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We analyze the exclusive pseudoscalar D�
�s�D

�
�s� pair production in e�e� annihilations at

���
s
p
�

10:6 GeV using a nonfactorized PQCD with the light-front wave function that goes beyond the peaking
approximation. We compare our nonfactorized analysis with the usual factorized analysis based on the
peaking approximation in the calculation of the cross section for the heavy meson pair production. We
also discuss the higher helicity contribution to the cross section. Our analysis provides a constraint on the
size of quark transverse momentum inside the D meson from the recent Belle data, �exp�e

�e� !
D�D��< 0:04 �pb�.
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I. INTRODUCTION

Recently, many theoretical works have been devoted to
explain the large discrepancy between theoretical and ex-
perimental results for the charmonium production in e�e�

annihilations. For instance, the data [1–3] for charmonium
production cross sections in e�e� annihilations at the
B-factory energy

���
s
p
� 10:6 GeV differ a lot from the

theoretical predictions for both exclusive [4–8] and inclu-
sive [9] processes although higher order corrections may
reduce the differences [10]. A couple of years ago, the
Belle Collaboration [3] reported the first measurement of
the e�e� ! D��D�� and e�e� ! D�D�� cross sections
and polarizations at

���
s
p
’ 10:6 GeV. They also set an

upper limit on the cross section for e�e� ! D�D�.
Interestingly, while the theoretical predictions based on
the heavy quark effective theory [4] and the constituent
quark model [7] for e�e� ! D��D�� and e�e� !
D�D�� cross sections are similar to the measured data
[3], the predictions for e�e� ! D�D� cross section are
either quite smaller [4] or somewhat larger [7] than the data
[3].

The above exclusive/inclusive meson pair productions
provide a unique opportunity to investigate asymptotic
behaviors of various meson form factors in the framework
of perturbative quantum chromodynamics (PQCD). The
heavy meson pair production is of special interest since
gluons carrying large momentum transfers can be rather
easily accessible in the kinematic region above the thresh-
old. Also, the wave functions of heavy systems may be well
constrained due to the heaviness of constituents. Thus, it
has been pointed out that exclusive pair production of
heavy mesons can be predicted reliably within PQCD [11].

If the factorization theorem in PQCD is applicable to
exclusive processes, then the invariant amplitude for ex-
clusive processes factorizes into the convolution of the
valence quark distribution amplitude (DA) ��x; q2� with
the hard scattering amplitude TH [12]. To implement the
factorization theorem at high momentum transfer, the had-
ronic wave function plays an important role linking be-
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tween long distance nonperturbative QCD and short
distance PQCD. A particularly convenient and intuitive
framework in applying PQCD to exclusive processes is
based upon the light-front (LF) Fock-state decomposition
of hadronic state. In the LF framework, the valence quark
DA is computed from the valence LF wave function
�n�xi;k?i� of the hadron at equal LF time � � t� z=c
which is the probability amplitude to find n constituents
(quarks, antiquarks, and gluons) with LF momenta ki �
�xi;k?i� in a hadron. Here, xi and k?i are the LF momen-
tum fraction and the transverse momenta of the ith con-
stituent in the n-particle Fock state, respectively.

To lowest order in perturbation theory of the meson form
factor calculation at large momentum transfers, the hard
scattering amplitude TH is dominated by one-gluon ex-
change diagrams. For the factorization theorem to be ap-
plicable in the heavy meson pair production analysis, the
only consistent form of the quark DA would be the �
function, i.e. ��x; q2� 	 ��x�mQ=M� where mQ and M
are the heavy quark mass and the meson mass, respectively
[13]. In this so-called ‘‘peaking approximation,’’ the mo-
mentum fraction carried out by ith constituent is equal to
the ratio of the constituent mass to meson mass, xi �
mi=M. This relation implies M � m1 �m2, i.e. zero-
binding energy limit.

However, as pointed out in Ref. [13], if the quark DA is
not an exact � function, i.e. k? in the soft bound state LF
wave function can play a significant role, the factorization
theorem is no longer applicable. To go beyond the peaking
approximation, the invariant amplitude should be ex-
pressed in terms of the LF wave function ��xi;k?i� rather
than the quark DA. In Ref. [13], the validity issue of
peaking approximation for the heavy meson pair produc-
tion processes was discussed using the LF model wave
function ��xi;k?i� / exp��M2

0=�
2�, where M0 is the in-

variant mass of the constituent quark and antiquark defined
by M2

0 �
P
i�k

2
? �m

2
i �=xi and � is the Gaussian parame-

ter. The limit �! 0 corresponds to the peaking approxi-
mation (i.e. zero-binding energy limit M � m1 �m2). In
-1 © 2006 The American Physical Society
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the analysis of the heavy-heavy system like Bc�b �c� meson,
it was found that the effect of going beyond the peaking
approximation (� up to 100 MeV) was not important
compared to the peaking approximation limit (i.e. �!
0) [13]. However, it is not yet clear if the same conclusion
would apply to the heavy-light system such as D and B
mesons. Moreover, the initial analysis limited only up to
� 
 100 MeV may not be sufficient to draw a definite
conclusion on the validity of the peaking approximation.

