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Stability of strange star crusts and strangelets
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We construct strangelets, taking into account electrostatic effects, including Debye screening, and
arbitrary surface tension � of the interface between vacuum and quark matter. We find that there is a
critical surface tension �crit below which large strangelets are unstable to fragmentation and below which
quark star surfaces will fragment into a crystalline crust made of charged strangelets immersed in an
electron gas. We derive a model-independent relationship between �crit and two parameters that
characterize any quark matter equation of state. For reasonable model equations of state, we find �crit

typically of order a few MeV=fm2. If � < �crit, the size-distribution of strangelets in cosmic rays could
feature a peak corresponding to the stable strangelets that we construct.

DOI: 10.1103/PhysRevD.73.114016 PACS numbers: 25.75.Nq, 26.60.+c, 97.60.Jd
I. INTRODUCTION

Ordinary matter consists of atoms, whose nuclei are
ultimately composed of up and down quarks. One can think
of nuclei as droplets of nuclear matter, which is observed to
be very stable: the most stable nuclei have lifetimes longer
than the age of the universe. However, it has been hypothe-
sized [1–3] that nuclear matter may actually be metastable,
and the true ground state of matter consists of a combina-
tion of up, down, and strange quarks known as ‘‘strange
matter.’’ Small nuggets of such matter are called ‘‘strange-
lets.’’ If this ‘‘strange matter hypothesis’’ is true, then many
if not all compact stars are not neutron stars but ‘‘strange
stars’’: large balls of strange matter (for a review see
Ref. [4]). Moreover, strangelets may be produced in com-
pact star collisions, and hence contribute to the cosmic ray
background, or in heavy-ion collisions, where they could
be observed in terrestrial experiments.

Until recently, it has been assumed that the boundary
between strange matter and the vacuum is a simple surface,
with a layer of positively charged quark matter beneath it
and with electrons floating above it, sustained by an elec-
tric field which could also support a small normal nuclear
crust in suspension above the quark matter [5], as long as
the strange star is not too hot [6].

This was recently questioned by Jaikumar, Reddy, and
Steiner [7], who showed that if Debye screening and
surface tension were neglected then the surface must ac-
tually fragment into a charge-separated mixture, involving
positively-charged strangelets immersed in a negatively
charged sea of electrons, presumably forming a crystalline
solid crust. At the surface of this strangelet�
electron crust, there would be no electric field. This gives
a radically different picture of the strange star surface,
making it much more similar to that of an ordinary neutron
star, and casts doubt on all of the previous work on the
phenomenology of strange star surfaces.
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In this paper we address the stability of electrically
neutral bulk quark matter with respect to fragmentation
into a charge-separated strangelet� electron crust, and the
almost precisely equivalent question of whether large
strangelets are stable with respect to fission into smaller
strangelets. We shall include energy costs due to Debye
screening, neglected in Ref. [7], and surface tension. Our
treatment of Debye screening follows that of Heiselberg
[8] except that we include the energy gained by charge
separation which was neglected in Ref. [8] and whose
importance was discovered in Ref. [7].

We identify the three microscopic parameters that play a
crucial role in the stability analysis: (1) the charge density
of quark matter at zero electric charge chemical potential
denoted as nQ; (2) the electric charge susceptibility of
quark matter denoted as �Q; and (3) the surface tension
between quark matter and vacuum, denoted as �. In
Secs. II and III we derive all of our results in terms of
these parameters. In Sec. II we give a parametric estimate
of the critical surface tension below which neutral quark
matter and large strangelets are unstable to fragmentation,
and in Sec. III we construct explicit strangelet profiles and
thus determine the dimensionless quantities left unspeci-
fied in Sec. II.

The quantities nQ and �Q can be evaluated for any
proposed quark matter equation of state, and in Sec. IV
we shall do so in bag models for unpaired quark matter and
quark matter in the 2SC color superconducting state [9–
12]. We find that even if the strange quark is so heavy that
no BCS pairing occurs in bulk quark matter, if such bulk
matter is unstable to fission then the strangelets that result
are likely to be in the 2SC phase. This occurs because
charged 2SC matter may have higher pressure than charged
unpaired quark matter, even when neutral 2SC matter has
lower pressure than neutral unpaired quark matter.

The color-flavor locked (CFL) phase [12,13] is the
favored phase of neutral quark matter if the density is
-1 © 2006 The American Physical Society
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high enough, the pairing interactions are strong enough, or
the strange quark is light enough. The CFL phase is an
insulator, so both nQ and �Q vanish, because there is
pairing between all three flavors, and no electrons are
needed in order to maintain neutrality. This makes CFL
matter stable against fission even if � is arbitrarily small.
Our goal in this paper is to understand what happens if the
quark matter at the surface of a strange star is not in the
CFL phase, although this form of quark matter may occur
deeper within.

We close in Sec. V with comments on phenomenologi-
cal implications for the strange star surface and experi-
mental strangelet searches.

II. STABILITY OF STRANGELETS

The stability of strangelets is determined by the equation
of state (EoS) for quark matter (QM), which will be dis-
cussed below, and the EoS of the vacuum with electrons,
which is well known. The equation of state expresses the
pressure p��;�e� as a function of the chemical potentials
for the two conserved quantities, quark number (�) and
negative electric charge (�e). We work at zero temperature
throughout. The quark density n and the electric charge
density q (in units of the positron charge e) are

n �
@p
@�

; q �
�
e
� �

@p
@�e

: (1)

The chemical potential �e is the energy cost of adding an
electron, so it is the positron charge e multiplied by the
electrostatic potential �. Hence, �eq � ��. The energy
densities follow from the usual thermodynamic relation

" � �n��eq� p: (2)

The second term in (2) and the final term in (1) are negative
because �e is the chemical potential for negative electric
charge. As written, " and p are understood to include the
electric field energy and pressure. Henceforth, however, we
shall interpret p as only the kinetic pressure of the quark
matter and electrons, in which case the electric field energy
1
2

