2(h). At leading order,
TI
M;i � 1, TII

i � 0, the QCDF formula reproduce the NF
results.

As stressed in Ref. [8], it should be borne in mind that
the factorization formula, Eq. (7), does not imply that the
hadronic B-meson decays are perturbative in nature.
Dominant soft contributions to the decay amplitude do
exist. However, all these nonperturbative effects either
are power suppressed by �QCD=mb or can be factorized
into the transition form factors and the meson LCDAs.

With the above discussions about the effective
Hamiltonian for hadronic B-meson decays and the QCDF
formula for the hadronic matrix element, the decay ampli-
tude for a general hadronic charmless B! PV decay, in
the heavy quark limit, can then be rewritten as

 A �B! PV� �
GF���

2
p

X
p�u;c

X10

i�1

��0�p a
p
i hPVjQijBiF; (8)

where hPVjQijBiF is the factorized hadronic matrix ele-

FIG. 1. Graphical representation of the factorization formula.
Only one of the two form-factor terms in Eq. (7) is shown for
simplicity.

B̄ M1

M2

Qi

b

(a)

B̄ M1

M2

Qi

b

(b)

B̄ M1

M2

Qi

b
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b
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B̄ M1

M2

Q8g

b

(f)
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FIG. 2. Order �s corrections to the hard-scattering kernels TI
M;i [coming from the diagrams (a)–(f)] and TII

i (coming from the last
two diagrams).
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ment, which has the same definition as that in the NF
approach. All the nonfactorizable effects are encoded in
the coefficients api , which are process dependent and can
be calculated perturbatively. Following Beneke et al. [12],
the general form of the coefficients api �i � 1; . . . ; 10� at
next-to-leading order in �s, with M1 being the meson
picking up the spectator quark and M2 the emitted meson,
can be written as
 

api �M1M2� �

�
Ci �

Ci�1

Nc

�
Ni�M2� �

Ci�1

Nc

CF�s
4�

�
Vi�M2�

�
4�2

Nc
Hi�M1M2�

�
� Ppi �M2�; (9)

where the upper (lower) signs apply when i is odd (even).
The quantities Vi�M2� account for one-loop vertex correc-
tions, Hi�M1M2� for hard spectator interactions, and
Ppi �M2� for penguin contributions. Explicit expressions
for these quantities can be found in Ref. [12].

It is noted that, in calculations of the decay amplitudes
for hadronic charmless B-meson decays, the coefficients
api �i � 3; . . . ; 10� always appear in pairs. So, for the two-
body hadronic charmless B! PV decays, one can define
the following quantities �pi in terms of the coefficients api
defined in Eq. (9) [12]

 �1�M1M2� � a1�M1M2�; �2�M1M2� � a2�M1M2�;

�p3 �M1M2� �

�
ap3 �M1M2� � a

p
5 �M1M2�; if M1M2 � VP;

ap3 �M1M2� � a
p
5 �M1M2�; if M1M2 � PV;

�p4 �M1M2� �

�
ap4 �M1M2� � r

M2

 ap6 �M1M2�; if M1M2 � PV;

ap4 �M1M2� � r
M2

 ap6 �M1M2�; if M1M2 � VP;

�p3;ew�M1M2� �

�
ap9 �M1M2� � a

p
7 �M1M2�; if M1M2 � VP;

ap9 �M1M2� � a
p
7 �M1M2�; if M1M2 � PV;

�p4;ew�M1M2� �

�
ap10�M1M2� � r

M2

 ap8 �M1M2�; if M1M2 � PV;

ap10�M1M2� � r
M2

 ap8 �M1M2�; if M1M2 � VP;

(10)

with the scale-dependent ratio rM2

 defined as

 rP
��� �
2m2

P

mb����mq1
�mq2

����
;

rV
��� �
2mV

mb���
f?V ���
fV

;

(11)

where all quark masses are running current masses defined
in the MS scheme, and f?V ��� is the scale-dependent
transverse decay constant of vector meson. Although all
these terms proportional to rM2


 are formally power sup-
pressed by �QCD=mb in the heavy quark limit, they are not
small numerically. In particular, the factor rP
��� is chirally
enhanced and important for charmless B decays [8,12].

According to the arguments in [3], the weak annihilation
contributions to the decay amplitudes are power sup-
pressed, and hence do not appear in the QCDF formula,
Eq. (7). Nevertheless, these contributions may be numeri-
cally important for realistic B-meson decays. At order
O��s�, the annihilation kernels arise from the four dia-
grams shown in Fig. 3. They result in a further contribution
to the hard-scattering kernel TII

i in the QCDF formula,
Eq. (7). However, within the QCDF formalism, these an-
nihilation topologies violate factorization because of the
end-point divergence. In this work, following the treatment
of Refs. [8,23], we will introduce a cutoff to parametrize
these contributions and express the weak annihilation de-
cay amplitudes as

 A ann�B! PV� /
GF���

2
p

X
p�u;c

X
i

��0�p fBfM1
fM2

bi�M1M2�;

(12)

where fB and fM are the decay constants of the initial B
and the final-state mesons, respectively. The parameters
bi�M1M2� describe the annihilation contributions and their
explicit expressions can be found in Refs. [8,12].

The explicit expressions of the decay amplitudes for
hadronic charmless B! PV decays, including the weak

b

B̄

M2

M1

⊗

(a)

B̄

M2

M1

⊗

(b)

B̄

M2

M1

⊗

(c)

B̄

M2

M1

⊗

(d)

FIG. 3. The weak annihilation diagrams of order �s.
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annihilation contributions, can be found, for example, in
Refs. [11,12]. It should be noted that, within the QCDF
framework, all the nonfactorizable power-suppressed con-
tributions except for the hard spectator interactions and
weak annihilation contributions are neglected. In addition,
in the evaluation of the hard spectator and weak annihila-
tion terms, the running coupling constant and the Wilson
coefficients should be evaluated at an intermediate scale
�h � ��QCDmb�

1=2 rather than the scale ��mb.
However, the evolution of Ci��� down to �h is highly
nontrivial, since the RGE will change below the scale mb.
To deal with this problem, one may have to turn to SCET
which is the appropriate effective theory for QCD below
the mb scale. However, in this paper, we restrict ourself to
QCDF and adopt the treatments of evolution of the Ci���
as done in [8], i.e., we do not take into account the charm
and bottom threshold and evolve the Wilson coefficients in
a 5-flavored theory. With this approximation, in the evolu-
tion of the Wilson coefficients, all logs of the form
log�=MW have been summed, while logs of the form
log�=mb and log�=mc are not. Since the latter two terms
are never large with � 	 mb=2, the approximation would
work to the precision in this paper. Specifically, we shall

use �h �
����������
�h�

p
with �h � 0:5 GeV in our numerical

calculations.

C. Penguin contractions of spectator-scattering
amplitudes and their contributions to B! PV decays

At the quark level, the b! Dg�g� transitions can occur
in many different manners as depicted by Figs. 4–6. For
example, one of the two off-shell gluons can radiate from
the external quark line, while the other one comes from the
chromomagnetic dipole operator Q8g as Figs. 5(b) and 5(c)
or from the internal quark loops of the penguin diagrams as
Figs. 6(b) and 6(c). On the other hand, the two off-shell
gluons can also radiate from the internal quark loops as
Figs. 6(d) and 6(e) or split off the virtual gluon of the
penguin diagrams as Figs. 5(a) and 6(a). Here we do not
consider the Feynman diagrams of the category shown in
Fig. 4, since their contributions can be absorbed into the
definitions of heavy-to-light transition form factors as
Figs. 4(a) and 4(b) and the meson LCDAs as Figs. 4(e),
or are further suppressed by 1

16�2 as Figs. 4(c) and 4(d). It is
easy to clarify this point by comparing the strength of
Fig. 4(c) to that of Fig. 5(a).

Q8g
B̄ M1

M2

b

(a)

Q8g
B̄ M1

M2

b

(b)

Q8g
B̄ M1

M2

b

(c)

FIG. 5. Chromomagnetic dipole operator Q8g contributions induced by the b! Dg�g� transitions.

Q8g
B̄ M1

M 2

b

(a)

Q8g
B̄ M1

M 2

b

(b)

Q8g
B̄ M1

M 2

b

(c)

Q8g
B̄ M1

M 2

b

(d)

Q8g
B̄ M1

M 2

b

(e)

FIG. 4. Representative Feynman diagrams induced by the b! Dg�g� transitions which are not needed to evaluate. Only the
chromomagnetic dipole operator Q8g contributions are shown. With the operator Q8g replaced by the other operators, the
corresponding Feynman diagrams can also be obtained.
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As shown by Figs. 5 and 6, these Feynman diagrams
should be the dominant sources contributing to the penguin
contractions of spectator-scattering amplitudes of order
�2
s , since they are not two-loop QCD diagrams, and hence

there are no additional 1
16�2 suppression factor in their

contributions compared to the genuine two-loop ones of
order �2

s . Studying these contributions could be very help-

ful for our understandings of the higher order perturbative
corrections to the rare hadronic B-meson decays within the
QCDF formalism.

We start with the calculations of the Feynman diagrams
in Fig. 5. In this case, the b quark weak decay is induced by
the chromomagnetic dipole operator Q8g, and the calcula-
tion is straightforward with the result given by

 A Q8g
� i

�2
sfBfM1

fM2

N3
c

��0�t
Z 1

0
d�

�B
1 ���
�

Z 1

0
dudv

�
�M2
�u��M1

�v�
�

3�3� v�
2�1� u��1� v�v

�
1

6�1� u��1� v�

�

� rM1

 �M2

�u��m1
�v�

�
3�3� u� v� uv�

2�1� u�2�1� v�v
�

2� u
6�1� u�u�1� v�

�
� rM1


 rM2

 �m2

�u��m1
�v�

�
1

6�1� u��1� v�

�
3�3� v�

2�1� u��1� v�v

�
� rM2


 �m2
�u��M1

�v�
�

3�3� u� v� uv�
2�1� u��1� v�v

�
1� u

6�1� u��1� v�

��
;

(13)

when M1 is a pseudoscalar and M2 a vector meson. For the
opposite case of a vector M1 and a pseudoscalar M2, one
needs only change the signs of the last two terms in the
bracket of Eq. (13). Here �t � VtbV

�
ts and �0t � VtbV

�
td are

products of the CKM matrix elements, �M and �m denote
the leading-twist and twist-3 LCDAs of the mesonM in the
final states, respectively. In our calculation, we use the
LCDAs in the asymptotic limit

 �P�x� � �V�x� � 6x�1� x�; �p�x� � 1;

�v � 3�2x� 1�;
(14)

and have neglected the tree-particle LCDAs and deviations
from the asymptotic limit.

