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I. INTRODUCTION

Interactions of hadrons at high energy—such as those
probed in ep scattering at HERA, �pp scattering at the
Tevatron, and pp scattering at the forthcoming LHC—
are to be understood in terms of the interactions of their
quark and gluon constituents. The parton distribution func-
tions (PDFs) that describe the proton’s quark and gluon
content are therefore essential for testing the Standard
Model and searching for New Physics.

The PDFs are functions fa�x;�� where x is the fraction
of the proton’s momentum carried by parton species a at
scale �, in a frame where that momentum is large. For
small values of �, corresponding to long distance scales,
the PDFs express nonperturbative physics that is beyond
the scope of present calculations from first principles in
QCD (although some progress has been made using lattice
methods [1]). Current practice is instead to parametrize the
PDFs at a scale �0 that is large enough for fa�x;�� to be
calculated from fa�x;�0� at all �>�0 by perturbation
theory. The unknown functions fa�x;�0� are determined
empirically by adjusting their parameters to fit a large
variety of data at �>�0 in a ‘‘QCD global analysis’’
[2,3].

A number of important processes, including Higgs bo-
son production in certain scenarios, are particularly sensi-
tive to the bottom or charm quark distributions fc�x;�� and
fb�x;��. In the global analyses that have been carried out
so far, it is assumed that the charm content of the proton is
negligible at ��mc, and similarly that bottom is negli-
gible at ��mb, so these heavy-quark components arise
only perturbatively through gluon splitting in the DGLAP
evolution. The global fits are not inconsistent with this
assumption, but the data sets they are based on do not yet
include experiments that are strongly sensitive to heavy
quarks, so substantially larger c or b content cannot be
ruled out. Direct measurements of c and b production in
deep inelastic scattering are also consistent with an entirely
perturbative origin for heavy-quark flavors [4], but those
experiments are not sensitive to heavy quarks at large x.

Meanwhile, in the light-cone Fock space picture [5], it is
natural to expect nonperturbative ‘‘intrinsic’’ heavy-quark
components in the proton wave function [6,7]. Further-
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more, s and �s quarks each carry �1–2% of the proton
momentum at�0 � 1:3 GeV [2], which implies that states
made of uuds �s, together with gluons, make up a significant
component of the proton wave function. By analogy, one
would expect uudc �c and uudb �b also to be present—
although the degree of suppression caused by greater off-
shell distances is difficult to predict. A suppression as mild
as �1=m2

c, 1=m2
b has been derived using a semiclassical

approximation for the heavy-quark fields [8].
An alternative way to describe the proton in light-cone

Fock space is in terms of off-shell physical particles—the
‘‘meson cloud’’ picture [9–11]. Specifically, the two-body
state �D0��c , where �D0 is a u �c meson and ��c is a udc
baryon, forms a natural low-mass component. This is the
flavor SU(4) analog of the K��0 component that is a
natural source of strangeness, and, in particular, of
fs�x;�� � f �s�x;�� [12]. A charm contribution from the
two-body state pJ= is also possible.

The light-cone view is not developed to a point where
the normalization of uudc �c and uudb �b components can be
calculated with any confidence, though estimates on the
order of 1% have been found for intrinsic charm (IC) using
a meson cloud model [9], the MIT bag model [13], and an
SU(4) quark model [14]. However, we can use the picture
to predict the x-dependence of the nonperturbative contri-
bution. A central feature of the light-cone models is that
heavy quarks appear mainly at large x, because their con-
tribution to the off-shell distance is proportional to �p2

? �

m2�=x, so the suppression of far off-shell configurations
favors large x when m is large. We will show that this
feature leads to similar predictions for the shape in x from a
wide variety of specific models.

Using the rough consensus of the models as a guide to
the shape of x-dependence for intrinsic charm and bottom,
it will be possible to estimate their normalization from a
limited set of data. This will be carried out in a future
publication. When more complete data become available,
such as jet measurements with c- and b-tagging—either
inclusive jets or jets produced in association with W, Z, or
�—it will become possible to extract the x-dependence
empirically. It will then be interesting to see if the model
predictions for the x-dependence are borne out.