R
d3r�� must be added to

R
d3r". This can be imple-

mented by writing

" � �n� 1
2�eq� pQM�e: (3)

We make the strange quark matter hypothesis that at
some �crit, uniform neutral quark matter with some non-
zero n has the same pressure as the vacuum. (The hypothe-
sis further requires that �crit <�nuclear, where
�nuclear � 310 MeV is the chemical potential of uniform
neutral nuclear matter at zero pressure, and that the chemi-
cal potential for two-flavor quark matter with zero pressure
is greater than �nuclear.) However, if only volume contri-
butions to the energy are taken into account, then low
pressure quark matter is unstable against fragmentation
into positively charged strangelets embedded in a gas of
electrons [7]. The surface and Coulomb energy cost are
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then crucial to determine the stability of the uniform phase.
To evaluate these costs consistently Debye screening ef-
fects need to be incorporated [14]. In this paper we evalu-
ate the surface tension required to stabilize neutral quark
matter at zero pressure against such fragmentation, taking
into account Debye screening.

Debye screening causes the positive charge density in
large strangelets to migrate towards the surface, resulting
in a charged skin whose thickness is of order the Debye
length �D and a neutral interior. So, for large strangelets
(R� �D) the volume energy benefit of charge separation
is reduced to a surface energy. Typically, �D is of order
5 fm in quark matter. Whereas Debye screening penalizes
large strangelets, surface tension penalizes small strange-
lets most, as their surface to volume ratio is the greatest.
Both effects make fragmentation into positively charged
strangelets less favorable. We can expect their combined
effect to be least for droplets with R� �D, meaning that if
bulk quark matter proves unstable, it will fragment into
strangelets of this size.

Jaikumar et al. proposed that the outer layers of a strange
star could be constructed from positively charged strange-
lets with some radius R embedded in a gas of electrons,
forming a Wigner-Seitz lattice [7]. The local pressure p
will vary considerably within a single Wigner-Seitz cell,
but the external pressure pext on a Wigner-Seitz cell from
its neighbors will be zero at the surface of the star, and
increase smoothly with depth. To evaluate the stability of
such a crust, we must evaluate the Gibbs free energy per
quark

g�R� �
E�R� � pextV�R�

N�R�
; (4)

where E, V and N are the energy, volume and quark
number of a Wigner-Seitz cell containing a strangelet of
radius R. We shall calculate the energy E�R� by solving the
Poisson equation upon making a Thomas-Fermi approxi-
mation to obtain the distribution of charge, integrating " as
defined in (3), and then adding the surface tension energy
4�R2�. We must then compare g�R� with the Gibbs free
energy per quark gQM of uniform neutral quark matter at
the same pressure pext. We shall work throughout at pext �
0, meaning that we analyze the stability of the outer surface
of the mixed phase crust proposed in Ref. [7] and at the
same time that of an isolated strangelet with radius R. We
shall be comparing them to neutral bulk quark matter with
� � �crit, which has zero pressure and gQM � �crit. So, at
pext � 0, the free energy per quark of a strangelet of radius
R, relative to infinite neutral quark matter, is

�g�R� � g�R� � gQM �
E�R�
N�R�

��crit: (5)

For any �, �g�R� ! 0 for R! 1. For large enough
values of �, �g�R� will be dominated by its surface energy
contribution 3�=�nR�, making �g�R�> 0 for all R. This
-2
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means that for large enough � neutral bulk matter is stable
with respect to fragmentation. For large enough �, fur-
thermore, �g�R� decreases monotonically with increasing
R, meaning that isolated strangelets of any size are stable,
but can lower their energy by fusing with other strangelets
should they encounter them. At the other extreme, with
� � 0 we know from the work of Ref. [7] that �g�R�< 0
for small enough R. We therefore expect that for small
enough values of�we shall find a range ofR in the vicinity
of R� �D for which �g�R�< 0. This means that, for small
enough �, neutral bulk quark matter and large strangelets
are unstable to fragmentation, with the stable strangelets
being those having the size R � R	 that minimizes �g�R�.

The equation of state of quark matter at phenomenolog-
ically interesting densities and T 
 � cannot currently be
calculated by lattice gauge theory or by other methods, so
we can either obtain an approximate EoS from some
model, or make a general parametrization. We will find
that �e 
 � for all strangelets in all models that we
consider, so a general parametrization of the EoS can be
obtained by expanding in powers of �e=� [7],

pQM � p0��;ms� � nQ��;ms��e �
1
2�Q��;ms��

2
e � . . .

(6)

This second-order expansion, which neglects the electron
pressure pe ��4

e, can be used for any model EoS or for
that predicted by QCD. We will see below that it is an
excellent approximation for the analysis of strangelets. It
reduces the EoS-dependence to specifying the three func-
tions p0, nQ and �Q. Moreover, only nQ and �Q occur in
the Poisson equation.