In calculating the Feynman diagrams in Fig. 6, we adopt
the method proposed by Greub and Liniger [17]. We first
calculate the fermion loops in these individual Feynman
diagrams, and then insert these building blocks into the
entire Feynman diagrams to obtain the final results. In

evaluating the internal quark loop diagrams, we shall adopt
the naive dimensional regularization (NDR) scheme and
the modified minimal subtraction (MS) scheme. In addi-
tion, we shall adopt Feynman gauge for the gluon propa-
gator throughout this paper. The gauge invariance will be
guaranteed when the full set of Feynman diagrams are
summed with the external quarks on-mass-shell [24].
However, we must be careful of the gauge dependence in
our calculation, since only a subset O��2

s� Feynman dia-
grams are calculated. After careful checking, we find that
each Feynman diagram in Fig. 5 and 6 is gauge indepen-
dent. The detail checking can be found in Appendix C.
Analogous to the calculation of the penguin diagrams in
Fig. 2(e), we should also take into account the two distinct
penguin contractions of the four-quark operators in the
weak interaction vertex.

As shown in Fig. 6, the first three Feynman diagrams
have the same building block Ia��k� (corresponding to
contractions of the operators Q1;3;9) or ~Ia��k� (correspond-
ing to contractions of the operators Q4;6;8;10). These build-
ing blocks can be depicted by Fig. 7 and given by

QiB̄

M2

M1

(a)

QiB̄

M2

M1

(b)

QiB̄

M2

M1

(c)

QiB̄

M2

M1

(d)

QiB̄

M2

M1

(e)

FIG. 6. Penguin operator Qi contributions induced by the b! Dg�g� transitions.

XINQIANG LI AND YADONG YANG PHYSICAL REVIEW D 73, 114027 (2006)

114027-6



 

Ia��k��
gs

4�2 �
�
�
2

�
�2����4��2��=2�k�k6 �k

2����1��5�T
a



Z 1

0
dx

x�1�x�

�m2
q�x�1�x�k

2� i��=2
; (15)

 

~Ia��k� �
gs

2�2 �
�
�
2

�
�4��2��=2�k�k6 � k

2����1� �5�T
a



Z 1

0
dx

x�1� x�

�m2
q � x�1� x�k

2 � i��=2
; (16)

where k is the momentum of the off-shell gluon, Ta � �a
2 ,

with �a the Gell-Mann matrices, gs is the strong coupling
constant, and mq the pole mass of the quark propagating in
the fermion loops. We have used d � 4� �. After per-
forming the subtraction with the MS scheme, we get
 

Ia��k���
gs

8�2

�
2

3
�

4

3
ln
�
mb
�G�sq;r�

�


�k�k6 �k2����1��5�Ta; (17)

 

~Ia��k� � �
gs

8�2

�
�

4

3
ln
�
mb
�G�sq; r�

�


 �k�k6 � k
2����1� �5�T

a; (18)

with the function G�sq; r� defined by

 G�sq; r� � �4
Z 1

0
dxx�1� x� ln�sq � x�1� x�r� i�;

(19)

where sq � m2
q=m

2
b, r � k2=m2

b, and the term i is the
‘‘�-prescription.’’ The free indices � and a should be
contracted with the gluon propagator when inserting these
building blocks into the entire Feynman diagrams.

The sum of the fermion loops in the last two diagrams in
Fig. 6 are denoted by the building block Jab�	�k; p� (corre-
sponding to contractions of the operators Q1;3;9) or
~Jab�	�k; p� (corresponding to contractions of the operators
Q4;6;8;10), which are depicted by Fig. 8. Using the decom-
position advocated by [16,17], these building blocks can be
expressed as

 Jab�	�k; p� � T��	�k; p�fTa; Tbg � T��	�k; p��Ta; Tb�; (20)

 

~J ab�	�k; p� � ~T��	�k; p�fTa; Tbg � ~T��	�k; p��Ta; Tb�;

(21)

where the first (second) part is symmetric (antisymmetric)
with respect to the color structures of the two off-shell
gluons. Here k�p�, a�b�, and ��	� are the momentum,
color, and polarization of the off-shell gluons, respectively.
Below we refer to the gluon with indices �	; b; p� as the
one connected to the spectator quark.

In the NDR scheme, after performing the (shifted) loop
momentum integration, we can represent the quantities
T��	�k; p� and ~T��	�k; p� as [16,17]

 T��	�k; p� �
�s
4�

�
E��; 	; k��i5 � E��; 	; p��i6

� E��; k; p�
k	
k  p

�i23 � E��; k; p�



p	
k  p

�i24 � E�	; k; p�
k�
k  p

�i25

� E�	; k; p�
p�
k  p

�i26

�
L; (22)

 

T��	�k; p� �
�s
4�

�
k6 g�	�i2 � p6 g�	�i3 � ��k	�i8

� ��p	�i9 � �	k��i11 � �	p��i12

� k6
k�k	
k  p

�i15 � k6
k�p	
k  p

�i16 � k6
p�k	
k  p

�i17

� k6
p�p	
k  p

�i18 � p6
k�k	
k  p

�i19 � p6
k�p	
k  p

�i20

� p6
p�k	
k  p

�i21 � p6
p�p	
k  p

�i22

�
L; (23)

Q1,3,9

b s,d

g*(µ, a, k ) g*(ν, b, p)

Q1,3,9

b s,d

g*(ν, b, p) g*(µ, a, k )

J ab
µν(k, p)

Q4,6,8,10

b s,d

g*(µ, a, k ) g*(ν, b, p)

Q4,6,8,10

b s,d

g*(ν, b, p) g*(µ, a, k )

J̃ ab
µν(k, p)

FIG. 8. Building blocks Jab�	�k; p� (corresponding to contrac-
tions of the operators Q1;3;9) and ~Jab�	�k; p� (corresponding to
contractions of the operators Q4;6;8;10) for Figs. 6(d) and 6(e).

Q1,3,9

b s,d

g*(µ, a, k )

I a
µ (k)

Q4,6,8,10

b s,d

g*(µ, a, k )

Ĩ a
µ (k)

FIG. 7. Building blocks Ia��k� (corresponding to contractions
of the operators Q1;3;9) and ~Ia��k� (corresponding to contractions
of the operators Q4;6;8;10) for Figs. 6(a)–6(c).
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~T ��	�k; p� � aT��	�k; p�; (24)

 

~T��	�k;p��T��	�k;p��
�s
4�

�
k6 g�	

4

3
�p6 g�	

4

3
���k	

8

3

���p	
4

3
��	k�

4

3
��	p�

8

3

�
L; (25)

where L � 1� �5, and the matrix E in Eq. (22) is defined
by

 E��; 	; k� � ���	k6 � ��k	 � �	k� � k6 g�	

� �i��	��k����5; (26)

with the second line obtained in a four-dimensional context
using the Bjorken-Drell conventions. The parameter a in
Eq. (24) denotes the chiral structure of the four-quark
operators in the weak vertex with a � � corresponding
to �V � A� � �V � A�, respectively. Explicit expressions
for the dimensionally regularized �i functions can be
found in Appendix B of Ref. [13].

Equipped with these building blocks, we can now evalu-
ate all the Feynman diagrams in Fig. 6. After direct calcu-
lations, the final results of these penguin contractions of
spectator-scattering amplitudes for hadronic charmless
B! PV decays can be expressed as

 

AQ1
� �i

�2
sfBfM1

fM2

N3
c

��0�p
Z 1

0
d�

�B
1 ���
�

Z 1

0
dudv

��
2

3
�

4

3
ln
�
mb
�G�sp; �u�

�
f1�u; v�

�

�
2

3
�

4

3
ln
�
mb
�G�sp; �uv�

�
f2�u; v� � f1�u; v;mp�

�
; (27)

 

AQ3
� i

�2
sfBfM1

fM2

N3
c

��0�t
Z 1

0
d�

�B
1 ���
�

Z 1

0
dudv

�
�f1�u;v;0� � f1�u; v;1�� �

�
4

3
�

8

3
ln
�
mb
�G�0; �u� �G�1; �u�

�
f1�u;v�

�

�
4

3
�

8

3
ln
�
mb
�G�0; �uv� �G�1; �uv�

�
f2�u;v�

�
; (28)

 A Q9
� �1

2AQ3
; (29)

 

AQ4
� i

�2
sfBfM1

fM2

N3
c

��0�t
Z 1

0
d�

�B
1 ���
�

Z 1

0
dudv

�
��nf � 2�f2�u; v; 0� � f2�u; v;mc� � f2�u; v;mb��

�

�
�

4nf
3

ln
�
mb
� �nf � 2�G�0; �u� �G�sc; �u� �G�1; �u�

�
f1�u; v�

�

�
�

4nf
3

ln
�
mb
� �nf � 2�G�0; �uv� �G�sc; �uv� �G�1; �uv�

�
f2�u; v�

�
; (30)

 

AQ6
� i

�2
sfBfM1

fM2

N3
c

��0�t
Z 1

0
d�

�B
1 ���
�

Z 1

0
dudv

�
��nf � 2�f3�u; v; 0� � f3�u; v;mc� � f3�u; v;mb��

�

�
�

4nf
3

ln
�
mb
� �nf � 2�G�0; �u� �G�sc; �u� �G�1; �u�

�
f1�u; v�

�

�
�

4nf
3

ln
�
mb
� �nf � 2�G�0; �uv� �G�sc; �uv� �G�1; �uv�

�
f2�u; v�

�
; (31)

 

AQ8
� i

�2
sfBfM1

fM2

N3
c

��0�t
Z 1

0
d�

�B
1 ���
�

Z 1

0
dudv

��
f3�u; v;mc� �

1

2
f3�u; v;mb�

�

�

�
�

2

3
ln
�
mb
�G�sc; �u� �

1

2
G�1; �u�

�
f1�u; v� �

�
�

2

3
ln
�
mb
�G�sc; �uv� �

1

2
G�1; �uv�

�
f2�u; v�

�
; (32)