The main purpose of this work is to extend the previous
analysis [13] and point out that the recent Belle data [3] can
provide a rather stringent constraint on how broad or
narrow the D� meson quark DA is. Clarifying the relation
between the � value and transverse momentum, k? is a
particularly important issue since the quark DA is very
sensitive to the � value and the different shape of the quark
DA could enhance or reduce the cross section for the
exlcusive meson pair production in e�e� annihilations.
Incidentally, Bondar and Chernyak [14] considered a rather
broad quark DA (i.e. rather significant binding energy
effect) instead of �-type quark DA to explain the data for
the exclusive e�e� ! J= � �c process. Ma and Si [15]
previously discussed the variation of DA to explain the data
for the same process. Similar consideration also has been
discussed recently in Ref. [16].

In this work, we stress a consistency of our analysis in
going beyond the peaking approximation. In particular, we
confirm that the � value in our model LF wave function is
related with the transverse momentum via �Q �Q �����������
hk2
?i

q
Q �Q

. As expected, the nonzero � value corresponds

to the transverse size of the meson and �! 0 limit corre-
sponds to the peaking approximation (i.e. zero-binding
energy limit) as discussed in [13]. This implies that it
may be significant to keep the transverse momentum k?
both in the wave function part and the hard scattering part
together before doing any integration in the amplitude if �
is not so close to zero or the binding energy effect is not
negligible. Thus, we think that the factorization of ampli-
tude by integrating out the transverse momentum sepa-
rately in the wave function part and in the hard scattering
part may not provide a consistent analysis to take into
account the binding energy effect. This could distinguish
our method from Ref. [14] to take into account the binding
energy effect.

We also note that our Gaussian parameter � is not
chosen arbitrarily but fixed by the variational principle
for the well-known linear plus Coulomb interaction moti-
vated by QCD [17], which in turn uniquely determines the
shape of the quark DA in our model calculation. This
implies that the recent data by the Belle collaboration [3]
provide a useful test on our model calculation.

The paper is organized as follows: In Sec. II, we describe
the formulation of our light-front quark model (LFQM),
which has been quite successful in describing the static and
nonstatic properties of the low-lying mesons [17,18]. In
114020
Sec. III, the transverse momentum dependent hard scatter-
ing amplitude for the meson is given within the LF frame-
work. The contribution to the meson form factor from
higher helicity components is also given in this section.
In Sec. IV, the analytic continuation from the spacelike
region to the timelike region is introduced to obtain the
cross section for the pseudoscalar meson pair (M �M) pro-
duction in e�e� annihilations. As a validity check of our
model, we also show that our result for the meson form
factor obtained in Sec. III reduces to the peaking approxi-
mation in the �! 0 (i.e. zero-binding) limit. In Sec. V, we
present the numerical results for the e�e� ! D�

�s�D
�
�s�

cross section and compare with the available data.
Summary and conclusions follow in Sec. VI. In the appen-
dix, we briefly summarize our proof of vanishing contri-
bution from the light-front gauge part in theM � M0 limit.
II. MODEL DESCRIPTION

In our LFQM, the meson wave function is given by

 �
JJz
M �x;k?; � ��� � ��x;k?�R

JJz
� ��
�x;k?�; (1)

where ��x;k?� is the radial wave function and
R

JJz
� ��
�x;k?� is the spin-orbit wave function obtained by

the interaction-independent Melosh transformation [19]
from the ordinary equal-time static spin-orbit wave func-
tion assigned by the quantum numbers JPC. The meson
wave function in Eq. (1) is represented by the Lorentz-
invariant variables xi � p�i =P

�, k?i � p?i � xiP?, and
�i, where P, pi, and �i are the meson momentum, the
momentum, and the helicity of the constituent quarks,
respectively.

The radial wave function ��x;k?� of a ground state
pseudoscalar meson (JPC � 0��) is given by

 ��x;k?� �
�

1

�3=2�3

�
1=2

exp�� ~k2=2�2�; (2)

where the Gaussian parameter � is related with the size of
the meson. Here, the longitudinal component kz of the
three momentum is given by kz � �x1 �

1
2�M0 � �m2

2 �

m2
1�=2M0 with the invariant mass

 M2
0 �

k2
? �m

2
1

x1
�

k2
? �m

2
2

x2
; (3)

where x1 � x and x2 � 1� x. The covariant form of the
spin-orbit wave function R00

� ��
�x;k?� for the pseudoscalar

meson is given by

 R 00
� ��
� �

�u�p1; ��	5v�p2; ������
2
p
�M2

0 � �m1 �m2�
2�1=2

; (4)

and its explicit matrix form is given by

 R 00
� ��
�

1

C
�kL x1m2 � x2m1

�x1m2 � x2m1 �kR

� �
; (5)
-2



TABLE I. The constituent quark massesmq �GeV� and the Gaussian parameters ���
����������
hk2
?i

q
� �GeV� for the linear potential obtained

from the variational principle. q � u and d.

mq ms mc mb �q �q �s�s �q �s �q �c �s �c �c �c �q �b �s �b �b �b

0.22 0.45 1.8 5.2 0.3659 0.4128 0.3886 0.4679 0.5016 0.6059 0.5266 0.5712 1.1452
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where C �
����������������������������������������������������
2x1x2�M2

0 � �m1 �m2�
2�

q
and kR�L� �

kx � iky. Note that
P
� ��R

00y
� ��
R00
� ��
� 1. The normalization

of our wave function is given by
 X
� ��

Z
d3kj�00

M �x;k?; � ���j2 �
Z 1

0
dx
Z
d2k?

