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Two-loop QCD corrections to semileptonic b-quark decays near maximum recoil
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Two-gluon radiative corrections to the b! c‘ ��‘ decay width have been computed analytically as an
expansion in terms of mc

mb
� 1 in the kinematical limit of zero lepton invariant mass. The obtained results

match smoothly with a previously known expansion around �1� mc
mb
� � 1. Together they describe the

process b! c‘ ��‘ for all mass ratios mc
mb

.
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I. INTRODUCTION

Inclusive semileptonic decays of the b-quark can be
described with a high degree of theoretical precision be-
cause nonperturbative effects are suppressed [1] and the
b-quark mass is sufficiently large for the perturbative QCD
expansion. However, the perturbative calculations are chal-
lenging because of the presence of massive propagators of
b- and c-quarks. In particular, the O��2

s� corrections to the
rate of the decay b! c‘ ��‘ have not yet been calculated,
although a rather reliable estimate was obtained in [2]. The
need for such corrections has been pointed out in connec-
tion with a precise determination of the CKM parameter
Vcb (see, for example, [3]). Such a calculation requires a
generalization of the four-loop studies of �! e ��e�� [4]
and b! u‘ ��‘ [5] to the case of a massive charged particle
in the final state and is thus very difficult. One possible
approach is to treat that final-state quark mass as a pertur-
bation. In this paper we examine this approach, not with
the full problem of the total decay rate, but in one special
kinematical configuration: the decay b! c‘ ��‘ with the
lepton and neutrino escaping with a zero invariant mass,
q2 � 0. We treat the mass ratio mc

mb
as a small parameter and

find several terms of expansion of d��b! c‘ ��‘�=dq
2 at

q2 � 0. This work builds on the recent study [6] of the
decay t! Wb, where an expansion in the W mass was
constructed.

In the limit q2 � 0, massless leptons are produced at rest
with respect to each other and the corresponding decay rate
may be represented as a product of b decay into a fictitious
real massless W-boson and a consequent W decay. The
decay amplitude is

iM�b! X‘ ��‘�

� J � �i

q2 �m2
W

�
g�� �

q�q�

m2
W

�
�u
igw
2
���
2
p ���1� �5�v;

(1)

where J � is the quark current. The decay rate of b!
X‘ ��‘ may be represented as follows:
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Thus d��b! c‘ ��‘�=dq2 at q2 ! 0 differs from d��b!
cW�� with m�W�� � 0 by only a constant factor. In this
paper we focus on the decay width ��b! cW�� and inte-
grate over final states containing up to two gluons.

To treat virtual and real gluon emission consistently, we
take advantage of the optical theorem which connects the
b-quark decay rate to the imaginary part of the b-quark
self-energy operator: ��b! X� � 1

mb
ImP �b! X ! b�.

In this approach the calculation of O��2
s� corrections to

��b! cW�� requires the evaluation of 3-loop diagrams
instead of the 4-loop diagrams of the corresponding b!
c‘ ��‘ decay.

Several years ago [2], the b! cW� decay rate was
found from an expansion around the so-called zero recoil
limit where �1� mc

mb
� � 1. Our present expansion around

mc
mb
� 1 is complementary and we will find that, together

with [2], we now know the differential rate at all values of
the c-quark mass.

This paper is organized as follows. In the next section we
introduce the notations, discuss the gauge-invariant con-
tributions to the decay rate, and present some technical
details of the calculation. In Sec. III we present the results
and combine them with those of Ref. [2] to cover the full
range of final-state quark mass.
II. O��2
s � CORRECTIONS TO b! cW� DECAY

WIDTH

The rate of b! cW� decay may be written as an ex-
pansion in the strong coupling constant �s whose coeffi-
cients are functions of � � mc

mb
:
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TABLE I. Example of the asymptotic expansion of a double-scale topology. In the figures, dotted, thin solid, and thick solid lines
represent massless, soft-scale massive, and hard-scale massive propagators, respectively.
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Here �0 �
GFjVcbj2m

3
b

8
��
2
p
�

is the result corresponding to mc � 0.

The second-order correction X2 may be written as a sum of
finite, gauge-invariant combinations:
X2 � TRNLXL � TRNHXH � TRNCXC � CFXA

� CAXNA: (6)

NL represents the number of massless quarks (3 in this
context) while NH and NC label the contributions of b- and
c-quarks, respectively. The top quark contribution is sup-
g
g

W

cb

Color factor: C 2
F C 2

F − CACF / 2

Ghost loops b-quark loops

CACF CFTRNH

FIG. 1. Examples of diagrams contribu
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pressed by �mb
mt
�2 and we neglect it. In SU�3�, the color

factors are TR �
1
2 , CF �

4
3 , and CA � 3.

Calculation

To find XL, XH, XC, XA, and XNA of Eq. (6), we need to
consider 39 three-loop diagrams such as those in Fig. 1,
along with 19 one- and two-loop renormalization contri-
butions. The contributing diagrams depend in general on
two scales: mb and mc. To account for phenomena at
different scales properly, we apply the well-known asymp-
totic methods. Table I presents contributing momentum
regions in one example of a three-loop double-scale topol-
ogy. In each region loop momenta are either ‘‘hard’’ (jkj 	
mc) or ‘‘soft’’ (jkj 
mc), with jpj � mb being a hard
momentum, allowing us to Taylor expand the propagators
and thus reduce the number of scales to one. For example,

�jk1j 
mc; jk3j 	 mc� )
1

�p� k3 � k1�
2 �m2

b

�
X1
n�0

�2k1p� 2k1k3 � k2
1�
n

�k2
3 � 2k3p�n�1 : (7)
−CACF / 2 CACF / 2

u-,d-,s-quark loops c-quark loops

CF TRNL CFTR NC

ting to O��2
s� corrections to b-decay.
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FIG. 2. The new master integral of Eq. (8). The solid and
dashed lines correspond to massive and massless propagators,
respectively.
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Table I illustrates the asymptotic expansion process for
one of the integrals encountered in this work. In this
example, Region 4 involves so-called eikonal integrals,
114009
featuring the propagator 2p�k3 � k2� � i0. Although
seemingly double-scale, such integrals only multiplica-
tively depend on the external momentum p. Care should
be taken with eikonal regions, since the integral value may
depend on the sign of the contour fixing term i0.