 

AQ10
� i

�2
sfBfM1

fM2

N3
c

��0�t
Z 1

0
d�

�B
1 ���
�

Z 1

0
dudv

��
f2�u; v;mc� �

1

2
f2�u; v;mb�

�

�

�
�

2

3
ln
�
mb
�G�sc; �u� �

1

2
G�1; �u�

�
f1�u; v� �

�
�

2

3
ln
�
mb
�G�sc; �uv� �

1

2
G�1; �uv�

�
f2�u; v�

�
; (33)
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with the subscript Qi denoting the contraction of Qi operator in the weak vertex, and

 f1�u; v� � �M2
�u��M1

�v�
�

2u� v� 3

12�1� u��1� v�2
�

3�2u� v� 3�

4�1� u��1� v�v

�
� rM1


 �M2
�u��m1

�v�
�

3�v� 3�

4�1� u��1� v�v

�
1

12�1� u��1� v�

�
� rM1


 rM2

 �m2

�u��m1
�v�

�
2u� 1

12�1� u��1� v�
�

3�2u� v� 2uv� 3�

4�1� u��1� v�v

�

� rM2

 �m2

�u��M1
�v�

�
v� 3

12�1� v�2
�

3�v� 3�

4�1� v�v

�
; (34)

 f2�u; v� � �M2
�u��M1

�v�
1

6�1� v�2
� rM1


 �M2
�u��m1

�v�
1

6u�1� v�
� rM1


 rM2

 �m2

�u��m1
�v�

1

6�1� v�

� rM2

 �m2

�u��M1
�v�

1

6�1� v�2
; (35)

 

f1�u; v;mq� � �M2
�u��M1

�v�
�

3�i2
8�1� u��1� v�

�
3�i3

8�1� u�v
�

7�i6
24�1� u�v

�
3�i8

8�1� v�v
�

7�i23

24�1� v�v

�
7�1� u� v��i5

24�1� u��1� v�v

�
� rM1


 �M2
�u��m1

�v�
�

7�i5
12�1� u��1� v�

�
3��i2 ��i8 � �i17�

8�1� u��1� v�
�

7��i6 � �i26�

24�1� u�v

�
3��i3 � 2�i12 � �i21�

8�1� u�v

�
� rM1


 rM2

 �m2

�u��m1
�v�

�
7�i5

12�1� v�
�

3��i2 ��i8 � �i12 ��i17�

8v

�
7u�i23

12�1� u��1� v�
�

3��i2 � �i8 � �i17�

8�1� u��1� v�
�

3u��i3 � �i21�

8�1� u�v
�

7��i6 � �i26�

24�1� u�v

�

� rM2

 �m2

�u��M1
�v�

�
3��i2 ��i8�

8�1� v�v
�

7��i23 � 2�i5�
24�1� v�v

�
; (36)

 

f2;�3��u;v;mq� � �M2
�u��M1

�v�
�
�
�3� 2u� 2v�

2�1� u��1� v�v
�

3�i2
8�1� u��1� v�

�
3�i3

8�1� u�v
�

7�i6
24�1� u�v

�
3�i8

8�1� v�v

�
7�i23

24�1� v�v
�

7�1� u� v��i5
24�1� u��1� v�v

�
� rM1


 �M2
�u��m1

�v�
�

3

2�1� u��1� v�v
�

3��i3� 2�i12��i21�

8�1� u�v

�
7��i6��i26�

24�1� u�v
�

7�i5
12�1� u��1� v�

�
3��i2 ��i8��i17�

8�1� u��1� v�

�

� rM1

 rM2


 �m2
�u��m1

�v�
�
�

3� 2u� 2v� 2uv
2�1� u��1� v�v

�
7u�i23

12�1� u��1� v�
�

7�i5
12�1� v�

�
3u��i3 ��i21�

8�1� u�v

�
7��i6��i26�

24�1� u�v
�

3��i2��i8��i17�

8�1� u��1� v�
�

3��i2��i8��i12��i17�

8v

�

� rM2

 �m2

�u��M1
�v�

�
3

2�1� v�v
�

3��i2 ��i8�
8�1� v�v

�
7��i23� 2�i5�

24�1� v�v

�
; (37)

when M1 is a pseudoscalar and M2 a vector meson. For the
opposite case, i.e., M1 is a vector and M2 a pseudoscalar
meson, one needs only change the signs of the last two
terms in the functions fi defined above. At this stage, the
�i functions appearing in Eqs. (36) and (37) are the ones
with the Feynman parameters integrated, whose explicit
expressions can be found in Appendix B of Refs. [13,25].
For convenience, we also list them in Appendix A.

With the individual operator contribution given above,
the total contributions of the penguin contractions of
spectator-scattering amplitudes can be written as

 

A0�B! PV� �
GF���

2
p

� X
p�u;c

C1AQ1
�

�
C3 �

1

2
C9

�
AQ3

� C4AQ4
� C6AQ6

� C8AQ8

� C10AQ10
� Ceff

8gAQ8g

�
; (38)

where the superscript ‘0’ indicates the one to be distin-
guished from the next-to-leading order results given by
Eqs. (8) and (12). The total decay amplitude is then given
as
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hPVjH eff jBi �A�B! PV�

�Aann�B! PV� �A0�B! PV�: (39)

III. NUMERICAL RESULTS AND DISCUSSIONS

With the theoretical expressions given above and the
input parameters collected in Appendix B, we can now
evaluate the branching ratios and CP-violating asymme-
tries for two-body hadronic charmless B! PV decays,
with P � ��;K� and V � ��;!;K�; ��. For each quantity,
we first give the results at next-to-leading order in �s, and
then take into account the higher order penguin contrac-
tions of spectator-scattering amplitudes induced by the
b! Dg�g� transitions. The combined contributions of
these two pieces, denoted by O��s � �2

s�, are then given
in the last. For comparison, results based on the NF ap-
proximation are also presented. All the experimental data
are taken from the home page of the Heavy Flavor
Averaging Group [26].

In order to show the renormalization scale dependence
of the branching ratios and CP asymmetries, we give
results of two cases for each decay mode with the first
one evaluated at the scale � � mb, while the second at the
scale � � mb=2. In addition, our calculations depend on
many input parameters, which cause quite large theoretical
uncertainties. We will consider the main theoretical un-
certainties arising from the strange-quark mass (with the
ratio mq=ms fixed, all chiral enhancement factors rP
 de-
pend on this mass), CKM matrix elements, form factors,
and the first inverse moment of the B-meson distribution
amplitude �B.1

A. Numerical analysis of penguin contractions of
spectator-scattering amplitudes

Before presenting numerical results for branching ratios
and CP asymmetries, we would discuss the relative
strength of each Feynman diagram shown in Figs. 5 and
6. For convenience, we denote the decay modes with the
pseudoscalar meson picking up the spectator quark by B!
PV, while for the vector meson picking up the spectator
quark by B! VP.

First, we study the relative strength of the three Feynman
diagrams shown in Fig. 5. Since contributions of these
diagrams are all proportional to

 S1 � �i
�2
sfBfM1

fM2

N3
c

��0�t
Z 1

0
d�

�B
1 ���
�

; (40)

we have factorized S1 out off the numerical results shown
in Table I.

From the numerical results for the dipole operator Q8g

contractions given in Table I, we can see that the main
contributions come from Fig. 5(a), and the other ones play
only a minor role. It is also noted that these amplitudes do
not have strong phases.

To analyze strong phase sources and the relative strength
of the individual Feynman diagram shown in Fig. 6, we
study the Qc

1 contraction in the weak vertex. The contribu-
tion of each Feynman diagram is proportional to

 S2 � i
�2
sfBfM1

fM2

N3
c

��0�c
Z 1

0
d�

�B
1 ���
�

; (41)

which has also been factored out. The numerical results
given in Table II are independent of S2.

From the numerical results given in Table II, we have the
following observations: (i) contributions of Figs. 6(b) and
6(c) are generally much smaller than those of the other
three ones, and the main contributions come from the
diagrams Figs. 6(d) and 6(e); (ii) although each term
labeled by the meson LCDAs in each Feynman diagram
has a large imaginary part, and hence a large strong phase,
the total strong phase of each Feynman diagram is small
due to cancellations among the four terms. (iii) For each
term labeled by the same LCDAs, there also exist cancel-
lations between the contributions of the diagrams Fig. 6(a),
6(d), and 6(e).

Thus the total strong phase is found to be quite small
after summing all the five diagrams shown in Fig. 6.
Moreover, the cancellation does not depend on the parame-
ters in S2.

B. Branching ratios of B! PV decays

In the following discussions, we classify the two-body
hadronic charmless B! PV decays into two categories:
the strange-conserving (�S � 0) and the strange-changing
(�S � 1) processes. The higher order penguin contrac-
tions of spectator-scattering amplitudes are expected to
have more significant impacts on the �S � 1 processes
than on the �S � 0 ones, due to the CKM factor suppres-
sions in the latter.

Numerical results of the CP-averaged branching ratios
for these decays are collected in Tables III, IV, and V,
where the theoretical error bars are due to the uncertainties
of the input parameters CKM elements, quark masses,
transition form factors, and �B as collected in
Appendix B. Generally, the theoretical uncertainties are
quite large, which are larger than O��2

s� corrections for
tree-dominated decay modes, but comparable for strong
penguin-dominated decay modes. For most decay modes,
the �2

s corrections reduce the renormalization scale depen-
dence of the theoretical predictions.

For �S � 0 decays, since the b! d penguin amplitudes
are suppressed by the CKM factor �0t compared to theb! s

1Since the theoretical uncertainties coming from the weak
annihilation and twist-3 hard spectator interaction contributions
(parametrized by the quantities XH and XA) are already known to
be quite large [12], we do not consider these uncertainties here
and simply use the default values given by XH�A� � logmB=�h as
specified in Appendix B. Uncertainties coming from the other
input parameters are generally small and have been neglected.
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penguin amplitudes, most of them are expected to be dom-
inated by the tree amplitudes, however with a few excep-
tions. From the numerical results given in Tables III and IV,
we have the following general remarks:

(i) The decays �B0 ! ���� and B� ! �0��, ���0,
��!. Our results are generally consistent with the
experimental data within errors. Since these decay
channels are dominated by the color-allowed tree
amplitudes, both the weak annihilation and the

higher order penguin contraction contributions are
small. In addition, the main theoretical errors come
from the uncertainties of the form factors and CKM
matrix elements.