�
@kz
@x

�

� j��x;k?�j2 � 1; (6)

where the Jacobian of the variable transformation
fx;k?g ! ~k � �k?; kz� is given by

 

@kz
@x
�

M0

4x1x2

�
1�

�
�m1 �m2�

2

M2
0

�
2
�
: (7)

The effect of the Jacobi factor has been analyzed in
Ref. [20].

With this normalization, the root-mean-square value of

the transverse momentum (
����������������
hk2
?iQ �Q

q
) is obtained via

 hk2
?iQ �Q � eQ

Z
d3kjk2

?jj��x;k?�j
2 � �Q$ �Q�: (8)

Numerically, we confirm that
����������������
hk2
?iQ �Q

q
� �Q �Q. The nu-

merical values of�Q �Q are discussed in Sec. V (see Table I).
The quark distribution amplitude (DA) of a meson,

�M;��x;Q�, i.e. the probability of finding collinear quarks
up to the scale Q in the Lz � 0 (s-wave) projection of the
meson wave function [12] is defined by

 �M;��x;Q� �
Z Q
�d2k?���x;k?; � ���; (9)

where �d2k?� � d2k?
���������������
@kz=@x

p
=
�����������
16�3
p

for � � �00
M .
1We should note that the corresponding measure
�d3kd3l=16�3� in Eq. (12) has to be replaced by
�dxd2k?=16�3��dyd2l?=16�3� for the Brodsky-Huang-
Lepage-type wave function [22].
III. HARD SCATTERING AMPLITUDE WITH
k?-DEPENDENCE

In this section, we calculate the pseudoscalar meson
electromagnetic form factor in the region where the
PQCD is applicable. Our calculation is carried out using
the Drell-Yan-West frame [21] (q� � q0 � q3 � 0) with
q2
? � Q2 � �q2. The momentum assignment in the q� �

0 frame is given by
 

P �
�
P�;

M2

P�
; 0?

�
; P0 �

�
P�;

M2 � q2
?

P�
;q?

�
;

q �
�
0;

q2
?

P�
;q?

�
;

(10)
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where prime denotes the final state momentum and q �
P0 � P and M is the physical meson mass.

As a starting point, the electromagnetic form factor of a
pseudoscalar meson is given by a convolution of initial and
final meson wave functions:

 Fsoft
M �Q

2��
X
� ��

X
j

ej
Z
d3k�00�

M �x;k
0
?;� ����00

M �x;k?;� ���;

(11)

where d3k � dxd2k?
���������������
@kz=@x

p ���������������
@k0z=@x

p
, k0? �

k? � x2q?, k0z � kz�k? ! k0?�, and ej is the electric
charge of the struck quark.

At high momentum transfers, the meson form factor can
be calculated within the leading order PQCD by means of a
homogeneous Bethe-Salpeter equation for the meson wave
function. Taking the perturbative kernel of the Bethe-
Salpeter equation as a part of hard scattering amplitude
TH, one can get the meson electromagnetic form factor
given by1

 

FHard
M �Q2� �

Z d3kd3l

16�3 �00�
M �y; l?�TH�x; y;q?;k?; l?�

��00
M �x;k?�

�
Z d3kd3l

16�3 ��y; l?�T H��x;k?�; (12)

where TH contains all two-particle irreducible amplitudes
for 	� � q �q! q �q from the iteration of the LFQM wave
function with the Bethe-Salpeter kernel. In the second line
of Eq. (12), we combined the spin-orbit wave function into
the original TH to form a new T H, i.e.

 T H �R0T
��� ���0�
H �R�1T

��� ����1�
H ; (13)

where
 

R0 �R�
"#�y; l?�R"#�x;k?� �R�

#"�y; l?�R#"�x;k?�

� 2
�y1m2 � y2m1��x1m2 � x2m1�

C0xC0y
;

R�1 �R�
""�y; l?�R""�x;k?� �R�

##�y; l?�R##�x;k?�

� 2
k? 
 l?
C0xC0y

; (14)
-3
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FIG. 1. Leading order light-front time-ordered diagrams for
the meson form factor.
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with C0x � C and C0y � C�x$ y;k$ l?� [see below

Eq. (5) for C]. The hard scattering amplitudes T���
���0�

H

and T���
����1�

H in Eq. (13) represent the contributions from
the ordinary helicity and higher helicity components,
respectively.

To lowest order in perturbation theory, the hard scatter-
ing amplitude TH�x; y;k?; l?� is calculated from the time-
ordered one-gluon-exchange diagrams shown in Fig. 1.
The internal momenta for ��;?� components are given by

 k1 � �x1P�1 ;k?�; k2 � �x2P�1 ;�k?�;

l1 � �y1P
�
1 ; y1q? � l?�; l2 � �y2P

�
1 ; y2q? � l?�:

(15)

In each diagram in Fig. 1, the instantaneous diagrams for
the intermediate constituents are included using the tech-
nique shown in Ref. [12]. In the LF gauge A� � 0, the
gluon propagator is given by

 d
� � �g
� �
�kg�
�� � �kg���


k�g
; (16)

where �� � 0, �� � 1, and ~�? � 0.
Hard scattering amplitudes for the helicity �� ����

0 or � 1� components for the diagrams Ai�i � 1; 2; 3�
are given by
114020
 T���
���

A1
�
��y2 � x2�

y2 � x2

N���
���

A � NA1

D1D2
;