Models in which the uudc �c Fock space component is
considered directly are described in Sec. II. Models based
on low-mass meson� baryon pairs are described in
-1 © 2006 The American Physical Society
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Sec. III. The model results are compared with expectations
for perturbatively generated heavy quarks in Sec. IV. The
model results are compared with the light-quark and gluon
distributions in Sec. V. Conclusions are summarized in
Sec. VI, where simple parametrizations of all of the model
predictions are tabulated for convenience in later work.
The connection between the light-cone description and
ordinary Feynman diagrams, which is used in Secs. II
and III, is derived in an Appendix.
II. FIVE-QUARK MODELS

The probability distribution for the 5-quark state uudc �c
in the light-cone description of the proton can be written as

dP �N
Y5

j�1

dxj
xj
�
�
1�

X5

j�1

xj

�Y5

j�1

d2pj?�
�2�

�X5

j�1

pj?

�

�
F2

�s�m2
0�

2 (1)

where

s �
X5

j�1

�p2
j? �m

2
j �=xj (2)

and N is a normalization constant. Equation (1) contains a
wave function factor F2 that characterizes the dynamics of
the bound state. This factor must suppress contributions
from large values of s to make the integrated probability
converge. An elementary derivation of Eq. (1) is given in
the Appendix.

A. The BHPS model

A simple model for the x-dependence of charm can be
obtained by neglecting the p? content, the 1=xj factors,
and F2 in Eq. (1). Further approximating the charm quark
mass as large compared to all the other masses yields
FIG. 1 (color online). Momentum distribution of c or �c from the 5-
the power-law suppression of Eq. (6) (right). Solid curves are the BH
probability.
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dP /
Y5

j�1

dxj�
�
1�

X5

j�1

xj

�
�1=x4 � 1=x5�

�2; (3)

where x4 � xc and x5 � x �c. Carrying out all but one of the
integrals and normalizing to an assumed total probability
of 1% yields

dP
dx
� fc�x� � f �c�x�

� 6x2�6x�1� x� lnx� �1� x��1� 10x� x2�	; (4)

where x � xc or x �c. Equation (4) was first derived by
Brodsky, Hoyer, Peterson and Sakai [6], and has been
used many times since. We will use this BHPS model as
a convenient reference for comparing all other models.

Charm distributions that arise when the transverse mo-
mentum content of Eq. (1) is not ignored are derived in the
following subsections.

B. Exponential suppression

A plausible conjecture would be that high-mass configu-
rations in Eq. (1) are suppressed by a factor

F2 � e��s�m
2
0�=�2

: (5)

This exponential form makes the total probability integral
converge for any number of constituents, while a power
law would not (see Eq. (A10) in the Appendix).

Figure 1(a) shows the charm distribution for several
choices of the parameter � in Eq. (5). The mass values
used were m0 � 0:938 GeV and m4 � m5 � 1:5 GeV.
Constituent quark masses m1 � m2 � m3 � m0=3 were
used for the light quarks, but even setting those masses to
zero instead yields very similar results. All curves are
normalized to 1% integrated probability. The results are
qualitatively similar to the BHPS model, but are somewhat
smaller in the region x > 0:5, which is the most important
region as shown in Sec. V.
quark model with the exponential suppression of Eq. (5) (left), or
PS model of Eq. (4). All curves are normalized to 1% integrated
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FIG. 2 (color online). Momentum distribution of c and �c from
the �udc��u �c� model (7), and c � �c from the �uud��c �c� model
(10).
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C. Power-law suppression

Alternatively, we might assume that high-mass five-
quark states are suppressed only by a power law, say

F2 / �s��2��n: (6)

Figure 1(b) shows the charm distribution for several
choices of the parameter � with n � 4. The results are
again rather similar to the BHPS model, and again smaller
than that model at large x. This behavior is fairly insensi-
tive to the choice of n: similar results were found for n � 3
(not shown), while large values of n revert to the exponen-
tial form of Section II B. Values n 
 2 are unphysical,
since they would make the total probability diverge. The
value n � 3 is perhaps the most natural, since it leads to a
dependence �1=m2

c that is in line with the result of [8].

D. Quasi-two-body suppression

Another approach to the suppression of high-mass Fock
space components can be made on the basis of quasi-two-
body states, such as those that will be considered explicitly
in Sec. III. For instance, we might assume the relevant 5-
quark configurations are grouped as �udc��u �c�, in which
case a plausible wave function factor would be

F2 / �s124 ��2
124�

�2 � �s35 ��2
35�
�2 (7)

where

s124 � �p
2
1? �m

2
1�=x1 � �p

2
2? �m

2
2�=x2 � �p

2
4?

�m2
4�=x4 (8)

s35 � �p
2
3? �m

2
3�=x3 � �p

2
5? �m

2
5�=x5: (9)

Figure 2 shows the c and �c distributions according to this
assumption. The parameter choices were �124 � 2:5 GeV
and �35 � 2:0 GeV, but other plausible choices lead to
similar results.