(ii) The decays �B0 ! �0�0 and �B0 ! �0!. Since
these decay channels are dominated by the color-
suppressed tree amplitudes, their branching ratios
are predicted to be very small. The higher order
penguin contraction contributions are always much

TABLE III. CP-averaged branching ratios (in units of 10�6) of tree-dominated B! PV decays with �S � 0. �Bf and �Bf�a denote
the results without and with the annihilation contributions, respectively. Results in columns O��s � �2

s� are the ones with the higher
order penguin contraction contributions included. For each decay mode, the first row is evaluated at the scale � � mb, while the
second one at the scale � � mb=2. The theoretical errors correspond to the uncertainties of the input parameters collected in
Appendix B. The NF results are also shown for comparison.

�B �Bf�a

�Bf NF O��s� O��s � �
2
s� O��s� O��s � �

2
s� Experiment

B� ! ���0 8:76�3:56
�2:93 8:15�3:69

�2:86 8:02�3:77
�2:80 8:13�3:53

�2:63 8:01�3:73
�2:58 8:7�1:0

�1:1
7:52�3:36

�2:45 7:45�3:42
�2:57 7:36�3:71

�2:67 7:44�3:25
�2:59 7:36�3:60

�2:46

B� ! �0�� 13:91�6:21
�4:87 13:05�6:32

�4:53 13:31�6:06
�4:76 13:22�5:94

�4:80 13:48�6:79
�5:05 10:8�1:4

�1:5
13:08�6:21

�4:54 12:82�6:32
�4:86 13:01�6:81

�5:16 13:00�5:99
�4:94 13:20�6:12

�4:89
�B0 ! ���� 19:78�9:88

�7:28 19:37�9:25
�7:62 19:73�10:46

�7:28 20:34�10:20
�7:95 20:72�9:94

�7:85 13:9�2:2
�2:1

20:82�10:64
�7:83 20:22�11:10

�8:11 20:48�11:71
�7:65 21:25�11:03

�8:26 21:52�10:22
�7:86

�B0 ! ���� 10:72�4:61
�3:68 10:51�4:69

�3:55 10:47�4:60
�3:49 11:15�4:71

�3:82 11:11�4:99
�3:75 10:1�2:1

�1:9
11:18�5:08

�3:74 10:90�4:71
�3:89 10:86�4:87

�3:92 11:57�5:23
�4:02 11:52�4:99

�3:90
�B0 ! ���� 30:50�13:65

�10:39 29:88�13:22
�10:18 30:20�13:85

�10:52 31:49�13:04
�10:64 31:83�13:82

�11:48 24:0� 2:5
32:00�14:58

�11:12 31:12�14:60
�10:56 31:34�13:82

�11:58 32:82�14:96
�11:82 33:04�16:32

�11:01
�B0 ! �0�0 0:47�0:20

�0:15 0:40�0:35
�0:18 0:39�0:33

�0:15 0:30�0:29
�0:13 0:30�0:27

�0:13 1:83�0:56
�0:55

0:13�0:06
�0:04 0:29�0:23

�0:12 0:29�0:24
�0:11 0:22�0:19

�0:08 0:23�0:20
�0:09

B� ! ��! 7:87�3:61
�2:57 7:36�3:50

�2:44 7:47�3:80
�2:53 7:10�3:43

�2:62 7:21�3:21
�2:37 6:6� 0:6

6:96�2:94
�2:28 6:84�3:08

�2:39 6:90�3:38
�2:31 6:54�2:89

�2:23 6:60�3:29
�2:28

�B0 ! �0! 0:01�0:03
�0:01 0:02�0:03

�0:01 0:02�0:03
�0:01 0:005�0:015

�0:003 0:004�0:014
�0:003 <1:2

0:03�0:04
�0:02 0:02�0:02

�0:01 0:02�0:03
�0:01 0:010�0:018

�0:007 0:010�0:020
�0:007

TABLE II. Numerical results of each Feynman diagram shown in Fig. 6. Others are the same as Table I.

Modes �M2
�M1

�M2
�m1

�m2
�M1

�m2
�m1

Fig. 6(a) PV �1:39� 12:65i 0:17� 14:10i �0:15� 15:38i 0:12� 13:51i
VP �1:39� 12:65i �0:02� 1:28i �0:12� 11:11i �0:01� 0:44i

Figs. 6(b) and 6(c) PV �0:01� 1:05i �0:12� 1:21i �0:62� 0:81i �0:18� 0:11i
VP �0:01� 1:05i �0:39� 1:25i �0:08� 0:78i �0:10� 0:19i

Figs. 6(d) and 6(e) PV �9:03� 14:94i 19:19� 28:30i 4:32� 21:29i 10:82� 15:69i
VP �9:03� 14:94i 14:26� 9:04i 0:83� 16:78i �0:39� 3:46i

TABLE I. Numerical results of each Feynman diagram shown in Fig. 5 with the asymptotic forms of the meson LCDAs. Terms
involving the twist-three LCDAs are given in units of the factor rM
 defined by Eq. (11). The subscripts M1 � P�V� and M2 � V�P� for
the B! PV (B! VP) rows, the same for m1;2.

Decay mode �M2
�M1

�M2
�m1

�m2
�M1

�m2
�m1

Fig. 5(a) B! PV �67:50 �125:76 �9:64 �18:94
B! VP �67:50 4.82 34.71 �3:79

Figs. 5(b) and 5(c) B! PV �1:50 �3:54 �1:07 �0:42
B! VP �1:50 �1:61 1.86 0.42
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smaller than the weak annihilation contributions.
Besides the form factors and CKM matrix ele-
ments, the spectator-scattering amplitudes also
cause sizable uncertainties to their CP-averaged
branching ratios.

(iii) The decays B� ! K�K�0 and �B0 ! �K0K�0. These
decay channels are dominated by the b! d pen-
guin amplitudes, and the dominant term is propor-
tional to the coefficient �p4 �PV�. Since �c4 � �u4
and j�0uj � j�0cj, large interference effects between
these two terms are expected and the branching
ratios of these decay modes have a strong depen-
dence on the weak phase angle � � arg�V�ub�. The
higher order penguin contraction contributions can
provide about 60% enhancements to their branch-
ing ratios, and are larger than the weak annihilation
contributions (which also play an important role in
these decay channels). Since the higher order pen-
guin contraction contributions are all involved the
quantity �B, the main theoretical errors in the
CP-averaged branching ratios, besides the CKM
matrix elements and form factors, also originate
from this quantity.

(iv) The decays B� ! K0K�� and �B0 ! K0 �K�0. The
dominant contribution to the decay amplitudes is
proportional to the coefficient �p4 �VP�, where deli-
cate cancellations between the vector and scalar
penguin contributions occur, their branching ratios
are therefore predicted to be relatively small. This
also renders the weak annihilation contributions
potentially large. On the other hand, since these
decay channels belong to the category of B! VP
decays, the higher order penguin contraction con-

tributions are predicted to be small. The theoretical
errors in the CP-averaged branching ratios of these
decay channels are large, mainly due to the varia-
tions of the strange-quark mass and �B.

(v) The decays B� ! ��� and �B0 ! �0�. These two
decay channels do not receive the weak annihila-
tion contributions and are electroweak penguin-
dominated processes. Because of the small coeffi-
cients �p3 ���� and �p3;ew����, their branching ra-
tios are predicted to be quite small. From the
numerical results, we can see that large nonfactor-
izable contributions dominate these decays, while
the theoretical predictions are still quite lower than
the experimental upper bounds. The higher order
penguin contraction contributions have negligible
impact on these decay channels.

(vi) The decays �B0 ! K�K��, K�K��. These two de-
cay channels are pure annihilation processes.
Studying on these decay modes may be helpful to
learn more about the strength of annihilation con-
tributions and to provide some useful information
about final-state interactions. The higher order pen-
guin contraction contributions have no impacts on
these decay channels.

For penguin-dominated �S � 1 decays, since the QCD-
penguin coefficients �p3;4 can receive large nonfactorizable
contributions within the QCDF formalism, the predicted
branching ratios for these decay modes are usually quite
different from those obtained with the NF approximation.
In addition, the weak annihilation contributions to these
decay channels are quite sizable. From the numerical
results given in Table V, we have the following general
remarks:

TABLE IV. CP-averaged branching ratios (in units of 10�6) of penguin-dominated (the upper
six) and annihilation-dominated (the last two) B! PV decays with �S � 0. The captions are
the same as Table III.

�Bf �Bf�a

�Bf NF O��s� O��s � �
2
s� O��s� O��s � �

2
s� Experiment

B� ! K�K�0 0:15�0:07
�0:04 0:18�0:08

�0:07 0:28�0:14
�0:09 0:23�0:11

�0:09 0:34�0:16
�0:11 <5:3

0:32�0:13
�0:11 0:23�0:10

�0:08 0:33�0:15
�0:10 0:29�0:14

�0:10 0:40�0:20
�0:13

�B0 ! �K0K�0 0:14�0:06
�0:04 0:16�0:09

�0:06 0:26�0:12
�0:08 0:20�0:10

�0:07 0:31�0:15
�0:10   

0:29�0:14
�0:09 0:22�0:10

�0:08 0:31�0:15
�0:10 0:26�0:10

�0:09 0:36�0:16
�0:11

B� ! K0K�� 0:06�0:13
�0:04 0:10�0:21

�0:07 0:10�0:20
�0:07 0:18�0:27

�0:10 0:18�0:26
�0:10   

0:05�0:14
�0:04 0:08�0:18

�0:06 0:07�0:17
�0:05 0:15�0:25

�0:09 0:14�0:23
�0:08

�B0 ! K0 �K�0 0:06�0:12
�0:04 0:09�0:19

�0:06 0:09�0:18
�0:06 0:18�0:26

�0:10 0:17�0:27
�0:09   

0:04�0:14
�0:03 0:07�0:16

�0:05 0:06�0:15
�0:04 0:15�0:25

�0:08 0:14�0:24
�0:08

B� ! ��� � 0:001 � 0:008          <0:41
� 0:001 � 0:007         

�B! �0� � 0:0003 � 0:004          <1:0
� 0:0003 � 0:003         

�B0 ! K��K�          0:018�0:004
�0:004      

         0:019�0:005
�0:004      

�B0 ! K�K��          0:018�0:004
�0:004   

         0:019�0:005
�0:004   
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(i) The decays B! �K� and B! K�. With central
values of our input parameters, our results are still
lower than the experimental data. The dominant
contribution to the decay amplitudes is proportional
to the coefficient �p4 �PV�. The higher order penguin
contraction contributions can give enhancements to
these branching ratios by about 40%–90%, and
reduce the discrepancies between the theoretical
predictions and the experimental data. In addition,
large interference effects between the tree and pen-
guin amplitudes in some decay channels, such as
�B0 ! ��K�� and B� ! �0K��, are expected. It is

thus possible to gain some information on the weak
angle � from these decay channels. The main theo-
retical errors are due to the uncertainties of the
CKM matrix elements, form factors, and �B.