Neutral bulk quark matter has q � 0, so its electron
chemical potential (1) is

�neutral
e �

nQ
�Q

: (7)

The quark chemical potential �crit at which it has zero
pressure is determined by solving

p0��crit; ms� �
n2
Q��crit; ms�

2�Q��crit; ms�
: (8)

The Debye screening length in quark matter is controlled
by �Q, and is given by

�D �
1����������������

4���Q
p ; (9)

with � � 1=137.
We close this section with a parametric estimate of the

critical surface tension below which strangelets with R�
�D have �g�R�< 0, making neutral bulk quark matter
(and larger strangelets) unstable to fragmentation. In
Sec. III we will quantitatively determine �e�r� and the
radius R	 of the most stable strangelet. For now, we write
x	 � R	=�D and take �e in the strangelet to be a constant
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with the value fnQ=�Q. Presuming the dimensionless
quantities x	 and f to be of order unity, we use Eqs. (1),
(3), and (5)–(9) to obtain

�g�R	� �
3�
nR	
�
n2
Q�1� f�

2n�Q
(10)

which is negative if �< �crit where

�crit �
�1� f�R	n2

Q

6�Q
�
�1� f�x	n2

Q

12
��������
��
p

�3=2
Q

: (11)

In the next section we shall construct strangelets by solving
the Poisson equation and show that this parametric esti-
mate is valid, with x	 � 1:61 and f � 0:49.
III. CONSTRUCTING STRANGELETS

We assume that the lowest energy state of a strangelet of
radius R is spherically symmetric. The quark chemical
potential � is independent of r because the only net force
on a given part of the strangelet is the electrostatic force.
(We assume our strangelets are small enough that their
self-gravity is unimportant, and that color is screened so
strong interactions do not occur across distances greater
than about 1 fm.) The value of� inside the droplet is a little
higher than �crit because the surface tension compresses
the droplet slightly. To determine the value of �, we
require the pressure discontinuity across the surface of
the strangelet to be balanced by the surface tension:

lim
	r!0
�p�R� 	r� � p�R� 	r�� �

2�
R
: (12)

The larger � becomes, the more compressed the strangelet
is, and the higher the value of � inside the strangelet.

To calculate �e�r� � e��r� in the Thomas-Fermi ap-
proximation we solve the Poisson equation, which in
Heaviside-Lorentz units with @ � c � 1 takes the form

r2��r� � ���r�; i:e: r2�e�r� � �4��q�r�;

(13)

subject to the boundary conditions

lim
r!1

r��r� � Z1e;
d�
dr
�r � 0� � 0;

d�
dr
�R�� �

d�
dr
�R�� � 0:

(14)

The second and third boundary conditions follow from the
fact that there are no delta-functions of localized charge, so
��r� and d�=dr are continuous everywhere. The first
boundary condition states that the net charge of the
strangelet, including any electrons inside or around it, is
Z1e. The Fermi wavelength of the quarks is 2�=� which
is around 4 fm, so it is reasonable to use the Thomas-Fermi
approximation to describe the charge distribution due to
quarks inside a strangelet with diameter of order 3�D �
-3
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FIG. 1 (color online). A strangelet profile with radius R �
1:6�D, and � � 0:1325n2

Q�D=�Q. (This corresponds to the
barely-stable strangelet at the critical surface tension—see
Sec. III.) The horizontal axis is x � r=�D. The charge density
q is plotted in units of nQ, �e is plotted in units of nQ=�Q, the
electric field is plotted in units of nQ=

��������Q
p and the pressure pQM

is plotted in units of n2
Q=�Q. Because of the electric field, the

charge density in the strangelet is pushed towards the outer edge.
The pressure gradient within the strangelet is balanced by the
electric force on the charged matter.
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15 fm, which is the approximate size of the stable strange-
lets that we will find.

Strangelets of this size are too small to have electrons
localized within them, meaning that the charge of the
strangelet itself is given by that of the quark matter,

Z �
Z R

0
d3rq�r� �

Z R

0
d3r�nQ � �Q�e�r��: (15)

To analyze an isolated strangelet, not surrounded by an
atom-sized cloud of electrons, we must find solutions to the
Poisson equation with Z1 � Z. To analyze a strangelet
located within the Wigner-Seitz cell of a strange star crust,
however, we must include a cloud of electrons around the
strangelet such that the strangelet and electrons together
satisfy the Poisson equation with Z1 � 0. (Each Wigner-
Seitz cell contains one strangelet and Z electrons, ensuring
that the crust is neutral on macroscopic length scales.) In
our numerical work, we have included the electrons out-
side the strangelet, taking q�r� � ��3

e=3�2 for r > R, and
found solutions to the Poisson equation with Z1 � 0. As in
atomic physics, the Thomas-Fermi description of the cloud
of electrons around a strangelet with charge Z becomes
more accurate with increasing Z. Fortunately, it turns out
that the electrons do not play an important role in the
stability of the strangelet, so we can ignore them, setting
q�r� � 0 for r > R and finding solutions to the Poisson
equation with the boundary condition at infinity given
simply by Z1 � Z. We have done all our analytic calcu-
lations with this boundary condition, and have confirmed
numerically that adding electrons to the system in order to
find solutions with Z1 � 0 makes a negligible difference
to the energy E and to �e�r� inside the strangelet. This
simplification arises because, as mentioned in Sec. II, the
electron contribution to the EoS is subleading in �e=�.

We obtain E�R� and N�R�, the quantities which accord-
ing to (5) we need in order to determine the stability of a
strangelet with some specified radius R, as follows. For a
given � we solve (13) subject to the boundary conditions
(14). We repeat this for different values of � until we find
the one that obeys (12). We then have� and�e�r�, so from
(1) and (3) we can obtain the energy density "�r� and quark
number density n�r�. We integrate these, and add in the
surface energy, to obtain the total energy E and quark
number N and hence the energy per quark E=N.

The solution to the Poisson equation satisfying the
boundary conditions (14) with Z1 � Z given by (15) is [8]

r < R: �e�r� �
nQ
�Q

�
1�

�D
r

sinh�r=�D�
cosh�R=�D�

�

r > R: �e�r� �
Z�
r

(16)

where

Z � 4�nQ�
3
D�x� tanhx�; (17)

where we have defined x � R=�D. We see that �e�r�<
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�neutral
e � nQ=�Q throughout the strangelet, with �e�r�

closer to zero for smaller strangelets and closer to �neutral
e

for larger ones.
To this point we have not determined�. (And, recall that

both nQ and �Q depend on �.) Because we have no
electrons and hence p � 0 outside the strangelet, the con-
dition (12) requires that just inside the surface of the
strangelet the pressure is given by 2�=R. Recalling that
n � @p=@� and that p��crit� � 0 and using Eqs. (6) and
(16) we see that this requires that the quark chemical
potential inside the strangelet (which is constant through-
out its interior) is given by

� � �crit �
n2
Q

2n�Q

tanh2x

x2 �
2�
nR

: (18)

The negative term present even when� � 0 arises because
�e�R�<�neutral

e , making p��crit; �e�R��> 0. To achieve
p � 0, as required just inside the edge of the droplet if� �
0,�must be less than�crit. The�-dependent positive term
then enforces the pressure discontinuity (12) required at
nonzero �. (The derivation requires that each of the cor-
rections to � are separately much smaller than �crit, which
is well satisfied in all results we show.)