Note that there is a small difference between the c and �c
distributions predicted by this model. Observing a
�c�x�-c�x� difference would of course definitively prove a
nonperturbative component of charm.

The sign of the difference, �c�x�> c�x� at large x, is
perhaps surprising, since one might have expected c�x�>
�c�x� because the c quark comes from the heavier (baryonic)
subgroup. But in fact, the two subgroups share the proton
momentum fairly equally, while the �c retains more of the
momentum of its (mesonic) subgroup because it shares that
momentum with only a single quark.

Alternatively, we might assume the relevant 5-quark
configurations are grouped as �uud��c �c�, so a plausible
wave function factor would be

F2 / �s123 ��2
123�

�2 � �s45 ��2
45�
�2: (10)

The result of this assumption with �123 � 1 GeV and
�45 � 3 GeV is also shown in Fig. 2. It happens to be
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very similar to the average of c and �c from the preceding
model.
III. MESON� BARYON MODELS

Another way to picture the proton in light-cone Fock
space is as a superposition of configurations of off-shell
physical particles. In particular, the two-body state �D0��c ,
where �D0 is a u �c meson and ��c is a udc baryon, is a
natural low-mass component.

We can model the �D0��c probability distribution in the
proton using Eq. (A10) with N � 2 and F2 / �sD� �

�2
p�
�2. The physical masses are m0 � 0:9383, m1 �

1:8641, and m2 � 2:2849 in GeV. We then model the
udc distribution in ��c similarly, using N � 3 and F2 /

�sudc ��2
��
�2, with m0 � 2:2849, m1 � m2 � 0:938=3,

and m3 � 1:6. We similarly model the u �c distribution in
�D0 using N � 2 and F2 / �su �c ��2

D�
�2, with m0 �

1:8641 and m1 � m2 � 1:60. (The charm quark mass
here must be taken >1:55 to keep m �c �mu >m �D for
stability.)

The c and �c distributions in the proton follow from
convolutions of the distributions defined above:

dP
dx
�
Z 1

0
dx1f1�x1�

Z 1

0
dx2f2�x2���x� x1x2�

�
Z 1

x

dy
y
f1�y�f2�x=y�: (11)

Figure 3 shows the c distribution from p! �D0��c . The
result is very similar to the BHPS model. Figure 4 shows
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FIG. 4 (color online). (a) Momentum distribution of �D0 from p! �D0��c with �p � 10 (dashed), 4 (solid), 2 (dotted).
(b) Momentum distribution of �c from �D0 ! �cu with �D � 4 (dashed), 2 (solid), 1 (dotted). (c) Resulting distribution of �c in p
with �p � 4 and �D � 2.

FIG. 3 (color online). (a) Momentum distribution of ��c from p! �D0��c with �p � 10 (dashed), 4 (solid), 2 (dotted).
(b) Momentum distribution of c from �c ! udc with �� � 4 (dashed), 2 (solid), 1 (dotted). (c) Resulting distribution of c in p
with �p � 4 and �� � 2 and BHPS model (solid).

FIG. 5 (color online). (a) Momentum distribution of J= from p! pJ= with �pJ= � 5 (dashed), 3 (solid), 1 (dotted).
(b) Momentum distribution of c or �c from J= ! c �c with ��cc � 5 (dashed), 2 (solid), 1 (dotted). (c) Resulting distribution of c
or �c in p with �pJ= � 3, �c �c � 2.
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the �c distribution from p! �D0��c . On comparing Figs. 3
and 4, we once again find �c�x�> c�x� at large x—for the
same reason described in Sec. II D. This was observed
previously in a meson cloud model that is rather similar
to this one [11]. It is opposite to the asymmetry predicted
by [15].

A contribution from the two-body state pJ= is also
possible. It is even slightly favored over �D0��c by having a
lower threshold mass: mp �mJ= � 4:035 GeV<mD �

m�c
� 4:149 GeV. (This is in contrast to the SU(4)-analog

case of strangeness, where K��0 is strongly favored
over p�0 by mK� �m�0 � 1:609 GeV� mp �m� �

1:958 GeV.) Fig. 5 shows the c � �c distribution from the
model of a pJ= Fock space component and the model of c
or �c in J= . A range of reasonable parameters for the
suppression of large masses was examined, and all gave
similar results.
FIG. 7 (color online). Distribution x2f �c�x� from CTEQ6.1
(extrinsic charm) at � � 2, 5, 100 GeV (short, medium, long
dash) compared to BHPS model (intrinsic charm) (solid). The
intrinsic charm component dominates at large x.
IV. COMPARISON WITH PERTURBATIVE c �c AND
b �b

When normalized to 1% probability, the BHPS model
predicts that a fraction

R
1
0�fc�x� � f �c�x�	xdx � 0:0057 of

the proton momentum is carried by nonperturbative charm.
The models of Secs. II and III give rather similar values,
ranging from 0.0046 to 0.0073.