(ii) The decays B! K� and B! K!. In their decay
amplitudes, the dominant term is proportional to the
coefficient �p4 �VP�. Because of the destructive in-
terference between the vector and the scalar penguin
contributions, the coefficient �p4 �VP� is reduced to a
large extent, making the branching ratios of these
decay modes much smaller than those of the corre-
sponding B! PP counterparts. It also makes the
subleading terms, for example, the weak annihila-

tion contributions, very important to account for the
experimental data. Since these decay channels also
belong to the category of B! VP decays, the
higher order penguin contraction contributions are
quite small, and tend to decrease the next-to-leading
order (NLO) results. The main theoretical errors are
due to the uncertainties of the strange-quark mass
and form factors.

From the above discussions, we can see that the higher
order penguin contractions of spectator-scattering ampli-
tudes play an important role in penguin-dominated B!
PV decays, while for tree-dominated B! PV decays,
their effects are generally quite small. In particular, for
decay modes dominated by the coefficient �p4 �PV�, these
higher order penguin contraction contributions can in-
crease the branching ratios by about 40%–90%, while for
those dominated by the coefficient �p4 �VP�, their contri-
butions are also predicted to be small and tend to decrease
the branching ratios of these decay modes. At present, all
these predicted CP-averaged branching ratios still suffer
from large theoretical uncertainties.

C. Direct CP-violating asymmetries of B! PV decays

In this subsection, we will discuss the direct
CP-violating asymmetries. In particular, we will investi-

TABLE V. CP-averaged branching ratios (in units of 10�6) of penguin-dominated B! PV
decays with �S � 1. The captions are the same as Table III.

�Bf �Bf�a

�Bf NF O��s� O��s � �
2
s� O��s� O��s � �

2
s � Experiment

B� ! �� �K�0 2:37�0:72
�0:64 2:60�0:95

�0:88 4:26�1:72
�1:21 3:50�1:22

�1:04 5:39�2:01
�1:44 10:8� 0:8

4:89�1:46
�1:28 3:35�1:27

�1:13 5:01�1:81
�1:41 4:45�1:51

�1:36 6:34�2:18
�1:70

B� ! �0K�� 1:82�0:76
�0:54 1:88�0:79

�0:56 2:73�1:23
�0:81 2:33�0:96

�0:69 3:29�1:31
�0:89 6:9� 2:3

3:03�1:15
�0:88 2:21�0:87

�0:74 3:05�1:25
�0:89 2:75�1:08

�0:79 3:70�1:36
�1:01

�B0 ! ��K�� 1:84�0:90
�0:67 1:92�0:89

�0:72 3:04�1:64
�1:04 2:47�1:08

�0:82 3:78�1:84
�1:34 11:7�1:5

�1:4
3:40�1:49

�1:11 2:32�1:12
�0:84 3:43�1:67

�1:13 2:99�1:31
�0:96 4:30�2:09

�1:44
�B0 ! �0 �K�0 0:49�0:27

�0:20 0:53�0:35
�0:26 1:08�0:77

�0:46 0:80�0:42
�0:33 1:45�0:86

�0:56 1:7� 0:8
1:24�0:56

�0:46 0:73�0:50
�0:35 1:28�0:73

�0:50 1:07�0:56
�0:43 1:72�0:91

�0:65

B� ! K�� 3:71�1:18
�1:00 2:73�1:33

�1:20 5:06�2:01
�1:48 4:04�1:58

�1:48 6:77�2:78
�1:74 9:03�0:65

�0:63

10:17�3:21
�3:23 3:90�1:93

�1:69 6:32�2:07
�1:77 5:59�2:23

�2:11 8:42�2:67
�2:22

�B0 ! �K0� 3:45�1:10
�0:93 2:53�1:20

�1:11 4:70�1:86
�1:37 3:67�1:50

�1:37 6:19�2:40
�1:69 8:3�1:2

�1:0
9:46�3:01

�2:59 3:63�1:81
�1:61 5:88�2:10

�1:67 5:09�2:10
�1:87 7:70�2:55

�2:14

B� ! �K0�� 1:05�2:12
�0:73 1:74�3:09

�1:16 1:65�3:10
�1:08 3:18�4:42

�1:85 3:05�3:94
�1:73 <48

0:76�2:17
�0:63 1:36�2:99

�0:97 1:20�2:69
�0:86 2:73�3:77

�1:58 2:49�3:83
�1:47

B� ! K��0 0:77�1:06
�0:35 0:99�1:70

�0:59 0:96�1:69
�0:56 1:56�2:38

�0:95 1:51�2:24
�0:95 4:23�0:56

�0:57

0:58�1:11
�0:26 0:78�1:56

�0:43 0:72�1:35
�0:36 1:28�2:10

�0:78 1:19�2:12
�0:70

�B0 ! K��� 2:50�3:17
�1:36 3:44�4:20

�1:91 3:31�4:09
�1:81 5:27�5:29

�2:67 5:11�5:18
�2:55 9:9�1:6

�1:5
2:28�3:33

�1:33 3:04�3:66
�1:69 2:81�3:77

�1:54 4:86�5:19
�2:42 4:55�5:00

�2:32
�B0 ! �K0�0 1:42�1:59

�0:72 1:98�2:13
�1:03 1:90�2:12

�0:97 3:03�3:01
�1:35 2:94�2:68

�1:39 5:1� 1:6
1:32�1:79

�0:76 1:80�2:17
�0:94 1:66�1:97

�0:95 2:88�2:61
�1:35 2:70�2:59

�1:27

B� ! K�! 0:89�1:18
�0:48 2:16�2:33

�1:12 2:10�2:55
�1:11 3:07�3:01

�1:49 2:99�3:07
�1:44 6:5� 0:6

0:40�0:87
�0:13 1:75�2:15

�0:97 1:65�2:27
�0:94 2:61�3:20

�1:42 2:47�3:25
�1:29

�B0 ! �K0! 0:17�0:66
�0:15 1:03�1:74

�0:68 0:99�1:67
�0:66 1:78�2:45

�1:00 1:72�2:26
�0:96 4:7� 0:6

0:03�0:29
�0:03 0:76�1:49

�0:52 0:69�1:45
�0:47 1:43�2:16

�0:83 1:33�2:09
�0:82
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gate the impact of the higher order penguin contractions of
spectator-scattering amplitudes on this quantity.

We adopt the convention for direct CP asymmetries

 A CP �
B� �B0 ! �f� �B�B0 ! f�

B� �B0 ! �f� �B�B0 ! f�
: (42)

Our numerical results for the direct CP-violating asymme-
tries are listed in Tables VI and VII. Since the strong phases
are suppressed by �s and/or �QCD=mb within the QCDF
formalism, the direct CP-violating asymmetries for most
B! PV decays are predicted to be typically small. This is
particularly true for decay modes dominated by the tree
coefficient �1, for example, the decay �B0 ! ����.
However, for b! d penguin-dominated B! K �K� decays,
the penguin amplitudes generated by the internal u-quark
loop and c-quark loop are proportional to the comparable
CKM elements V�ubVud and V�cbVcd, respectively, large
direct CP-violating asymmetries for these decay channels
are predicted. In addition, due to large interference effects
between the tree and penguin amplitudes, the direct
CP-violating asymmetry of B� ! �0K�� decay is also
predicted to be large.

Because of cancellations among the strong phases asso-
ciated with the individual Feynman diagram in Fig. 6 as
discussed in Sec. III A, the higher order penguin contrac-
tion contributions to the direct CP-violating asymmetries
for most B! PV decays are predicted to be small, how-

ever with a few exceptions. From Table VI, we can see that
both the higher order penguin contraction and the weak
annihilation contributions have significant impacts on the
direct CP-violating asymmetry of �B0 ! �0�0 decay. This
is due to the delicate cancellations among the competing
terms in its decay amplitude, making these subleading
contributing terms potentially large. From the numerical
results given in Tables VI and VII, we can also see that the
higher order penguin contraction contributions to the direct
CP-violating asymmetries of �B0 ! ����, B� ! ��!,
�B0 ! ����, and �B0 ! K��� decays are also quite large.
In particular, these higher order penguin contraction con-
tributions can increase the direct CP-violating asymme-
tries of the former two, while decrease those of the latter
two by the same magnitude.

Although the uncertainties from various input parame-
ters are reduced to some extent, the renormalization scale
dependence of the direct CP-violating asymmetries for
some decay modes, such as B� ! K�! and B� !
K��0 decays, are still large. This is due to the fact that
the imaginary parts of the coefficients �i defined by
Eq. (10), which are crucial for the direct CP-violating
asymmetries, generally have a larger scale dependence [8].

The direct CP-violating asymmetries for some hadronic
charmless B! PV decays have been measured recently;
the data are still too uncertain to draw any meaningful
conclusions from the comparison with the theoretical pre-
dictions, which also suffer from large uncertainties. With

TABLE VI. Direct CP-violating asymmetries (in units of 10�2) for two-body hadronic
charmless B! PV decays with �S � 0. Decay modes with very small branching ratios are
not considered. Af

CP and Af�a
CP denote the results without and with the annihilation contribu-

tions, respectively. The other captions are the same as Table III.