T���
���

A2
�
��x2 � y2�

x2 � y2

N���
���

A � NA2

D3D4
;

T���
���

A3
�
��x2 � y2�

x2 � y2

N���
���

A � NA3

D5D6
;

(17)

where the energy denominators are given by
 

D1 � M2 � q2
? �

�k? � q?�2 �m2
1

x1
�

k2
? �m

2
2

x2
;

D2 � M2 � q2
? �

�y1q? � l?�2 �m2
1

y1
�

k2
? �m

2
2

x2
�
�y2q? � k? � l?�2

y2 � x2
;

D3 � D1;

D4 � M2 � q2
? �

�k? � q?�2 �m2
1

x1
�
�y2q? � k? � l?�2

x2 � y2
�
�y2q? � l?�2 �m2

2

y2
;

D5 � M2 �
k2
? �m

2
1

x1
�
�y2q? � k? � l?�2

x2 � y2
�
�y2q? � l?�2 �m2

2

y2
;

D6 � D4:

(18)
The common NA in Eq. (17) is obtained from the Feynman
gauge (g
�) part and given by

 N�0�A �
8

x1x2y1y2
�x2

2y1y2q2
? � x1x2l

2
? � y1y2k2

?

� x2�x1y1 � x2y2�l? 
 q? � 2x2y1y2k? 
 q?

� �x1y1 � x2y2�k? 
 l? � x1y1m2
2 � x2y2m2

1

�m1m2�y1 � x1��y2 � x2��;

N��1�
A �

8�k? 
 l? � x2l? 
 q? � x2y2m2
1 � x1y1m2

2�

x1x2y1y2
;

(19)
where the last mass term m1m2�y1 � x1��y2 � x2� in
N���

���0�
A comes from the helicity flip contribution. In

Eq. (17), NAi�i � 1; 2; 3� are obtained from the LF gauge
parts proportional to 1=k�g and given by

 NA1
�

�8

y2 � x2
�D2 �D4�;

NA2
�

�8

x2 � y2
�D2 �D4�;

NA3
�

�8

x2 � y2
�D2 �D4�:

(20)

Hard scattering amplitudes for the helicity �� ����
0 or � 1� components for the diagrams Bi�i � 1; 2; 3�
-4
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are given by

 T���
���

B1
� T���

���
A2

�x$ y;k? $ �l?�;

T���
���

B2
� T���

���
A1

�x$ y;k? $ �l?�;

T���
���

B3
� T���

���
A3

�x$ y;k? $ �l?�:

(21)

If one includes the higher twist effects such as intrinsic
transverse momenta and the quark masses, the LF gauge
part proportional to 1=k�g leads to a singularity although
the Feynman gauge part g
� gives the regular amplitude.
This is due to the gauge-invariant structure of the ampli-
tudes. The covariant derivative D
 � @
 � igA
 makes
both the intrinsic transverse momenta, k? and l?, and the
transverse gauge degree of freedom gA? be of the same
order, indicating the need of the higher Fock-state contri-
butions to ensure the gauge invariance. However, we can
show that the sum of six diagrams for the LF gauge part
(1=k�g terms) vanishes in the limit that the LF energy
differences �x and �y go to zero, where �x and �y are
given by

 �x � M2 �
k2
? �m

2
1

x1
�

k2
? �m

2
2

x2
� M2 �M2

0x;

�y � M2 �
l2? �m

2
1

y1
�
l2? �m

2
2

y2
� M2 �M2

0y:

(22)

In the appendix, we briefly summarize the proof.
In this work, we calculate the higher twist effects in the

limit of �x � �y � 0 to avoid the involvement of the
higher Fock-state contributions. Our limit �x � �y � 0

(but
����������
hk2
?i

q
� � � 0) may be considered as a zeroth order

approximation in the expansion of a scattering amplitude.
That is, the scattering amplitude TH may be expanded in
terms of LF energy difference � as TH � �TH��0� �
��TH�

�1� ��2�TH�
�2� � 
 
 
 , where �TH��0� corresponds

to the amplitude in the zeroth order of �. This approxima-
114020
tion should be distinguished from the zero-binding (or
peaking) approximation that corresponds to M �
m1 �m2 and k? � � � 0. The point of this distinction
is to note that �TH��0� includes the binding energy effect
(i.e. k?; l? � 0) that was neglected in the peaking
approximation.

In zeroth order of �x and �y, the net contribution from
the LF gauge part (1=k�g terms) vanishes [see appendix],
and we only need to compute the Feynman gauge (g
�)
part, i.e. NA and NB, for the PQCD analysis of meson form
factor. The contribution of the Feynman gauge to the
diagrams Ai is given by
 

T���
���

A �
X3

i�1

T���
���

Ai

� N���
���

A

�
��y2 � x2�

y2 � x2

1

D1D2
�
��x2 � y2�

x2 � y2

�

�
1

D3D4
�

1

D5D6

��

�
N���

���
A

�y2 � x2�D1D2

�
��y2 � x2� � ��x2 � y2�

�

�
1�

�xy

D12

��
1�

�xy

D2

�
�1
�
1�

�y

D12

�
�1
�
; (23)

where D12 � D1 �D2 and �xy � �x ��y. In the zeroth
order of �x and �y (i.e. �x � �y � 0), Eq. (23) reduces to

 T���
���

A �
N���

���
A

�y2 � x2�D1D2
: (24)