We can now construct the profiles of �e�r�, q�r�, the
electric field and p�r� for strangelets with radius R. An
example is shown in Fig. 1. We show the profiles in terms
of nQ and �Q. Expressed this way, they are model-
-4
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∆
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/n
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FIG. 2 (color online). The Gibbs free energy (i.e. energy per
quark) relative to neutral uniform quark matter with p � 0 for
strangelets of various sizes and surface tensions. We plot �g�x�,
which is �g in units of n2

Q=�n�Q�, as a function of the radius
x � R=�D, for various values of the surface tension ( �� is � in
units of n2

Q�D=�Q). The solid lines (red online) are obtained
from (24); the dashed lines (blue online) are obtained from a
numerical solution of the Poisson equation, including the elec-
trons and not making any approximations in the evaluation of
E�R�. The numerical results confirm the validity of the approx-
imations made in deriving (24) and (25). (The numerical analysis
is for a bag model of unpaired quark matter with �crit �
305 MeV and ms � 200 MeV. The nQ and �Q for this model
are given in Sec. IV.) At the critical surface tension ��crit �
0:1325 one can just barely construct a strangelet that is favored
over uniform quark matter. The radius of this critical strangelet is
R	 � 1:606�D. For ��< ��crit, large strangelets and bulk neutral
quark matter are unstable to fragmentation. For ��> ��no-barrier �
0:1699, there is no fusion barrier: strangelets of any size can
lower their free energy by fusing should they encounter each
other. For ��crit < ��< ��no-barrier, there are ‘‘metastable’’ drop-
lets, whose free energy is greater than that of bulk quark matter
but which must overcome a barrier in order to fuse.
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independent. Given a model equation of state, nQ and �Q
must be evaluated at the � given in (18), which itself
depends on nQ and �Q. This means that the explicit deter-
mination of � in a model must be done numerically,
although in practice we find that the critical surface tension
is very small, so for � � �crit we can use nQ��crit� and
�Q��crit� without making significant errors. We have com-
pared the profiles obtained analytically in terms of nQ and
�Q as we have described with those obtained numerically,
with nQ and �Q specified by the bag model expressions for
unpaired quark matter given in Sec. IV and with electrons
included in the solution of the Poisson equation. The
agreement between analytical and numerical profiles is
excellent.

We now evaluate the Gibbs free energy per quark of a
strangelet of radius R relative to that of bulk neutral quark
matter, namely �g�R� of (5). Integrating the energy density
from (3) and adding the surface contribution, E�R� is given
by

E�R� �
Z R

0
d3r

�
�p�r� ��n�

1

2
q�r��e�r�

�
� 4�R2�

�
Z R

0
d3r

�
�p0 ��n�

1

2
nQ�e�r�

�
� 4�R2�;

(19)

where we have used (1) and (6) to replace p�r� and q�r�.
We see now that the only property of the profile �e�r� that
we need in order to evaluate E�R� is the volume average

3

R3

Z R

0
d3r�e�r� � f

nQ
�Q
�
nQ
�Q

�
1� 3

x� tanhx

x3

�
(20)

where f is the parameter we introduced in making the
estimates (10) and (11), and which we have now evaluated
using the profile �e�r� in (16). Thus, by solving the
Poisson equation we have learned that

1� f � 3
x� tanhx

x3 : (21)

From (19) and (20) we find

E�R�
N�R�

�

�
�
p0

n
��

�
�

n2
Qf

2n�Q
�

3�
nR

(22)

and hence, using (5) and (8),

n�g�R� �
� n2

Q

2�Q
� p0

�
� n����crit� �

n2
Q�1� f�

2�Q

�
3�
R
:

(23)

Notice, however, that the first term is zero when evaluated
at� � �crit and is given by n��crit ��� to lowest order in
(���crit). Neglecting fractional errors of order ���
�crit�=�crit in �g (which Fig. 2 shows are negligible) we
114016
obtain

n�g�R� � �
3n2

Q

2�Q

x� tanhx

x3 �
3�
R
; (24)

which is (10) with (1� f) now known but R	 still to be
determined. [By comparing to solutions obtained numeri-
cally, we have confirmed that at large values of �=R the
fractional error introduced in �g is ��=�nR�crit�, as in
(18).] It is convenient to write (24) in terms of a dimen-
sionless function �g�x� of the dimensionless radius x �
R=�D,

�g�x� � �
3

2

x� tanhx

x3 �
3 ��
x
; (25)
-5
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where

�g�R� �
n2
Q

n�Q
�g�x�; �� �

�Q�

�Dn
2
Q

: (26)

In Fig. 2 we plot �g versus R in dimensionless units for
several values of �; this is equivalent to plotting �g�x� for
several values of ��. The function �g�x� has a stationary
zero at x	 � 1:606 for ��crit � 0:1325: this corresponds to
the marginally stable strangelet at the critical surface ten-
sion. For ��< ��crit, the minimum of �g occurs at smaller
x, and the value of �g at the minimum is negative, corre-
sponding to a smaller stable strangelet. For ��< ��crit,
neutral bulk quark matter and large strangelets can lower
their free energy by fissioning, although for large enough
strangelets there is always an energy barrier to fission. In
the marginally stable droplet with �� � ��crit and x � x	,
(18) simplifies to � � �crit, with the latter two terms in
this equation cancelling. This means that the quark chemi-
cal potential in such a droplet is the same as that in bulk
neutral quark matter. In a droplet with size x � x	, the
volume average of �e is reduced from its value in neutral
bulk quark matter by a factor f � 0:5051. (Note that we
plotted Fig. 1 for �� � ��crit and x � x	.) The parameters in
the estimate (11) are now fully determined.