Af
CP Af�a

CP
Af

CP O��s� O��s � �
2
s� O��s� O��s � �

2
s� Experiment

B� ! ���0 3:25�1:98
�1:27 5:26�3:62

�2:06 3:62�2:29
�1:43 5:64�3:58

�2:13 �7�12
�13

2:83�2:35
�1:33 4:02�3:04

�1:58 3:39�2:36
�1:53 4:58�2:78

�1:78

B� ! �0�� �2:41�0:81
�1:61 �3:69�1:39

�2:48 �2:63�0:83
�1:63 �3:88�1:37

�2:52 1� 11
�1:74�0:68

�1:54 �2:49�0:94
�1:84 �2:03�0:76

�1:70 �2:76�0:95
�1:87

�B0 ! ���� �1:05�0:12
�0:19 �2:65�0:92

�1:85 �1:03�0:12
�0:17 �2:57�0:80

�1:82 �15� 9
�0:68�0:08

�0:11 �1:68�0:45
�1:03 �0:65�0:07

�0:11 �1:62�0:44
�0:89

�B0 ! ���� 0:40�0:64
�0:37 �0:03�0:64

�0:60 0:31�0:58
�0:37 �0:13�0:64

�0:53 �47�13
�14

�0:76�0:23
�0:27 �1:36�0:41

�0:65 �0:88�0:23
�0:29 �1:49�0:40

�0:64
�B0 ! �0�0 �5:64�9:80

�17:89 5:92�10:14
�17:18 �13:49�11:83

�20:61 �0:22�12:35
�23:54 �49�70

�83

�4:42�19:18
�28:38 10:58�18:83

�28:48 �19:13�18:98
�32:25 �1:68�21:36

�34:52

B� ! ��! �1:95�1:54
�2:03 �4:49�1:68

�2:34 �1:84�1:58
�2:09 �4:45�1:66

�2:16 �4� 8
�4:46�2:11

�3:14 �6:66�2:38
�3:37 �4:36�2:10

�3:09 �6:64�2:42
�3:21

B� ! K�K�0 �36:28�5:04
�5:51 �19:29�8:89

�6:15 �31:08�4:37
�4:67 �15:34�8:74

�6:47   

�42:06�5:68
�6:38 �28:33�6:84

�5:54 �36:92�5:40
�5:29 �24:27�6:78

�5:82
�B0 ! �K0K�0 �36:27�5:02

�5:66 �19:29�8:34
�6:48 �32:72�4:74

�4:82 �17:56�7:65
�5:57   

�42:06�5:43
�6:50 �28:33�6:91

�5:56 �38:64�5:15
�5:46 �26:25�6:10

�6:04

B� ! K0K�� �12:64�4:49
�4:14 �22:25�4:35

�7:40 �9:41�5:03
�4:82 �15:93�4:95

�4:54   

�2:96�8:53
�6:64 �18:26�5:22

�9:82 0:18�10:23
�7:16 �9:17�8:89

�6:79
�B0 ! K0 �K�0 �12:64�4:60

�4:00 �22:25�4:24
�8:09 �9:25�4:55

�4:78 �16:25�4:90
�4:25   

�2:96�8:64
�6:76 �18:26�5:59

�8:60 �1:76�6:45
�5:73 �12:22�5:90

�6:34
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theoretical progresses and the rapid accumulation of ex-
perimental data, the situation will be improved and large
direct CP-violating asymmetries in some decay channels,
for example, the decays B! K �K�, will be found in the
near future.

D. Detailed analysis of B! �K�, K� decays

The B! �K� and B! K� decays, like their PP coun-
terparts B! �K decays, are also penguin-dominated de-
cay modes, and hence sensitive to any new physics
contributions. If the ‘‘�K’’ puzzles, with the improvement
of experimental measurements, still remain unexplained
within the SM, there would be signals of new physics
beyond the SM [27]. Thus, the B! �K� and B! K�
decays can be used to determine whether there are any new
physics contributions and, which one, if existing as hinted
by the ‘‘�K’’ puzzles, is more favored. On the other hand,
once the data on these decay modes become more precise,
useful information on the weak phase angle � can also be
obtained from these decay modes [28]. So, detailed studies
on these decay modes are worthy.

In Figs. 9 and 10, we show the dependence of the
CP-averaged branching ratios of these decay modes on
the weak phase �. In these two and the following figures,
the central values of all input parameters except for the

CKM angle � are defaulted and the renormalization scale
is fixed at � � mb.

From these two figures, we can see that the experimental
data on these decay modes are generally larger than the
theoretical predictions obtained based on the QCDF ap-
proach. Some decay modes, such as B� ! �0K�� and
�B0 ! ��K�� decays, have a strong dependence on the
weak angle �. Moreover, both the higher order penguin
contraction and the weak annihilation contributions can
give significant enhancements to the CP-averaged branch-
ing ratios of B! �K� decays. However, for B! �K�

decays, only the weak annihilation contributions can pro-
vide large enhancements to the CP-averaged branching
ratios, and the higher order penguin contraction contribu-
tions play only a minor role.

Since the theoretical uncertainties in the predicted
CP-averaged branching ratios can be largely reduced by
taking ratios among them, we shall discuss below certain
ratios among the CP-averaged branching fractions of these
decay modes, like the ones defined for B! �K decays
[29].

For B! �K� decays, we define the following three
ratios [28]:

 R��K�� �
�Bu
�Bd

�B� �B0 ! ��K���
�B�B� ! ��K�0�

; (43)

TABLE VII. Direct CP-violating asymmetries (in units of 10�2) for two-body hadronic
charmless B! PV decays with �S � 1. The captions are the same as Table VI.

Af
CP Af�a

CP
Af

CP O��s� O��s � �
2
s� O��s� O��s � �

2
s � Experiment

B� ! �� �K�0 1:49�0:23
�0:14 0:76�0:26

�0:34 1:22�0:14
�0:13 0:57�0:26

�0:34 �9:3� 6:0
1:77�0:24

�0:17 1:14�0:21
�0:24 1:47�0:17

�0:15 0:93�0:21
�0:26

B� ! �0K�� 14:03�2:88
�2:44 18:21�5:43

�4:15 11:98�2:46
�2:10 15:48�4:69

�3:59 4� 29
13:09�3:48

�2:66 14:85�3:47
�3:07 11:27�2:74

�2:40 12:72�2:74
�2:43

�B0 ! ��K�� 9:14�1:51
�1:34 17:18�6:39

�4:76 7:11�1:31
�1:24 13:75�5:50

�4:06 �5� 14
3:89�0:65

�0:59 9:16�2:87
�2:09 2:86�0:52

�0:49 7:16�1:93
�1:46

�B0 ! �0 �K�0 �11:58�4:15
�8:58 �9:94�3:14

�4:69 �9:20�2:79
�5:00 �8:34�2:64

�3:77 �1�27
�26

�12:14�4:04
�7:46 �10:06�3:09

�4:31 �9:97�3:36
�4:79 �8:60�2:47

�3:68

B� ! K�� 2:08�0:53
�0:27 1:07�0:32

�0:37 1:61�0:23
�0:18 0:78�0:30

�0:39 3:7� 5:0
2:33�0:56

�0:31 1:49�0:21
�0:22 1:84�0:27

�0:20 1:17�0:23
�0:23

�B0 ! �K0� 2:08�0:50
�0:27 1:07�0:33

�0:39 1:72�0:27
�0:19 0:92�0:25

�0:39 9� 14
2:33�0:58

�0:29 1:49�0:20
�0:23 1:96�0:33

�0:21 1:30�0:19
�0:25

B� ! �K0�� 0:49�0:14
�0:17 0:93�0:34

�0:15 0:37�0:17
�0:21 0:67�0:20

�0:18   

0:11�0:25
�0:32 0:80�0:41

�0:20 �0:02�0:29
�0:40 0:41�0:28

�0:36

B� ! K��0 �7:99�11:58
�5:17 �3:62�17:39

�6:87 �7:32�4:63
�3:55 �4:55�8:50

�4:26 31�12
�11

5:88�27:17
�10:73 15:31�33:85

�16:23 �0:38�13:62
�5:64 5:17�23:92

�8:71
�B0 ! K��� �1:76�1:64

�0:87 0:24�4:86
�1:84 �0:91�1:21

�0:85 0:46�2:99
�1:42 17�15

�16

4:12�4:76
�2:50 7:89�10:46

�4:88 3:02�3:08
�1:67 5:44�6:24

�3:07
�B0 ! �K0�0 9:58�3:69

�3:24 9:73�3:86
�3:29 7:65�2:85

�2:30 7:78�2:67
�2:45   

12:36�5:78
�4:30 12:91�5:89

�4:81 9:81�3:63
�3:16 10:23�4:29

�3:46

B� ! K�! �4:71�2:93
�2:41 �2:85�4:26

�3:31 �4:35�2:05
�1:93 �3:04�2:92

�2:35 2� 7
4:75�13:57

�5:57 8:69�16:81
�7:30 1:39�6:29

�3:35 3:94�9:10
�4:60

�B0 ! �K0! �9:65�4:10
�5:65 �8:90�3:91

�5:41 �7:61�2:96
�4:62 �7:13�2:69

�3:99 44� 23
�12:85�5:95

�6:22 �11:61�5:50
�5:40 �10:55�4:54

�7:83 �9:94�4:27
�6:60
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 Rc��K
�� � 2

�B�B� ! �0K���
�B�B� ! ��K�0�

; (44)

 Rn��K�� �
1

2

�B� �B0 ! ��K���
�B� �B0 ! �0K�0�

: (45)

With the��K��meson replaced by the ��K�meson, we can
get another three similar ratios for B! K� decays. These
ratios should be more appropriate to derive information on
the weak phase angle �, as well as the relative strength of
tree and penguin contributions than branching ratios.

Our numerical results and the current experimental data
for these ratios are presented in Table VIII. The � depen-
dences of these ratios are displayed in Figs. 11 and 12.

From these two figures and the numerical results given
in Table VIII, we can see that our theoretical predictions
for most of these ratios are in agreement with the data,
considering the large uncertainties in the experimental
data.