These possible intrinsic momentum fractions can be
compared with the standard perturbative contributions to
FIG. 6 (color online). The fraction of proton momentum car-
ried by valence quarks, gluon, b� �b, and c� �c as a function of
scale �, with uncertainty bands. The b� �b and c� �c curves
were multiplied by 10 for clarity. The dot-dash line indicates the
level of intrinsic c� �c predicted by BHPS, also multiplied by 10.
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the proton momentum, which are shown in Fig. 6 as a
function of �. (These were calculated from the CTEQ6.1
global analysis [2], with uncertainty ranges based on the
eigenvector uncertainty sets [2,16].) Note that the c� �c
and b� �b fractions have been multiplied by 10 for clarity.
We see that a possible 1% intrinsic charm contribution
would be rapidly overtaken by perturbatively generated
charm, once the evolution in � has proceeded a short
distance above mc. (The rapid rise of c� �c is likely to be
somewhat exaggerated in this CTEQ analysis, which uses
the standard ‘‘zero mass scheme’’ wherein the charm quark
is treated as a massless parton at scales �>mc.) Gluon
splitting similarly generates b �b pairs rapidly above the
scale ��mb. Thus intrinsic c and b cannot be expected
to add significantly to the perturbatively generated c and b
for most regions of x and �.

Nevertheless, the intrinsic c �c component may be very
significant at large x. This is demonstrated by Fig. 7, which
shows the probability distributions as a function of x,
weighted by a factor x2 to clarify the large-x region. The
intrinsic component is stronger than the perturbative one at
x > 0:3, even for � as large as 100 GeV. (The intrinsic
component will of course also evolve with �, but that will
not significantly alter this comparison.)

V. COMPARISON WITH LIGHT QUARKS AND
GLUON

Figure 8 compares the BHPS model, which is represen-
tative of all the models described here, with the light-quark
flavors and gluon from CTEQ6.1. It shows the remarkable
result that with the assumption of 1% intrinsic charm, the c
-5



FIG. 8 (color online). Parton distributions for u (long dash), d
(short dash), �u (long dash dot), �d (short dash dot), and g (dotted)
at � � 1:3 GeV, compared with �c from the BHPS model (solid).
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and �c distributions are larger than �d and �u at large x. This
result arises from the m2=x term in the off-shell distance of
the heavy-quark states, and is robust with regard to changes
in the scale at which the comparison is made.

Figure 8 also shows that intrinsic c and �c are much
smaller than the valence quark and gluon distributions.
This implies that the possibility of IC does not significantly
affect the light quark and gluon distributions. As a corol-
lary, it negates a pretty speculation that IC could be the
source of an unexpected feature of the CTEQ6.1 PDFs
which can be seen in Fig. 8: the gluon distribution is larger
than the valence quarks at very large x for small �. (That
feature is not a robust feature of the CTEQ PDFs, since it
can be made to disappear by a small change in the gluon
parameterization at �0, with an insignificant increase
(��2 � 5) in the �2 � 2000 of the global fit. The feature
therefore does not actually require an explanation.)

VI. CONCLUSION

The light-cone ideas used here are at best qualitative and
heuristic. It is not, for example, clear whether they should
be applied in MS or some other scheme; and at what small
scale �0. They should nevertheless be a useful in the effort
to measure intrinsic heavy flavors in the proton, in that they
predict the approximate shape of the distribution in x.

The BHPS model for the x distribution of intrinsic heavy
flavor was derived from the light-cone point of view. The
derivation employed some additional simplifying approx-
imations, however, which are not obviously adequate. In
the present paper, we have seen that a wide variety of light-
cone models in which these simplifying approximations
114015
are avoided predict shapes in x that are quite similar to the
BHPS model.

The shape of the predicted x distribution is a dynamical
effect that follows from the dependence on the energy
denominator s�m2

0 of Eq. (1). This energy denominator
can be associated with a propagator in an ordinary
Feynman diagram, as is shown in the Appendix.