We see in Fig. 2 that at ��no-barrier � 0:1699, the mini-
mum in �g�x� becomes a stationary inflection point at x �
2:772. For ��crit < ��< ��no-barrier, then, there exist meta-
stable strangelets with sizes ranging from R � 1:606�D to
R � 2:772�D. These are stable against fragmentation, and
if two of them encounter each other there is an energy
barrier to their fusion. However, they do have higher
energy per quark than neutral bulk quark matter. For ��>
��no-barrier there is no local minimum, and all strangelets can
lower their free energy by fusing with other strangelets
should they encounter them.

Converting back to dimensionful quantities, we find

�crit � 0:1325
n2
Q�D
�Q

� 0:1325
n2
Q����������

4��
p

�3=2
Q

�no-barrier � 0:1699
n2
Q�D
�Q

:

(27)

If the strange matter hypothesis holds (e.g. if �crit <
310 MeV) and if � in QCD takes on any value less than
�no-barrier, there will be a favored size for the strangelets
that could be found in cosmic rays. If �< �crit, if any
strangelets were found they would all have sizes peaked
around a single value. If � is somewhat larger, in the
regime where there are metastable strangelets, the distri-
bution of strangelet size in the universe would include a
peak at the size corresponding to the metastable strange-
lets, and a continuous distribution of larger strangelets, big
enough that they sit beyond the local maximum in the
�g�R� curve, where �g�R� is a decreasing function of R.
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There would be no energy barrier for these larger strange-
lets to fuse with one another.
IV. EVALUATING THE STABILITY OF
STRANGELETS MADE FROM UNPAIRED AND

2SC STRANGE QUARK MATTER

To this point, we have not needed to specify a model for
the quark matter equation of state. Given the values of nQ
and �Q in any such model (or, ultimately, in the equation of
state of QCD) our results can be used to evaluate the
critical surface tension �crit. If �<�crit in QCD, strange
stars will have a solid crust formed from positive strange-
lets immersed in an electron gas. And, large strangelets
will be unstable to fission.

In this section, we provide two bag model examples to
illustrate how our model-independent results translate into
estimates of �crit in MeV=fm2. In bag models one writes
pQM��;�e� � pquarks��;�e� � B where B is the bag con-
stant, and pquarks is obtained by making assumptions, such
as treating the quarks in the bag as noninteracting (‘‘un-
paired quark matter’’), or as being in a color superconduct-
ing phase, or perhaps as having some weak residual QCD
interactions, although we shall not include the last effect
here. We begin with a bag model in which the quarks inside
each bag are noninteracting, and then discuss the conse-
quences of BCS pairing, which would lead to color super-
conductivity in infinite quark matter. We shall set the up
and down quark masses to zero, and treat the strange quark
mass ms as a parameter. One extension of our work would
be to evaluate nQ and �Q in models in which the (strange)
quark mass(es) are solved for self-consistently [15–18],
rather than taken as a parameter.

A. Unpaired quark matter

A derivation of the pressure in the bag model for un-
paired, noninteracting, quark matter can be found, for
example, in Ref. [19]. Expanding in powers of �e accord-
ing to (6) yields

p0��;ms� � �B�
�4

2�2 �
1

8�2 �2�
3 � 5�m2

s�
�������������������
�2 �m2

s

q

�
3m4

s

8�2 log
��

�������������������
�2 �m2

s

p
ms

(28)

nQ��;ms� �
1

3�2 ��
3 � ��2 �m2

s�
3=2� �

m2
s�

2�2 (29)

�Q��;ms� �
1

3�2 �5�
2 ��

�������������������
�2 �m2

s

q
� �

2�2

�2 (30)

In the second expressions for nQ and �Q, we have further
assumed that ms 
 �. The resulting simplified expres-
sions yield results that are familiar in the literature, for
example, the fact that �neutral

e � nQ=�Q gives the well-
-6
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known lowest-order result�neutral
e � m2

s=�4�� for unpaired
quark matter. We shall not actually use these approximate
expressions in the following, because with �� 300 MeV
as in a strangelet or at the surface of a strange star we
cannot necessarily assume that ms 
 �.

Instead of fixing the bag constant B and varying other
parameters, we shall fix the more physical quantity �crit.
At each value of �crit and ms we use (8) to fix B.

In Fig. 3 we show how �crit varies with ms in the bag
model for unpaired quark matter for �crit � 305 MeV.
(The curves for the other allowed values of �crit, which
vary from 283 MeV to 310 MeV, are indistinguishable
from this one except that, as we discuss below, the ms at
which they terminate is �crit-dependent.) We see that the
maximum value of the critical surface tension is less than
2:7 MeV=fm2. The solid curve in the figure is given by
(27) with nQ and �Q now specified for the unpaired quark
matter bag model by (29) and (30). The dashed curve was
obtained by solving the Poisson equation numerically,
including the electrons, and then evaluating �g without
making the approximations that went into deriving (24).