From the explicit expressions of the decay amplitudes
for these decay modes as given, for example, in Ref. [12],
we can see that differences between the two ratios Rc and
Rn for both �K� and K� modes arise mainly from the
color-allowed electroweak penguin coefficient �p3;ew and
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FIG. 9. The � dependence of the CP-averaged branching ratios of B! �K� decays. The upper and the lower four plots denote the
results without and with the annihilation contributions, respectively. The solid and dashed lines correspond to the theoretical
predictions with and without the higher order penguin contraction contributions, respectively. The horizontal solid lines denote the
experimental data as given in Table III, with the thicker ones being its central values and the thinner its error bars. The NF results
denoted by the dash-dotted lines are also shown for comparison.
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FIG. 10. The same as Fig. 9 but for B! K� decays.

TABLE VIII. Ratios among the CP-averaged branching fractions of B! �K�, K� decays.
Numbers shown in columns 3 and 4 correspond to the results obtained without the annihilation
contributions, while those in columns 5 and 6 the ones with the annihilation contributions. The
other captions are the same as in Table III.

NF O��s� O��s � �
2
s � O��s� O��s � �

2
s� Experiment

R��K�� 0:84�0:16
�0:14 0:80�0:18

�0:14 0:77�0:14
�0:11 0:76�0:15

�0:12 0:76�0:12
�0:11 1:18� 0:17

0:75�0:11
�0:09 0:74�0:16

�0:11 0:74�0:11
�0:11 0:72�0:15

�0:10 0:73�0:11
�0:10

Rc��K
�� 1:53�0:45

�0:31 1:45�0:49
�0:31 1:28�0:29

�0:22 1:33�0:37
�0:26 1:22�0:25

�0:20 1:28� 0:44
1:24�0:27

�0:21 1:32�0:45
�0:27 1:22�0:28

�0:20 1:24�0:32
�0:23 1:17�0:23

�0:19

Rn��K
�� 1:87�0:94

�0:53 1:80�1:14
�0:53 1:41�0:51

�0:32 1:54�0:66
�0:42 1:31�0:42

�0:26 3:44� 1:68
1:37�0:48

�0:29 1:58�0:80
�0:44 1:33�0:50

�0:28 1:40�0:53
�0:34 1:25�0:43

�0:24

R��K� 2:55�2:45
�0:94 2:12�1:54

�0:67 2:17�1:73
�0:72 1:78�0:85

�0:41 1:80�0:87
�0:41 >0:22

3:20�6:80
�1:48 2:41�2:62

�0:85 2:53�2:78
�0:93 1:91�1:04

�0:50 1:97�1:16
�0:55

Rc��K� 1:47�1:96
�0:66 1:14�0:99

�0:41 1:16�1:12
�0:43 0:98�0:53

�0:26 0:99�0:56
�0:30 >0:18

1:52�4:78
�0:80 1:14�1:49

�0:49 1:21�1:76
�0:55 0:94�0:60

�0:31 0:95�0:75
�0:29

Rn��K� 0:88�0:44
�0:26 0:87�0:34

�0:23 0:87�0:35
�0:24 0:87�0:25

�0:20 0:87�0:26
�0:21 0:97� 0:34

0:87�0:52
�0:26 0:84�0:39

�0:23 0:85�0:40
�0:27 0:84�0:26
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�0:21
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FIG. 12. The same as Fig. 11 but for B! K� decays.
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the color-suppressed tree coefficient �2, which are both
predicted to be small within the QCDF formalism. So, the
two ratios Rc and Rn are expected to be approximately
equal within the SM. However, due to delicate cancella-
tions among various competing terms, these ratios are
strongly affected by the subleading contributing terms.
After including the weak annihilation contributions, the
two ratios Rc and Rn tend to be approximately equal.
The current experimental data, however, indicate that
Rn��K

�� is somewhat larger than Rc��K��, but with large
errors in the former. Unfortunately, due to the insufficient
data on the branching ratios of the K� modes, direct
experimental comparison between Rc��K� and Rn��K� is
not feasible for the time being. Once the experimental
‘‘Rc � Rn’’ comparison with the case of �K� and K�
decays are available, we can determine whether our theo-
retical predictions based on the QCDF approach are
correct.

It is also noted that the patterns of these quantities
remain nearly unaffected even with these higher order
penguin contributions included, because the higher order
penguin contraction contributions to the decays in the same
ratio are similar in nature, and hence eliminated.

With refined measurements available in the forthcoming
years, it would be very interesting to check whether the
theoretical predictions for these ratios are consistent with
the data. Moreover, studies on these B! PV modes will
help us to understand the ‘‘�K’’ puzzles [27].

IV. CONCLUSIONS

In this paper, we have reexamined the hadronic charm-
less B! PV [with P � ��;K�, and V � ��;K�; !;��]
decays in the framework of the QCDF. We have taken
into account the penguin contractions of spectator-
scattering amplitudes induced by the b! Dg�g� transi-
tions, which are of order �2

s . The main conclusions of this
paper are summarized as follows.

(1) For penguin-dominated B! PV decays, predic-
tions obtained based on the QCDF approach are
generally quite different from the ones obtained
with the NF approximation due to large nonfactor-
izable effects on the penguin coefficients. Contrary
to their PP counterparts, the PV modes usually have
smaller penguin coefficients �p4 , rendering the sub-
dominant terms potentially large. For example, the
weak annihilation contributions, though power sup-
pressed by �QCD=mb, are very significant in these
penguin-dominated decays. The higher order pen-
guin contraction contributions can interfere signifi-
cantly with the next-to-leading order results, and
hence are also important for these penguin-
dominated decay modes. In particular, for decay
modes dominated by the coefficient �p4 �PV�, the
higher order penguin contraction contributions can
increase the CP-averaged branching ratios by about

40%–90%, while for those dominated by the coef-
ficient �p4 �VP�, their contributions are predicted to
be small and tend to decrease the branching ratios of
these decay modes.

(2) For tree-dominated decays and the decays having
only the penguin coefficients �p3 , �p3;ew or having
only the weak annihilation contributions, the higher
order penguin contraction contributions to the
CP-averaged branching ratios are predicted to be
quite small.

(3) Since the direct CP-violating asymmetries are pro-
portional to the sin of strong phase, which is usually
suppressed by �s and/or �QCD=mb within the
QCDF formalism, most of the hadronic charmless
B! PV decays are predicted to have typically
small direct CP-violating asymmetries. However,
for those decay modes where there are large inter-
ference effects between various contributing terms
in the decay amplitudes, such as B! KK� decays,
large direct CP-violating asymmetries are
predicted.

(4) Because of large cancellations among the strong
phases associated with the individual Feynman dia-
gram in Fig. 6, the higher order penguin contraction
contributions to the direct CP-violating asymme-
tries for most B! PV decays are predicted to be
small, however with a few exceptions. For example,
we find that both the higher order penguin contrac-
tion and the weak annihilation contributions have
significant impacts on the direct CP-violating asym-
metry of �B0 ! �0�0 decay. In addition, the higher
order penguin contraction contributions to the direct
CP-violating asymmetries of �B0 ! ����, B� !
��!, �B0 ! ����, and �B0 ! K��� decays are
also quite large.

(5) With more accurate experimental measurements
available in the forthcoming years, it would be
very interesting to check whether the theoretical
predictions for the ratios R, Rc, and Rn for both
the �K� and K� decay modes are consistent with
the experimental data. In particular, the experimen-
tal Rc � Rn comparison with the case of �K� and
�K decays is very crucial for our understandings of
the ‘‘�K’’ puzzles.

Although the theoretical results presented here still have
large uncertainties, the penguin contractions of spectator-
scattering amplitudes induced by the b! Dg�g� transi-
tions, which are of order �2

s , have been shown to be very
important for two-body hadronic charmless B! PV de-
cays, particularly for those penguin-dominated ones. It is
very interesting to note that the 1-loop (�2

s) correction to
the hard spectator scattering in the tree-dominated B!
�� decays has been performed recently [30], which forms
another part of the next-to-next-to-leading order (NNLO)
contribution to the QCD factorization formula for hadronic
B-meson decays. Using the PQCD method, the NLO cor-
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rections have also been carried out for B! ��, �K, and
�� decays very recently [31]. In addition, much progress in
SCET has also been made in the past two years [32]. With
the steady progress in experimental measurements at
BABAR and Belle, further systematic studies on these
higher order contributions to the rare hadronic B-meson
decays are therefore interesting and deserving.
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APPENDIX A: ANALYTIC EXPRESSIONS FOR
THE �i FUNCTIONS

In the NDR scheme, after performing the loop momen-
tum integration, subtracting the regulator � using the MS
scheme, and performing the Feynman parameter integrals,
we get the analytic expressions for the �i functions appear-
ing in Eqs. (36) and (37):
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�G0�r1� �G0�r1 � r3��
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where the notations r1 � k2=m2
c, r2 � p2=m2

c, and r3 �
2�k  p�=m2

c have been introduced. With mc replaced by
mb, we can get the results for the b-quark loops. For light u,
d, s quark propagating in the fermion loops, these �i
functions can be evaluated straightforwardly. Here only
the relevant �i functions are given. Explicit expressions
for the remaining ones can be obtained similarly.

The functions Gi�t� and Ti�t� are defined, respectively,
by

 Gi�t� �
Z 1

0
dxxi ln�1� x�1� x�t� i�; (A11)

 Ti�t� �
Z 1

0
dx

xi

1� x�1� x�t� i
; (A12)

with the explicit form for T0�t� given by [25]

 T0�t� �

8>><
>>:

4 arctan
�����
t

4�t

p����������
t�4�t�
p ; 0 � t � 4

2i��2 ln�
��
t
p
�
������
t�4
p

��2 ln�
��
t
p
�
������
t�4
p

�����������
t�t�4�
p ; t > 4;

(A13)

while the explicit form for G�1;0�t� could be found in
Ref. [17].

APPENDIX B: INPUT PARAMETERS

In this appendix, we present the relevant input parame-
ters used in our numerical calculations as follows.

Wilson coefficients.—The Wilson coefficients Ci���
have been reliably evaluated to next-to-leading logarithmic
order [22,33]. Their numerical values in the NDR scheme
at the scale � � mb (�h �

�������������
�hmb

p
) are given by

 

C1�1:080�1:185�; C2��0:180��0:367�;

C3�0:014�0:028�; C4��0:035��0:062�;

C5�0:009�0:011�; C6��0:040��0:085�;

C7=�e:m:��0:009��0:029�; C8=�e:m:�0:050�0:107�;

C9=�e:m:��1:238��1:375�; C10=�e:m:�0:243�0:451�;

Ceff
7���0:302��0:365�; Ceff

8g ��0:145��0:169�; (B1)

with the input parameters fixed as [34]: �s�mZ� � 0:1187,

�e:m:�mW� � 1=129, mW � 80:425 GeV, mZ �
91:188 GeV, sin2�W � 0:2312, mt � 172:7 GeV [35],
mb � 4:65 GeV, �h � 0:5 GeV.