Similarly for the diagrams Bi, we obtain

 T���
���

B � T���
���

A �x$ y;k? $ �l?�: (25)

The hard scattering amplitude for each helicity is sum-
marized as follows:
 

T�0�H �
N�0�A

�y2 � x2�D1D2
� �x$ y;k? $ �l?�

�
8

y1

x2y1y2�x2q2
? � 2k? 
 q?� � x2�x1y1 � x2y2�l? 
 q? � x1y1m

2
2 � x2y2m

2
1 �m1m2�y1 � x1��y2 � x2�

�x2q2
? � 2k? 
 q?��x2y

2
2�x2q2

? � 2k? 
 q?� � 2x2
2y2l? 
 q? � �y2 � x2�

2m2
2�

� �x$ y;k? $ �l?�;

T���H �
N���A

�y2 � x2�D1D2
� �x$ y;k? $ �l?�

�
8

y1

x2l? 
 q? � x2y2m2
1 � x1y1m2

2 �m1m2�y1 � x1��y2 � x2�

�x2q2
? � 2k? 
 q?��x2y

2
2�x2q2

? � 2k? 
 q?� � 2x2
2y2l? 
 q? � �y2 � x2�

2m2
2�
� �x$ y;k? $ �l?�;

(26)
where we neglect the terms such as k2
?=q2

?, l2?=q2
?, and

k? 
 l?=q2
? both in the energy denominators and the nu-

merators due to the fact that k2
? � q2

? and l2? � q2
? in

large momentum transfer region where PQCD is appli-
cable [23]. In the hard scattering amplitudes given by
Eq. (26), the time-ordered � function disappears via ��x�
y� � ��y� x� � 1 and there is no singularity in timelike
region. We also note that the helicity flip contributions, i.e.
-5



HO-MEOYNG CHOI AND CHUENG-RYONG JI PHYSICAL REVIEW D 73, 114020 (2006)
m1m2�y1 � x1��y2 � x2�, in the numerators and the mass
terms �y2 � x2�

2m2
2 in the denominators in Eq. (26) give

negligible contributions. One easily can find that our result
T�0�H in the leading twist limit reproduces the usual leading
twist PQCD result, i.e. T�0�H � 16=�x2y2Q2�.

IV. TIMELIKE FORM FACTOR OF A HEAVY
PSEUSCALAR MESON

We now consider the PQCD analysis of the timelike
form factor for the process of e�e� annihilations into
two pesudoscalar mesons. The hard contribution to the
timelike form factor for the electron-positron annihilations
into two pseudoscalar mesons, i.e. e�e� ! M �M, is ob-
tained as

 FM�q
2� � e1I�q

2; m1; m2� � e2I�q
2; m2; m1�; (27)

with the amplitude I�q2; m1; m2� given by

 I�q2; m1; m2� � �CF
s
Z dxdyd2k?d2l?

16�3

�

��������
@kz
@x

s �������
@lz
@y

s
��y; l?�T H��x;k?�; (28)

where 
s is the QCD running coupling constant and CF��
4=3� is the color factor. We note that all the invariant
masses in R0 and R�1 in the spin-orbit wave function
are replaced by the physical meson mass to be self-
consistent with the result for the hard scattering amplitude
in zeroth order of the LF energy differences �x and �y, i.e.
�x;�y ! 0. Again, our analysis should be clearly distin-
guished from the peaking approximation (zero-binding
limit or �! 0) which leads to the DA �M�x� defined by
Eq. (9) as the �-type function with xi � mi=M. In our
zeroth order approximation of LF energy differences, we
consider � � 0 (i.e. the effect of the transverse size of the
meson). In the next section (Sec. V), we take the � values
determined from the analysis of the mass spectroscopy
using our LFQM with the variational principle for the
QCD-motivated effective Hamiltonian [17].

Since we neglect the k2
?, l2?, and k? 
 l? terms com-

pared to large q2
? as we stated below in Eq. (26), we have

only k?�l?� 
 q? and q2
? in both numerator and denomi-

nator terms in Eq. (26). Thus, for convenience in our
numerical calculation, we change the denominator in
Eq. (26) to include only even powers of k? and l?. Then
the numerators of the hard scattering amplitudes T�0�H and
T���H in Eq. (26) include both even and odd powers of k?
and l? via the terms �k? 
 q?�m and �l? 
 q?�m, where
m � integer (nonnegative). After the change, the generic
form of the hard scattering amplitude may be given by

 TH �
N��k? 
 q?�m; �l? 
 q?�m�

D�q2n
? ; �k? 
 q?�2n; �l? 
 q?�2n�

; (29)

where n and m are (nonnegative) integers. In Eq. (29), we
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show only essential terms, k? 
 q? and l? 
 q? in the
numerator to explain how to obtain the nonvanishing con-
tributions from the ordinary and the higher helicity con-
tributions. That is, as one can see from Eqs. (13) and (14),
by combining T�0�H �T

���
H � in Eq. (29) with the spin-orbit

wave function R0�R�� in Eq. (14) to get T H in Eq. (13)
or Eq. (28), T�0�H �T

���
H � should have even [odd] powers of

�k? 
 q?� and �l? 
 q?� in the numerator since R0�R��
includes even [odd] powers of k? and l?. As a result, we
can get T H in Eq. (28) as a function of even powers of k?
and l? for both ordinary and higher helicity contributions.
We then analytically continue to the timelike region by
changing q? to iq? (or q2

? ! �q
2 in this case) in the form

factor.
In terms ofFM�q2� given by Eq. (27), the cross section of

the pseudoscalar meson pair �M �M� production in the un-
polarized e�e� annihilations is given by

 

d�
d�
�e�e� ! M �M� �

3 ��3

32�
�e�e�!
�
�sin2�jFM�q

2�j2;

(30)

where �� �
��������������������������
1� 4M2=q2

p
and �e�e�!
�
� �

�
2=�3E2
beam� with Ebeam �

�����
q2

p
=2.