The curves in Fig. 3 end at ms � 240 MeV because
beyond this value nuclear matter becomes unstable relative
to two-flavor quark matter. Unlike the conversion to three-
flavor quark matter, which must surmount a barrier of
many weak interactions, this would allow rapid conversion
of nuclei to quark matter. For �crit � 305 MeV, requiring
that the pressure of two-flavor quark matter at � �
310 MeV be negative requires ms < 240 MeV. Note that
we can consider values of ms all the way up to �, at the
expense of tuning �crit closer and closer to �nuclear �
310 MeV as we take ms ! � in such a way as to keep
nuclear matter ( just) stable with respect to two-flavor
100 150 200 250
ms (MeV)
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FIG. 3 (color online). The critical surface tension for strange-
lets made of unpaired quark matter, as a function of the strange
quark mass, at �crit � 305 MeV. Other allowed values of �crit

give almost indistinguishable curves. The solid curve is given by
(27) whereas the dashed curve was obtained by solving the
Poisson equation numerically.
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quark matter. In this fine-tuned limit, we can get strange
quark matter with an arbitrarily small strange quark den-
sity, with nQ and �Q arbitrarily close to their two-flavor
values �3=�3�2� and 5�2=�3�2� respectively. From (27)
we see that in this limit, �crit !

0:011 85�3
nuclear=

���������������
12�3�
p

� 5:502 MeV=fm2. This is the
absolute limit to how large �crit can be pushed in the bag
model for unpaired quark matter. Figure 3 shows the limit
if one requires �crit to be 5 MeV below �nuclear.

To give a sense of the scales that characterize the critical
strangelets, let us take noninteracting quark matter with
�crit � 305 MeV and ms � 200 MeV as an example. We
find nQ � 0:071 04 fm�3, �Q � 0:4644 fm�2, and �D �
4:845 fm. Bulk neutral quark matter has �neutral

e �

nQ=�Q � 30:1 MeV and has quark number density n �
0:9093 fm�3. If � � �crit � 1:377 MeV, the critical
strangelets with radii 1:606�D � 7:782 fm have baryon
number A � 598 and charge Z � 69, consistent with the
result Z � 0:1A from the literature [20]. If A were signifi-
cantly smaller, as, for example, would be the case for �
significantly below �crit, it would be important to include
curvature energy and shell effects in the calculation of
E=N. The analysis of Ref. [20] indicates that these can
reasonably be neglected for strangelets with A’s greater
than a few hundred as long as the surface tension is not
atypically small. We defer a study of the effects of the
curvature energy to future work.

Finally, let us discuss the effect of interactions. Already
in the earliest bag model analyses of strange stars and
strangelets [3], the perturbative QCD interactions between
quarks inside a bag were taken into account. To zeroth
order in ms, these just introduce modifications to the
relationship between � and n which are small if �s is
small. We leave the inclusion of such perturbative effects to
future work, and turn to the possibility of color super-
conducting quark matter, which can introduce changes to
the values of nQ and �Q that are qualitative, in the sense
that they do not become arbitrarily small when some
parameter of the EoS is varied.

B. Color superconducting quark matter

The strong interaction between quarks is attractive in the
color-antisymmetric channel, and this leads to BCS pairing
and color superconductivity in cold quark matter [12]. The
critical temperature for color superconductivity is expected
to be in the range of tens of MeV, which is far above the
temperature of strangelets or neutron stars. We therefore
work at T � 0 throughout.

Unlike perturbative interactions, color superconductiv-
ity can have dramatic qualitative consequences for the
properties of quark matter, because those quarks which
undergo BCS pairing have their number densities
‘‘locked’’ into being equal, as the pairing energy gained
in so doing overcompensates for the free energy cost of
-7
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maintaining number densities that would not minimize the
free-particle free energy. In this section we explore the
consequences of color superconductivity for the stability
of strangelets.

To sketch the context for our discussion, let us describe
the neutral color-superconducting phases that may occur in
quark matter with � � 310 MeV, depending on the
strength of the attractive quark-quark coupling that leads
to BCS pairing. We expect the color-flavor locked (CFL)
phase at the strongest values of the coupling, with some
other, probably nonisotropic, phase occurring at intermedi-
ate coupling, and unpaired quark matter at lower couplings
still. As we will see, the nonisotropic phases are expected
to yield stable strangelets similar to those arising from
unpaired quark matter, whereas the analysis of the stability
of CFL quark matter strangelets is qualitatively different.
We will see that the two-flavor-paired ‘‘2SC’’ phase is not
expected to be the favored state of neutral quark matter at
� � 310 MeV, but it may well play a role in strangelets,
which consist of charged quark matter.

The CFL phase [12,13] is the ground state of three-flavor
quark matter when the attractive quark-quark coupling is
sufficiently strong that its gap parameter satisfies �CFL >
m2
s=�2�� [21,22]. In the CFL phase, quarks of all three

colors and all three flavors undergo BCS pairing [13], and
the resultant locking of the Fermi surfaces makes it an
electromagnetic insulator, neutral in the absence of elec-
trons [19,23], with nQ � �Q � 0 and �neutral

e � nQ=�Q �
0. If bulk quark matter at �crit is in the CFL phase, strange
stars will be neutral with �e � 0 in their interiors [24],
meaning that there is no possibility of charge separation
and fragmentation, no possibility of a solid crust, and no
reason for large strangelets to fission into smaller ones.
This can be seen from our analysis by noting that in the
CFL phase �crit � 0.

At intermediate values of the quark-quark coupling, we
know that a different color-superconducting phase must
occur. Form2

s=�5:2�� & �CFL <m2
s=�2��, model analyses

that are restricted to isotropic phases predict a gapless CFL
(gCFL) phase [21,22]. Depending on the value of
�CFL�=m

2
s , the values of nQ, �Q and �neutral in gCFL

quark matter can fall anywhere between those character-
izing the CFL and unpaired phases, and, in particular, can
be arbitrarily small but nonzero. This would make the
investigation of strangelets in some gCFL-like phase very
interesting, as the Debye length could be arbitrarily large.
However, the gCFL phase per se is unstable to the for-
mation of current-carrying condensates [25–29] and so it
cannot be the ground state. The nature of the ground state at
intermediate coupling is not yet established, but one pos-
sibility is a three-flavor crystalline color-superconducting
phase [29–32], with a nontrivial crystal structure like that
favored in the simpler two-flavor case [33,34]. Such phases
do not involve the locking of Fermi surfaces: this is in large
part why they are well-motivated candidates to replace the
114016
gapless CFL phase. This means that, unlike in the CFL or
gCFL phases, their values of nQ, �Q and hence nQ=�Q are
likely similar to those of unpaired three-flavor quark matter
[30,32], so that strangelets made of such matter will have
similar stability properties to ones made of unpaired quark
matter.