The large number of resulting integrals can be reduced
to a small set of ‘‘master integrals’’ (see Ref. [7] for an
example of a solution algorithm along with references to
earlier work). Most of the master integrals used in this
paper have been described in [6]. An additional master
integral corresponds to the topology in Fig. 2; for com-
pleteness we present here the result using the same nota-
tions:
ImF�1; 1; 1; 1; 1; 1; 1; 1; 0� � Im
Z �dDk1��d

Dk2��d
Dk3�

k2
1k

2
2k

2
3�k

2
2 � 2k2p��k2

3 � 2k3p�

1

�p� k1 � k2�
2�p� k1 � k3�

2�p� k1 � k2 � k3�
2

� �F 3

�
61�4

360
�O���

�
; (8)
where F � ��1���
�4��D=2 is a common loop factor and D � 4�

2� is the convention used for dimensional regularization.

III. RESULTS

Our results for the contributions to Eq. (6) are obtained
as series in � � mc

mb
. We have obtained terms up to �9 for

the expansions and present here contributions to X2

through terms of order �3:
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9
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(13)

We have used the MS definition of �s normalized at � �
mb, and the pole mass mb.

These expansions may be directly compared to expan-
sions around � � 1 of [2] as follows:

XL��� ! �1� ��
3�L�1� ��; (14)

XH��� ! �1� ��
3��H�1� �� ��C�1� ���; (15)

XC��� ! �1� ��3�C�1� ��; (16)

XA��� ! �1� ��
3�F�1� ��; (17)

XNA��� ! �1� ��3
�

�A�1� �� �
1

2
�F�1� ��

�
: (18)

In [2] corrections from b- and c-quarks were lumped
together in �H. Here we divide them up by separating the c
contribution in �C (Eq. (A1)). As expected, XC reaches XL
in the limit �! 0 and XH in the limit �! 1.

Plots on Fig. 3 present XL, XH, XC, XA, and XNA calcu-
lated to O��10� around � � 0, and expansions of the
corresponding functions from [2] (Eq. (A1) of that
-3
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FIG. 3. Matching of expansions around � � 0 (thick line) and � � 1 (thin line). The c-quark contribution XC interpolates between
heavy (XH) and light (XL) quark contributions.

ALEXEY PAK, IAN BLOKLAND, AND ANDRZEJ CZARNECKI PHYSICAL REVIEW D 73, 114009 (2006)
work), according to Eqs. (14)–(18), calculated through
O��1� ��21�. It is sufficient to account for terms up to
O��7� to reach the relative accuracy of 1% at the realistic
value of mc=mb 
 1=3.

For convenience we provide results for a numerical fit
providing accuracy better than 0.01 for XL, XC, XA, and
XNA, and better than 10�5 for XH for 0 � � � 1:
XL=�1� ��
3 
 2:872� 6:849�� 17:00�2 � 22:56�3

� 26:92�4 � 13:16�6; (19)
XH=�1� ��3 
 �0:06361� 0:1902�� 0:2378�2

� 0:1733�3 � 0:09828�4; (20)
XC=�1� ��
3 
 2:882� 0:9432�� 14:31�2 � 25:00�3

� 18:49�4 � 5:113�5; (21)
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FIG. 4. Kinematic boundaries of semileptonic heavy quark
decays. The dotted arrow shows the expansion presented in
this paper. Previously known expansions are indicated with solid
arrows. Integration over the dotted line would correspond to
integration over the leptonic phase space in the decay b! c‘ ��‘.
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 3:531� 1:305
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p
� 0:1496�� 13:76�2

� 49:64�3 � 57:77�4 � 33:69�5
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����
�
p
� 12:77�

� 20:35�2 � 8:257�3 � 43:23�4

� 58:52�5 � 29:09�6: (23)
IV. CONCLUSION

Figure 4 illustrates existing expansions [2,6,8] of semi-
leptonic quark decays in various kinematic configurations.
Analytic expressions are known along the zero recoil line
and in all corners of the triangle. With the approach dem-
onstrated in this paper and with improving computational
resources, it is becoming feasible to calculate the complete
O��2

s� correction to the decay rate ��b! c‘ ��� as an
expansion around � � 0. Like in the present study, the
most challenging hard-scale regions will contribute only to
even powers of �, with odd powers originating from fac-
torized regions. Assuming this series will converge simi-
larly to the expansion presented here, a 5% accuracy of the
complete correction at realistic value � � 1

3 will require
calculating terms through �4 of the most difficult dia-
grams. An extension to �5 will require evaluating only
factorized diagrams and will likely to improve the accu-
racy to the level of 3%. This is a challenging but feasible
task.

In the future, if the need arises, these expansion tech-
niques could be applied for computing precision rates of
other heavy colored particle decays, e.g. squarks, account-
ing for mass-dependent effects.
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APPENDIX A: SOFT QUARK CONTRIBUTIONS

The contribution of c-quark loops expanded in 	 � 1� mc
mb

was calculated as part of the study in Ref. [2] but not
explicitly shown. Here, for completeness, we present that result through terms O�	8�:
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