In the peaking approximation, the transverse momenta
of the quark and antiquark are neglected and the longitu-
dinal momentum fractions are given by x1 � y1 � m1=M
and x2 � y2 � m2=M withM � m1 �m2. In this approxi-
mation, the higher helicity contribution to the hard scatter-
ing amplitude also vanishes and the ordinary helicity
contribution to the hard scattering amplitude given by
Eq. (26) can be rewritten as
 

�T�0�H �peaking �
8

x3
2y1y2

2

�x2
2y1y2q2 � x1y1m2

2 � x2y2m2
1

q4

� �x$ y�

�
32M	

q4

�
M
m2

�
4
�

1�
q2

4M2

2m2

m1

�
; (31)

where 	 � m1m2=M.
Therefore, the peaking approximation of the timelike

form factor of a heavy pseudoscalar meson is given by
 

�FM�peaking�q2� / e1

Z
dxdy��xi �mi=M��T

�0�
H �peaking

� ��yi �mi=M� � �1$ 2�

/
1

q4

�
e1

�
M
m2

�
4
�

1�
q2

4M2

2m2

m1

�

� e2

�
M
m1

�
4
�

1�
q2

4M2

2m1

m2

��
: (32)

This reproduces the result obtained by Brodsky and Ji [11].
The form factor zero in this approximation occurs at
-6
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 �q 2 �
q2

4M2 �

m1

2m2
� �e2

e1
�
m3

2

2m3
1

1� �e2

e1
�
m2

2

m2
1

: (33)

Even thoughm1 >m2, the e2 contribution is not negligible
for the heavy-heavy pseudoscalar meson system such as
Bc. The reason for this is because the timelike form factor
of a heavy pseudoscalar meson encounters a zero and the
e2 contribution in the region near the form factor zero has a
nonnegligible effect. However, for the heavy-light quark
system such as B and D mesons, the light quark contribu-
tion (i.e. e2) can be safely neglected.
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φ
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φ
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/φ
D

FIG. 2. Normalized quark distribution amplitudes of B (top)
and Ds�D� (bottom) mesons for different values of the Gaussian
parameter �.
V. NUMERICAL RESULTS

In our numerical calculations, we use the model parame-
ters �mQ �Q; �Q �Q� obtained from the meson spectroscopy
with the variational principle in our LFQM [17] for the
linear confining potential. Our model parameters are sum-
marized in Table I. As mentioned earlier, we should note
that the root-mean-square value of the transverse momen-
tum in our LFQM is equal to the Gaussian � value, i.e.����������������
hk2
?iQ �Q

q
� �Q �Q.

The shape of the quark DA which depends on the �
value is important to the calculation of the cross section for
the heavy meson pair production in e�e� annihilations.
We show in Fig. 2 the normalized quark DA of B and
Ds�D�mesons with different values of�. For the quark DA
of Bmeson, we compare our LFQM result (solid line) with
the small � value result close to the peaking approxima-
tion, e.g. � � 0:1 GeV (dashed line). As one can see, our
LFQM result for the quark DA of B meson shows sizable
deviations from the peaking approximation. For the quark
DA of Ds (solid line) and D (dotted line) mesons, the peak
for �D�x� is located to the right of that for �Ds

�x�. This
indicates that the c quark carries more longitudinal mo-
mentum fraction in D than in Ds as one may expect. We
also show the ratio (dashed-dotted line) of �Ds

�x� and
�D�x� for the sake of comparison.

In Fig. 3, we present also the normalized DA of various
1S0 quarkonium �q �q� states obtained from our LFQM
parameters given in Table I. To explain the discrepancy
between the nonrelativistic QCD (NRQCD) prediction [5]
and the Belle measurement [2] for ��e�e� ! J= � �c�,
Bondar and Chernyak (BC) [14] reasoned that the discrep-
ancy may be due to the extreme �-functionlike charmo-
nium DA adopted from NRQCD and claimed that they can
fit the Belle data by choosing a rather broad DA for the
charmonium state. Interestingly, our LFQM prediction for
�c �c shown in Fig. 3 looks quite similar to BC’s result in a
sense that the DAs for heavy quarkonium states differ from
the �-functionlike DA. In our model calculation, the DA
gets narrower as � gets smaller. Also the timelike form
factor FM�q2� with small � value decreases faster than that
with large � value. Since the cross section �e�e�!M �M is
114020
proportional to jFM�q2�j2, the cross section with small � is
small compared to that with large �. Thus, the cross
section for e�e� ! M �M can be in principle enhanced by
broadening the quark DA.