The final possible color-superconducting phase we con-
sider is the ‘‘2SC phase’’ in which BCS pairing occurs only
between up and down quarks of two colors [9–12].
Previous studies indicate that we should not expect this
phase to occur in bulk neutral quark matter near the
transition to the vacuum (which we are assuming occurs
at �crit < 310 MeV). In bag models in which ms is a
parameter, the neutrality constraint ensures that either un-
paired, CFL or gCFL quark matter is always favored over
2SC at T � 0 [19,22]. In models that solve for ms self-
consistently there is sometimes a small 2SC window, but
only if the interaction and parameters are chosen such that
ms is much too large for three-flavor quark matter to exist
with � � �crit < 310 MeV [15–18].

However, even if the 2SC phase is not favored in bulk
matter, which must be neutral, it may occur in the charged
quark matter of the stable (or metastable) strangelets that
we have constructed. We see in Fig. 1 that �e inside these
droplets is significantly less than �neutral

e . This means that
the unpaired u and d Fermi surfaces are closer to each
other, and farther from the s Fermi surface, than in neutral
unpaired bulk matter. This should favor the 2SC phase. To
investigate this, we take results from Ref. [19] and use
them to evaluate the parameters of the generic quark matter
EoS (6),

p2SC
0 ��;ms� � punpaired

0 �
�2

2SC�
2

�2 (31)

n2SC
Q ��;ms� � nunpaired

Q �
�2

2SC�

3�2 (32)

�2SC
Q ��;ms� �

1

18�2 �12�2 � 6�
�������������������
�2 �m2

s

q
� �2

2SC�

�
�2

�2 : (33)

(These expressions have all been derived assuming
�2SC 
 �, which implies �2SC � 21=3�CFL [12].) Note
the change in �Q: it is approximately half as large as in
unpaired quark matter, meaning that the Debye length in
2SC quark matter is larger than that in unpaired quark
matter by a factor of

���
2
p

. This change once again originates
in the locking of those Fermi surfaces which pair, so it is
qualitative, in the sense that it is independent of the value
of �2SC. To see how big an effect this could have on the
stability of strangelets, imagine giving the unpaired phase a
larger bag constant than the 2SC phase, so that bulk neutral
quark matter is in the 2SC phase. The results of Sec. III
show that the size of the critical strangelet would be
increased by a factor of approximately

���
2
p

, and �crit would
be increased by a factor of approximately 2

���
2
p

. However, if
-8
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we keep the same bag constant in unpaired and 2SC quark
matter then the effect is smaller. For example, let us
analyze the case where ms � 200 MeV, �2SC � 25 MeV

and �unpaired
crit � 305 MeV. We find n2SC

Q � 1:012nunpaired
Q

and �2SC
Q � 0:479�unpaired

Q . In this case we cannot naively
use the results of Sec. III (yielding �crit enhanced by the
factor of about 2

���
2
p

described above) because �2SC
crit is

305:507 MeV, larger than �unpaired
crit , and consequently the

critical strangelet occurs when the �g�R� curve con-
structed for the 2SC phase has a local minimum with
�g�R� � �unpaired

crit ��2SC
crit < 0, corresponding to 2SC

strangelets with the same E=N as bulk neutral unpaired
quark matter. We then find �crit � 2:79 MeV=fm2 and
R	 � 1:16�2SC

D � 8:1 fm. Comparing this to the results
for unpaired quark matter strangelets at the same �crit

and ms (which gave �crit � 1:38 MeV=fm2 and R	 �
7:78 fm), we see that the occurrence of 2SC matter has
changed �crit by a factor of about 2. The increase in �D has
been cancelled by a decrease in x	 with the result that R	
hardly changes. Evaluating A and Z for the critically stable
2SC droplet, we find A � 677 and Z � 105.

It should be noted that the 2SC Cooper pairs, whose size
is �1=�2SC, fit within these strangelets, but not by much.
This means that for a specified interaction strength be-
tween quarks, the parameter �2SC occurring in our analy-
sis, which describes the effect of ud-pairing on the E=N of
our strangelets, will not have exactly the same value as that
describing 2SC pairing in bulk matter. Had we taken �2SC

significantly smaller, our analysis of 2SC pairing would not
even be qualitatively reliable.

We conclude that if the attraction between quarks is
strong enough that the critical strangelets are in the 2SC
phase (but not so strong as to favor the CFL phase for bulk
neutral quark matter) then �crit is increased by a factor
which could be as large as� 2

���
2
p

if �2SC were tuned such
that �2SC

crit ! �unpaired
crit , but which is more typically smaller,

of order 2.

V. DISCUSSION

If the surface tension in QCD of an interface between
quark matter and vacuum is below a critical value �crit, and
if the strange quark matter hypothesis holds, astrophysi-
cists may observe (or may be observing) strange quark
stars that have crusts made of positively charged strange-
lets, with size of order the Debye length �D, immersed in
an electron gas. And, larger strangelets will be unstable to
fission. In Secs. II and III, we have developed a model-
independent evaluation of �crit, along the way constructing
profiles of strangelets taking into account both the energy
benefit of charge separation and the energy costs intro-
duced by the surface tension and Debye screening. Our
result is given in (27), in terms of two parameters nQ (the
charge density of quark matter with �e � 0) and �Q (the
charge susceptibility of quark matter with �e � 0) which
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are not currently known from first principles. Given any
equation of state, whether from a model or from a future
full QCD calculation, nQ and �Q can be evaluated in terms
of the quark number chemical potential � and the strange
quark mass ms.