On the basis of these models and standard DGLAP
evolution of parton distributions, we have shown that
intrinsic charm (IC) will provide the dominant contribution
to c and �c at large x, if the shape of the IC distribution is
given by the BHPS model and the normalization is any-
where near the estimated 1% probability. All of the other
light-cone based models examined here have roughly the
same shape in x dependence, and hence they reinforce this
result. Several of the models predict a difference between c
and �c, with �c�x� � c�x�> 0 at large x. Similar conclusions
for the shape apply for intrinsic b.

Assuming the 1% probability is approximately correct
for IC, c is much smaller than u, d, and g at all x, so it has
no appreciable impact on the evolution of other flavors.
Intrinsic b is presumably even smaller. Under the same
assumptions, however, intrinsic c and �c can be larger than �u
and �d at large x.

There are a number of experimental indications that
suggest the presence of IC, but at present there is no
unmistakable evidence for it. An estimate of �0:86
0:60�% was obtained for the IC probability some time
ago [17,18] by re-analysis of Fc2 data in deep inelastic
muon scattering on iron [19]. That estimate continues to
be cited (see e.g. [5]) as evidence for the existence of IC,
although it is obviously of limited statistical power; and
when possible variations in the parton distributions are
taken into account, the Fc2 data are consistent with no IC
[11,20]. Measurements of Fc2 at HERA [4] are also con-
sistent with no IC, but those measurements are not at
sufficiently large x to have any sensitivity to it. For other
experimental indications of IC, see [21].

In order to actually measure intrinsic charm or bottom, it
will be necessary to have data that are directly sensitive to
the large-x component. Likely candidates are jet produc-
tion with c- or b-tagging—either inclusively or in asso-
ciation with W, Z, or high-pT �. It may also be possible
to extract useful information from coherent diffractive
dissociation processes such as p! pJ= on a nuclear
target [22].

For convenience in future work, the model curves (1)–
(12) appearing in Figs. 1–5 can be adequately represented
by a simple parametrization that is given in Table I. With
the parameters listed for it, this simple parametrization also
works very well for the BHPS model, though of course the
full expression (4) is not inconvenient. To create this table,
the normalization coefficients A0 were chosen to make the
momentum fraction

R
1
0 fc�x�xdx or

R
1
0 f �c�x�xdx equal to

0.002857, the value given by the BHPS model when that
-6



FIG. 9. (a) Point-coupling model; and (b) diffractive dissocia-
tion process used to compute its light-cone probability distribu-
tion.

TABLE I. Coefficients for a simple parametrization of the
models: fc�x� � dP=dx � A0x

A1 �1� x�A2 . The normalization
A0 is chosen to make the momentum fraction

R
1
0 fc�x�xdx orR

1
0 f �c�x�xdx equal to 1=350, the value it has in the BHPS model.

Model A0 A1 A2

(1) 520.517 4.611 11.477
(2) 0.904 1.271 5.703
(3) 0.179 0.496 4.164
(4) 0.785 1.220 5.519
(5) 0.401 0.886 4.908
(6) 0.187 0.521 4.194
(7) 0.387 0.822 5.017
(8) 0.374 1.010 4.422
(9) 0.473 0.994 4.986
(10) 2.238 1.897 6.095
(11) 2.245 2.511 4.929
(12) 591.400 5.065 10.708
BHPS 1.052 1.524 5.377
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model is normalized to 1% probability. This is different
from the normalization of the curves shown in the Figs. 1–
5, which was such that each curve corresponded to 1%
probability. This new normalization is more useful for
applications, since it places more emphasis on large x,
where intrinsic charm will be important if it is important
at all. For comparison, the momentum carried by s or �s at
� � 1:4 GeV is—as it should be—substantially larger
(by a factor of 4) than this working estimate of 0.002857
for c or �c.

ACKNOWLEDGMENTS

I thank Stan Brodsky for stimulating discussions and a
critical reading of the manuscript. This research is sup-
ported by the National Science Foundation.
APPENDIX: LIGHT-CONE PROBABILITY
DISTRIBUTIONS FROM FEYNMAN RULES

This Appendix shows how to derive light-cone proba-
bility distributions directly from Feynman diagram rules
by a thought experiment. (The technique of this thought
experiment can in fact be used to calculate coherent pro-
duction such as occurs in the ‘‘A2=3’’ component of J= 
production on nuclei—see [22].)