In Fig. 4, we compare the results of �c �c�x� in more
detail. The solid and dashed (dashed-dotted) lines repre-
sent our LFQM result and BC’s result [14] with v2 �
0:15�v2 � 0:3�, respectively, where the parameter v [14]
-7
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represents the characteristic quark velocity in the bound
state. Although there is a similarity in the quark DA
between ours and BC’s results (in particular, their v2 �
0:15 result), there is a rather substantial difference near the
end point region between ours and BC’s results. Since the
PQCD hard scattering amplitude is typically very sensitive
to the end point values of DA, it may not be so difficult to
imagine that BC’s prediction of double charm production
cross sections would have made a difference depending on
what v2 value they have used. To fit the Belle measurement
[2] for ��e�e� ! J= � �c�, they used v2 � 0:3 rather
than v2 � 0:15. However, as we stressed earlier, the way
that BC [14] handled the transverse momentum effect is
different from ours since they integrated out the transverse
momentum separately in the wave function part and in the
hard scattering part while we did not factorize the hard and
soft parts but integrated out the transverse momentum for
the whole amplitude. We think that a consistent analysis
with � � 0 (or nonzero binding energy) should follow our
nonfactorized formulation [see e.g. Eq. (28)].

In Fig. 5, we show the cross sections for the exclusive
D�s D�s and D�D� pair productions in e�e� annihilations.
The solid line represents the results including both ordi-
nary and higher helicity contributions while the dotted line
corresponds to the result of the ordinary helicity contribu-
tion only. The dashed line for ��e�e� ! D�D�� repre-
sents the lower limit (i.e. � � 0:16 GeV) for the form
factor zero to occur above

���
s
p
� 10:6 GeV. The small

black circle for ��e�e� ! D�D�� represents the upper
limit obtained from Belle [3], i.e. �exp�e�e� ! D�D��<
0:04 �pb�. The higher helicity contribution to the cross
section, i.e. the difference between the solid and the dotted
line, is more pronounced in e�e� ! D�D� than in
e�e� ! D�s D�s especially near the turnover point (or the
form factor zero point). In general, the higher helicity
contribution to the meson form factor increases (decreases)
as quark mass decreases (increases). For instance, while
the higher helicity contribution to the hard scattering am-
plitude is negligible in the B meson form factor, it is not
negligible in the pion form factor. However, the most
significant in our analysis is the transverse momentum
effect which delays the turnover point [see Eq. (33) for
the peaking approximation]. For instance, the turnover for
Ds�D� meson occurs near 6.3 [11.3] by going beyond the
peaking approximation while the corresponding turnover
point is near

���
s
p
=M	 2:8�4:03� for the peaking

approximation.
Numerically, we obtain the cross sections forD�s D�s and

D�D� pair productions at
���
s
p
� 10:6 GeV with our

LFQM paramters (i.e. � � 0:5016 GeV for Ds and
0.4679 GeV for D) as follows:

 ��e�e� ! D�s D�s � � �8:0�4:4
�3:5� � 10�4 �pb�;

��e�e� ! D�D�� � �0:02� 0:01� �pb�;
(34)

for the strong coupling constant 
s � 0:2� 0:05. Similar
-8
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s values were used in Refs. [24,25]. Our result for
��e�e� ! D�D�� is consistent with the recent experi-
mental data from Belle, �exp�e�e� ! D�D��<
0:04 �pb�. Since ��e�e� ! D�D�� gets larger as �
grows, the upper bound of �exp from Belle provides a
constraint on the maximum � value modulo the depen-
dence on 
s.

If the cross section for the D meson pair production
satisfies��e�e� ! D�D��< 0:04 �pb� and its slope with
114020
respect to the momentum transfer is negative, i.e.
�d�=d

���
s
p
�< 0 at

���
s
p
� 10:6 GeV, then we could also set

the lower bound for � value as � � 0:16. The shape of the
D meson quark DA corresponding to � � 0:16 GeV is
shown by the dashed line in Fig. 6. If �< 0:16 GeV, the
D meson quark DA approaches to the �-type function but
�d�=d

���
s
p
�> 0 at

���
s
p
� 10:6 GeV due to the form factor

zero occurring at
���
s
p

< 10:6 GeV. Because of the occur-
rence of the form factor zero for the heavy pseudoscalar
meson pair production [4,11,26], more experimental data
around

���
s
p
� 10:6 GeV are necessary to check the slope of

the cross section. More data around
���
s
p
� 10:6 GeV would

further constrain the shape of the D meson quark DA.
How about B mesons? We should point out that the

PQCD result of the cross section for B�B� pair production
may not be trustworthy because

���
s
p
� 10:6 GeV is too

close to the threshold energy of B�B� pair production.
As expected, the gluon momentum transfer from the heavy
quark to the light quark in B�B� pair production at

���
s
p
�

10:6 GeV turns out to be only around a few hundred MeV
close to the scale of �QCD. On the other hand, the gluon
momentum transfer in D�

�s�D
�
�s� pair production at

���
s
p
�

10:6 GeV is much larger than the scale of �QCD. By going
beyond the peaking approximation, the average gluon
momentum transfer gets even larger due to the transverse
momentum effect. This may justify our PQCD analysis for
D��s�D

�
�s� pair production at

���
s
p
� 10:6 GeV.
-9
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Although the absolute value of the cross section for
B�Bs� meson may not be reliable near

���
s
p
� 10:6 GeV, it

seems interesting to discuss the behavior of the ratios of
cross sections such as ��e�e� ! B0 �B0�=��e�e� !
B�B�� and ��e�e� ! B0

s
�Bs0�=��e�e� ! B�B��. In

Fig. 7, we show our predictions (closed symbols) on the
cross section ratios for various heavy pseudoscalar meson
(B, Bs, D, and Ds) pair productions in e�e� annihilations
near

���
s
p
� 10:6 GeV, i.e.