Our purpose in Sec. IV was to get a sense of the size of
�crit, in MeV=fm2, using as a guide bag models for un-
paired quark matter and quark matter in the 2SC color-
superconducting phase. A new twist in this section was the
possibility that neutral bulk quark matter and stable
strangelets could be in different phases (unpaired and
2SC, respectively). We conclude from the model-
dependent investigation in this section that it is easy to
find parameters for which �crit � 1–3 MeV=fm2. And, by
fine-tuning both ms and �2SC, it is possible to push �crit to
as large as 5–7 MeV=fm2. Although these conclusions are
model-dependent, our results phrased in terms of nQ and
�Q as in Sec. III can be applied in future to any model, for
any phase, as our understanding of dense quark matter
continues to improve.

The surface tension � is not known in QCD, but it has
been calculated in the bag model for unpaired quark matter
[35]. It ranges from about 10 MeV=fm2 for ms �
100–120 MeV to about 4 MeV=fm2 for ms � 250 MeV.
If the interface has a thickness of order 1 fm, rather than
being infinitely sharp as assumed in the bag model, the
surface tension is almost certainly larger. It seems most
likely that �> �crit, making large strangelets stable
against fission and giving strange quark stars, if they exist,
fluid surfaces as in Ref. [5]. However, the combination of
the bag model estimate for � from Ref. [35] and our
model-dependent investigation in Sec. IV leave open the
possibility of the opposite conclusion.

Further investigation of the properties of the strange star
crusts that result from fragmentation and charge separation
at strange star surfaces, as proposed in Ref. [7], is war-
ranted. We have only analyzed the surface of the crust,
where pext � 0 and strangelets are spherical. If � is less
than �crit, we must then analyze the deeper layers of the
crust. Preliminary numerical work indicates that �g be-
comes less negative with increasing pext, but to date this
ignores the alternative geometrical shapes of the strange-
lets that will occur below the surface of the crust.
Furthermore, in the inner half of the crust, characterized
by electron-filled ‘‘voids’’ embedded in quark matter rather
than by strangelets embedded in an electron-gas, the cur-
vature energy which we have neglected must be included
[36]. The curvature energy is positive for strangelets, act-
ing, like the surface tension, to suppress small strangelets.
For voids, however, the curvature energy is negative, acting
in opposition to the surface tension.

If charge-separated crusts do occur on strange stars, it
seems likely that they will prove more similar to conven-
tional neutron star crusts than to the fluid surface previ-
ously considered for strange stars. The strange nugget crust
differs from the conventional neutron star crust in two
-9
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respects: (i) the nugget crust has a spatial extent of the
order of 50–100 m [7] while the conventional crust has a
radius �1 km; and (ii) the typical expected charge of the
nugget Znugget � 50–100 is several times larger than for
nuclei where Znuclear � 25. In this context, it is relevant to
note that there have been recent observations of quasiperi-
odic oscillations in the radiation following the giant flares
observed in SGR 1806� 20 and SGR 1900� 14 (which
are thought to be highly magnetized compact objects called
magnetars). These have been suggested to originate from
toroidal oscillations in the compact star crust excited dur-
ing the ‘‘starquake’’ which is thought to have triggered the
flare [37]. If this interpretation of the observed data is
correct, it would imply that compact star seismology would
be able to constrain both the shear modulus (which de-
pends on the typical Z in the crust) and the spatial extent of
the crust. Other burst phenomena such as X-ray bursts and
superbursts observed in compact stars also probe the com-
position and structure of the crust. Clearly, further study of
the observational consequences for the strange star crust is
needed to deduce how similar to the conventional neutron
star crusts they prove to be, and, in particular, whether the
rich X-ray burst phenomenology observed in accreting
compact stars can be consistent with a strange star crust.

It remains unlikely that strange star crusts can give rise
to pulsar glitches, since glitches require a crust within
which charged nuggets (nuclei or strangelets would be
equivalent) are immersed in both an electron gas and a
superfluid, and there is no superfluid in the strange star
crust proposed in Ref. [7]. However, if quark matter in the
crystalline color-superconducting phase occurs somewhere
within the core of a strange star, this could be the locus in
which pulsar glitches originate [33,34].

Another way in which observations could settle some of
the questions we have raised here would be the discovery
of strangelets in cosmic rays, with a peak in the distribution
of A and Z corresponding to the baryon number Astable of
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the most favored stable (or metastable) strangelet. If �<
�crit, and if strangelets occur in cosmic rays, any strange-
lets whose initial baryon number (in whatever astrophys-
ical collision produced them) was much larger than Astable

would fission into strangelets with A * Astable. Strangelets
with A only slightly bigger than Astable will not fission
because of the high energy per quark of the smallest
strangelet produced. We therefore expect a peak in the
strangelet distribution at A � Astable, tailing off to no
strangelets at all over some range of larger values.

If the estimates of Ref. [38] of the flux of strangelets in
cosmic rays incident on the earth are correct, the single-
strangelet detection capability of the AMS-02 detector,
scheduled to go into operation on the International Space
Station in a few years, extends to strangelets with A &

3000��Z=A�=0:1�0:36 [39]. For two particular choices of
model and model parameters in Sec. IV, we found critical
strangelets with A � 600 and Z � 70 in one case and A �
680 and Z � 105 in the other case. More generally, we
expect that if �< �crit the stable strangelets will have
values of A lying between many hundred and a few thou-
sand. If quark matter has such a small surface tension, then
both strangelets and a peak in their size-distribution should
be within the discovery reach of AMS-02.
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