For simplicity, consider a spin 0 particle with mass m0

that couples to spin 0 particles with massesm1, . . .,mN by a
point-coupling ig, as illustrated in Fig. 9(a). The thought
experiment consists of scattering this system at very high
energy from a target that interacts with only one of the
constituents, as illustrated in Fig. 9(b). This target supplies
an infinitesimal momentum transfer that puts the
N-particle system on mass-shell (diffractive dissociation)
with a cross section that must be proportional to the
probability for that system in the original Fock space.
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Assume that the target provides a constant total cross
section �0, with transverse momentum transfer depen-
dence proportional to exp���~q2

?�. The elastic differential
cross section is

d�

d ~q2
?

�
�2

0

16�
e��~q

2
? (A1)

and hence the integrated elastic cross section is

�el �
�2

0

16��
: (A2)

By Feynman rules, Fig. 9(b) gives an amplitude

M �
2igpN � q

t�m2
N

exp���~q2
?=2� (A3)

and a cross section

d� �
4�4

p0 � q
d3q

16�3q�0�
YN
j�1

� d3pj

16�3p�0�j

�

� ��4�
�
p0 � k�

XN
j�1

pj � q
�
jMj2: (A4)

Assume the gaussian parameter � is large, corresponding
to a large spatial extent of the target in impact parameter.
We can then set q? � 0 everywhere except in the expo-
nential factor and carry out the integral over q?. The Fock
space probability density dP can be identified from the
obvious relation

d� � �el � dP: (A5)

Now introduce the light-cone components of all four-
momenta, p�� � �p�0�  p�3��=

���
2
p

, and define the light-
cone momentum fractions xj � p���j =p���0 . The compo-

nents p���0 and q��� are taken to be large, with p0? � q? �
0. The small components are determined by mass-shell
conditions, e.g., p2 � m2 ) p��� � �p2

? �m
2�=�2p����.
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This leads to

dP �
1

�16�3�N�1

YN
j�1

�d2pj?dxj
xj

�
��2�

�XN
j�1

pj?

�

� �
�
1�

XN
j�1

xj

�
x2
Ng

2

�t�m2
N�

2 : (A6)

The covariant off-shell distance can be expressed con-
veniently in the form

m2
N � t � m2

N �

�
p0 �

XN�1

j�1

pj

�
2
� xN�s�m2

0�; (A7)

where

s �
XN
j�1

�p2
j? �m

2
j �=xj: (A8)

This leads to the final result

dP �
1

�16�3�N�1

YN
j�1

d2pj?
YN
j�1

dxj
xj
��2�

�XN
j�1

pj?

�

� �
�
1�

XN
j�1

xj

�
g2

�s�m2
0�

2 (A9)

for the point-coupling model. Note that this result is com-
pletely symmetric in the particles 1, . . ., N as it should
be—it does not depend on which particle was singled out
to scatter in the thought experiment used to derive it. It is
straightforward to include more complicated vertices and
factors due to spin using this Feynman diagram approach.
When that is done, the result can depend on which particle
114015
is assumed to scatter, but the ambiguity vanishes at the pole
at s � m2

0. Unitarity effects that keep the total probability
equal to 1 could also be included.

In this simple point-coupling model, high-mass Fock
states are suppressed only by the ‘‘old-fashioned perturba-
tion theory energy denominator’’ factor �s�m2

0�
�2. To

make the model more realistic, there must be a further
suppression of high-mass states associated with wave func-
tion effects—if only to make the integrated probability
finite. It is natural to suppose that the additional suppres-
sion is a function of s. (It is not natural to assume that the
suppression is a function of the covariant variable t, as is
done in some ‘‘meson cloud’’ models [23], since that
assumption spoils the independence on which particle is
taken to be off shell. A related argument leading to this
conclusion is given in more recent meson cloud work [24].)

When a wave function factor �F�s�	2 is included in
Eq. (A9), the transverse momentum integrals can be car-
ried out by inserting the identity 1 �

R
��
P
j�p

2
j? �

m2
j �=xj � s�ds, and then Fourier transforming this delta

function and the transverse momentum conserving one.
The result is

dP �
g2

�16�2�N�1�N � 2�!

YN
j�1

dxj�
�
1�

XN
j�1

xj

�

�
Z 1
s0

�s� s0�
N�2�F�s�	2ds

�s�m2
0�

2 (A10)

where s0 �
PN
j�1 m

2
j=xj. Note that �F�s�	2 must go to zero

faster than 1=sN�3 as s! 1 to make the integrated proba-
bility converge.
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