���
s
p

ranging from 10 to 12 GeV
and compare our results with those (open symbols) ob-
tained from the peaking approximation [11]. The open and
closed diamond symbols for ��e�e� !
B0 �B0�=��e�e� ! B�B�� are on top of each other and
their values are almost equal to 1. In fact, the cross section
ratios involving light quarks u and d such as �D0; D� and
�B0; B� cases are close to 1. This is due to the negligible
contribution from the diagrams where the photon is at-
tached to the light quarks. As the replacement of light
quarks by the strange quark makes those diagrams non-
negligible, the cross section ratios for the cases of �Ds;D�
and �Bs; B� deviate from 1 appreciably. However, most
significant is again the transverse momentum effect which
is pronounced in the case ofD�Ds�meson pair productions
compared to B�Bs� meson pair productions. In particular,
the deviation between the open and closed symbols for the
case �Ds;D� is quite dramatic compared to the case of
�Bs; B�.
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VI. SUMMARY AND CONCLUSION

We investigated the transverse momentum effect on the
exclusive heavy meson pair productions in e�e� annihila-
tions within the framework of LF PQCD. The Gaussian
parameter � in our model wave function is found to be

related to the transverse momentum via �Q �Q �
����������������
hk2
?iQ �Q

q
.

This relation naturally explains the zero-binding energy
limit for the zero transverse momentum, i.e. hM2

0i � �m1 �
m2�

2 and xi � mi=M for � � 0.
However, the heavy quark DA is sensitive to the value of

� and indeed substantially broad and quite different from
the �-type DA according to our LFQM based on the varia-
tional principle for the QCD-motivated Hamiltonian
[17,18]. If the quark DA is not an exact � function, i.e.
k? in the soft bound state LF wave function can play a
significant role, the factorization theorem is no longer
applicable. To go beyond the peaking approximation, the
invariant amplitude should be expressed in terms of the LF
wave function ��xi;k?i� rather than the quark DA.

In going beyond the peaking approximation, we stressed
a consistency by keeping the transverse momentum k?
both in the wave function part and the hard scattering part
together before doing any integration in the amplitude.
Such nonfactorized analysis should be distinguished from
the factorized analysis where the transverse momenta are
separately integrated out in the wave function part and in
the hard scattering part. Even if the used LF wave functions
lead to the similar shapes of DAs, predictions for the cross
sections of heavy meson productions would apparently be
different between the factorized and nonfactorized
analyses.

In this work, we compared our nonfactorized analysis
with the usual factorized analysis based on the peaking
approximation and found a substantial difference between
the two in the calculation of the cross section for the heavy
meson pair production. We also discussed the higher he-
licity contribution to the cross section. Our analysis pro-
vided a constraint on the size of quark transverse
momentum inside the D meson from the recent Belle
data, �exp�e

�e� ! D�D��< 0:04 �pb�. More experi-
mental data around

���
s
p
� 10:6 GeV would further con-

strain the shape of D meson quark DA and test our
LFQM prediction. Application of our nonfactorized
PQCD analysis to the 
s higher order corrections, e.g. in
double charm production, would deserve further
investigation.
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APPENDIX: PROOF OF VANISHING LIGHT-
FRONT GAUGE PART IN THE M �M0 LIMIT

The contribution of the LF gauge part (1=k�g term) to the
hard scattering amplitude for diagrams A �

P3
i�1 Ai ob-

tained from Eqs. (17) and (20) is given by
 

T
�1=k�g �
A �

��y2 � x2�

y2 � x2

NA1

D1D2
�
��x2 � y2�

x2 � y2

� NA2

D3D4
�

NA3

D5D6

�

� �
8

�y2 � x2�
2

D2 �D4

D1D2

�
��y2 � x2� � ��x2 � y2�

�

�
1�

D2 �D4

D4

D1D2 �D5�D2 �D4�

�D2 �D4�D5

��
:

(A1)

In terms of the LF energy differences, the relevant energy
denominators can be rewritten as

 D1 � �x �
1

x1
�x2q2

? � 2k? 
 q?�;

D2 �D4 � D1 ��y; D2 �D5 � �x � �y:

(A2)
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Equation (A1) and the corresponding LF gauge part to the
diagrams Bi lead to singularities. Fortunately, however, in
the zeroth order of �x and �y, i.e. the �x;�y ! 0 limit,
one can see that the energy denominator term in ��x2 � y2�
in Eq. (A1) vanishes, which leads to ��y2 � x2� � ��x2 �
y2� � 1. Thus, the LF gauge part contribution to the dia-
grams A �

P3
i�1 Ai becomes

 T
�1=k�g �
A � �

8

�y2 � x2�
2

1

D2
; (A3)

and similarly we obtain

 T
�1=k�g �
B � �

8

�y2 � x2�
2

1

D9
; (A4)

for the diagrams B �
P3
i�1 Bi. Finally, from the relation

D2 �D9 � �x � �y, one can see that the net contribution

from the LF gauge parts, i.e., T
�1=k�g �
A � T

�1=k�g �
B , vanishes

exactly in the limit of �x � �y � 0.
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