The CKM matrix elements.—Here we use the
Wolfenstein parametrization for the CKM matrix elements
[36],
 

VCKM �

1� �2

2 � A�3��� i��

�� 1� �2

2 A�2

A�3�1� �� i�� �A�2 1

0
BBB@

1
CCCA

�O��4�; (B2)

and choose the four Wolfenstein parameters (A, �, �, and
�) as [37]

 A � 0:825�0:011
�0:019; � � 0:226 22� 0:001 00;

�� � 0:207�0:036
�0:043; �� � 0:340� 0:023;

(B3)

with �� and �� defined by �� � ��1� �2

2 �, �� � ��1� �2

2 �.
Masses and lifetimes.—For the quark mass, there are

two different classes appearing in the QCDF approach.
One type is the pole quark mass which appears in the
evaluation of the penguin loop corrections, and is denoted
by mq. In this paper, we take

 mu � md � ms � 0; mc � 1:46 GeV;

mb � 4:65 GeV:
(B4)

The other one is the current quark mass which appears
through the equations of motion and in the factor rM
 . This
kind of quark mass is scale dependent. Following Ref. [12],
we hold � �mu � �md����= �ms��� fixed, and use �ms��� as an
input parameter with the following values [34,38]:

 2 �ms���=� �mu � �md���� � 24:2;

�ms�2 GeV� � �98� 20� MeV; �mb� �mb� � 4:26 GeV;

(B5)

where the difference between the u and d quark is not
distinguished.

For the lifetimes and the masses of the B mesons, we
choose [26,34]

 �Bu � 1:643 ps; mBu � 5279:0 MeV;

�Bd � 1:527 ps; mBd � 5279:4 MeV;
(B6)

as our default input values. The masses of the light mesons
are also chosen from Ref. [34].

Light-cone distribution amplitudes (LCDAs) of me-
sons.—The LCDAs of mesons are also basic input parame-
ters in this approach. In the heavy quark limit, the light-
cone projectors for the B, the pseudoscalar, and the vector
mesons in the momentum space can be expressed, respec-
tively, as [3,12]

REEXAMINING CHARMLESS B! PV DECAYS . . . PHYSICAL REVIEW D 73, 114027 (2006)

114027-21



 M B
�� � �

ifBmB

4
��1� v6 ��5f�

B
1 ��� � n6 ��B

2 ���g���;

(B7)

 MP
�� �

ifP
4

�
p6 �5�P�x� ��P�5

k6 2k6 1

k1  k2
�p�x�

�
��
; (B8)

 �MV
k
��� � �

ifV
4

�
p6 �V�x� �

mVf?V
fV

k6 2k6 1

k1  k2
�v�x�

�
��
;

(B9)

where k1 and k2 are the quark and antiquark momenta of
the meson constituents and defined, respectively, by

 k�1 � xp� � k�? �
~k2
?

2xp  �p
�p�;

k�2 � �1� x�p
� � k�? �

~k2
?

2�1� x�p  �p
�p�:

(B10)

It is understood that only after the factor k1  k2 in the
denominator of Eqs. (B8) and (B9) cancelled, can we
take the collinear approximation, i.e., the momentum k1

and k2 can be set to be xp and �1� x�p, respectively, with
p being the momentum of the meson. �M�x� and �m�x� are
the leading-twist and twist-3 LCDAs of the meson M,
respectively. Since the QCDF approach is based on the
heavy quark assumption, to a very good approximation, we
can use the asymptotic forms of the LCDAs [39,40]2

 �P�x� � �V�x� � 6x�1� x�; �p�x� � 1;

�v�x� � 3�2x� 1�:
(B11)

With respect to the end-point divergence associated with
the momentum fraction integral over the meson LCDAs,
following the treatment in Refs. [8,23], we regulate the
integral with an ad hoc cutoff

 

Z 1

0

dx
x
!

Z 1

�h=mB

dx
x
� ln

mB

�h
; (B12)

with �h � 0:5 GeV. The possible complex phase associ-
ated with this integral has been neglected.

As for the B meson wave functions, we need only
consider the first inverse moment of the LCDA �B

1 ���
defined by [8]

 

Z 1

0

d�
�

�B
1 ��� �

mB

�B
; (B13)

where the hadronic parameter �B has been introduced to
parametrize this integral. In this paper, we take �B �
�460� 110� MeV as our input value [41].

Decay constants and transition form factors.—The de-
cay constants and the form factors are nonperturbative
parameters and can be determined from experiments and/
or theoretical estimations, such as lattice calculations,
QCD sum rules, etc. For their definitions, we refer the
readers to Refs. [1,39,40]. In this paper, we take the fol-
lowing numerical values for these input parameters:
[34,42,43]
 

f��130:7 MeV; fK�159:8 MeV; fB�216 MeV;

f��205 MeV; f!�195 MeV; fK� �217 MeV;

f��231 MeV; f?� �1 GeV��160 MeV;

f?! �1 GeV��145 MeV; f?K� �1 GeV��185 MeV;

f?� �1 GeV��200 MeV; FB!�� �0���0:258�0:031�;

FB!K� �0�� �0:331�0:041�; AB!�0 �0�� �0:303�0:028�;

AB!K
�

0 �0�� �0:374�0:034�;

AB!!0 �0�� �0:281�0:030�; (B14)

where the form factors are evaluated at the maximal recoil
region. The dependence of the form factors on the
momentum-transfer q2 can be found in Ref. [43]. It should
be noted that the transverse decay constant f?V is scale
dependent.

APPENDIX C: THE GAUGE INDEPENDENCE

In this appendix, we present a detail checking of gauge
independence of our calculation.

First, we would check the gauge dependence of Fig. 5(b)
with the gluon propagator,

 D�	�q2� �
1

q2

�
g�	 � �

q�q	

q2

�
; (C1)

where the factor �iab has been suppressed, and � is the
gauge-dependent parameter.

Before the light-cone projectors for mesons are sand-
wiched, the scattering amplitude of this diagram is read as

 A / � �vd�p1���vd�p2��

�
�uu�p3��	

i
l6
��vu�p4�

�


� �us�p5����q
��1� �5�ub�pb��D

���k2�D�	�q2�;

(C2)

where the spin indices, color indices, and SU�3� color

2It should be noted [12,39] that, in defining the light-cone
projectors of light mesons, all three-particle contributions have
been neglected. The leading-twist LCDAs are conventionally
expanded in Gegenbauer polynomials

 �M�x;�� � 6x�1� x�
�

1�
X1
n�1

�Mn ���C
�3=2�
n �2x� 1�

�
;

where the Gegenbauer moments �Mn ��� are multiplicatively
renormalized. The asymptotic form of the leading-twist distri-
bution amplitude is valid in the limit �! 1. With three-particle
contributions being neglected, the twist-3 two-particle distribu-
tion amplitudes are then determined completely by the equations
of motion.
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matrices have been suppressed. It is easy to show that
 

� �vd�p1���vd�p2��D
���k2�

�
1

�p2 � p1�
2

�
� �vd�p1���vd�p2��

� �� �vd�p1��p6 2 � p6 1�vd�p2��
p�2 � p

�
1

�p2 � p1�
2

�

� � �vd�p1��
�vd�p2��

1

�p2 � p1�
2 ; (C3)

where k � p2 � p1 is the momentum of the gluon con-
nected to the spectator �d quark, p1 and p2 are the momen-
tum of the �d quark before and after scattering, respectively.
In the last step, we have used the on-shell condition
�vd�p1��p6 1 �md� � �p6 2 �md�vd�p2� � 0. It is also easy
to show that
 

� �us�p5����q
��1� �5�ub�pb��D

�	�q2�

�
1

q2

�
� �us�p5��	�q��1� �5�ub�pb��

� �
q	

q2 � �us�p5��
��q�q��1� �5�ub�pb��

�

�
1

q2 � �us�p5��	�q��1� �5�ub�pb��: (C4)

From Eq. (C4), we can see that the gauge invariance ofQ8g

removes the gauge-dependent � term.
From Eqs. (C2)–(C4), we can see that the scattering

amplitude of Fig. 5(b) is independent of the gauge parame-
ter �. The above proof could be directly extended to that of
Figs. 5(c), 6(b), and 6(c), since the building blocks Ia��k�
and ~Ia��k� defined by Eq. (17) are also gauge invariant, i.e.,
k�Ia��k� � k�~Ia��k� � 0.

For Fig. 5(a), its amplitude reads

 

A / � �vd�p1���vd�p2��� �uu�p3��	vu�p4��


 � �us�p5����q��1� �5�ub�pb��D��0 �k2�


D		0 �p2�D��0 �q2�V�0	0�0 �q; p; k�; (C5)

where V�0	0�0 �q; p; k� is the triple-gluon vertex. One can
observe that the amplitude is gauge independent, because
of

 �k�� �vd�p1���vd�p2�� � 0; �k � p2 � p1�; (C6)

 �p	� �uu�p3��	vu�p4�� � 0; �p � p3 � p4�; (C7)

 �q�� �us�p5����q��1� �5�ub�pb�� � 0: (C8)

Similarly, we can find that the amplitude of Fig. 6(a) is also
gauge independent. Using Eqs. (C6) and (C7), one can find
that the amplitudes of Figs. 6(d) and 6(e) are gauge
independent.

In summary, we have shown that the amplitudes of the
Feynman diagrams in Figs. 5 and 6 are gauge independent.
The gauge independence of these subset Feynman dia-
grams is guaranteed by the on-shell external quarks and
the gauge invariance of O8g and 4-quarks operation inser-
tions Ia��k� and ~Ia��k�. There are many O��2

s� Feynman
diagrams belonging to the group in Fig. 4 but not shown
there. For example, the processes b! sg� followed by
g� ! �qiqi ! g� ! �uu or a gluon loop, which are gauge
dependent separately. To keep gauge independent, one
must calculate the full set of Feynman diagrams in the
category of Fig. 4, which are not calculated in this paper.
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