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Consequences of strong fluctuations on high-energy QCD evolution
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We investigate the behavior of the QCD evolution towards high energy, in the diffusive approximation,
in the limit where the fluctuation contribution is large. Our solution for the equivalent stochastic Fisher
equation predicts the amplitude as well as the whole set of correlators in the strong-noise limit. The speed
of the front and the diffusion coefficient are obtained. We analyze the consequences on high-energy
evolution in QCD.
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I. INTRODUCTION

The quest for the perturbative high-energy limit of QCD
has been the subject of many efforts. It is now well ac-
cepted that, due to the strong rise of the amplitude pre-
dicted by the linear Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation [1], one has to include saturation effects
in order to describe high-parton densities and recover
unitarity. In the large-Nc limit and in the mean-field ap-
proximation, we are led to consider the Balitsky-
Kovchegov (BK) equation [2]. It has the nice property
[3] to be mapped, in the diffusive approximation, onto
the Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP)
equation [4] which has been widely studied in statistical
physics and is known to admit traveling waves as asymp-
totic solutions, translating into geometric scaling in QCD
[5].

It has been proven recently [6,7] that fluctuation effects
have important consequences on the approach to satura-
tion. Practically, the resulting evolution equation, after a
coarse-graining approximation [7], takes the form of a
Langevin equation. It is formally equivalent to the BK
equation supplemented with a noise term
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where T is the event-by-event scattering amplitude, Y is the
rapidity, L � log�k2=k2

0� with k the transverse momentum,
and k0 some arbitrary reference scale. ���� � 2 �1� �
 ��� �  �1� �� is the BFKL kernel, � is a fudge factor
and the noise ��L; Y� satisfies h�i � 0 and

h��L; Y���L0; Y0�i �
2

�
�� ��Y � ��Y0���L� L0�: (2)

To obtain Eq. (1), we have worked with impact-parameter-
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off-diagonal noise term takes [7,8] the form given by
Eq. (2). Physically, in addition to the BK saturation effects
coming from pomeron merging in the target, one also takes
into account pomeron splitting in the target. Hence, by
combinations of splittings and mergings, pomeron loops
are formed. The extra factor �2

s in the fluctuation term
indicates that it is dominant when T � �2

s i.e. in the dilute
limit.

In the same line that the BK equation is equivalent to the
F-KPP equation in the diffusive approximation, the
Langevin problem corresponds to the stochastic F-KPP
(sFKPP) equation [9]. To be more precise, let us expand
the BFKL kernel to second order around �0:

���� � �0 � �
0
0��� �0� �

1

2
�000 ��� �0�

2

� A0 � A1�� A2�2: (3)

This approximation has proven its ability to exhibit the
main properties of the solutions of Eq. (1) in the limit
��2

s � 1. Unless specified, we shall keep this approxima-
tion throughout this paper, leaving the general case for
further studies.

If we introduce time and space variables as follows

t � ��Y; x � L� A1 ��Y and u�x; t� �
T
A0
;

Eq. (1) gets mapped onto the sFKPP equation1

@tu � D@2
xu� �u�1� u� � "

������������������
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p
	�x; t�; (4)

with

D � A2; � � A0; "2 �
2��2

s

�A0
;

h	�x; t�	�x0; t0�i � ��t� t0���x� x0�:
1We have introduced an extra factor
������������
1� u
p

in the noise
term—the effects of the noise being important in the dilute
tail; this modification is not expected to change physical results.
In addition, in (1), the fluctuation contribution is only under
control in the dilute regime.
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At present stage, most of the analytical analyses were
performed in the limit where the fluctuations are asymp-
totically small (the correction being logarithmic [10], it
may require a strong coupling constant as small as �s &

10�10), in which case the relevant quantities, e.g. the speed
of the wave, can be expanded around the F-KPP solution.
In this analysis, the main effects of the noise in the sFKPP
equation are, first, to lead to a decrease of the speed of the
traveling front and, second, to produce a diffusion of the
fronts for each realization of the noise resulting in viola-
tions of geometric scaling for the average amplitude.

The numerical studies performed so far show that these
effects (decrease of the speed and diffusion of the events)
are amplified when the fluctuation coefficient becomes
more important. There have been large efforts made to
improve the analytical understanding for arbitrary values
of the noise strength but many approaches appear to be
model dependent [11].

In this paper, we consider the problem of fluctuations
through a complementary approach, namely, the limit of a
strong noise. This limit is tractable with the help of a
duality property of the sFKPP equation [9]. The strong-
noise limit then gets related to a coalescence process which
can be solved exactly [12].

Using these tools from statistical physics, we are able to
compute the event-averaged amplitude as well as the
higher-order correlators and obtain predictions for the
speed of the wave front as well as for the diffusion coef-
ficient in the limit of strong fluctuations. This knowledge of
the strong-noise limit, together with the weak-noise results,
can help in further analytical understanding of the QCD
evolution in the presence of fluctuations.
II. TOOLS NEEDED FROM STATISTICAL
PHYSICS

Let us now summarize the tools from statistical physics
we need for our studies. Our starting point is the duality
relation between the sFKPP Langevin equation and the
reaction-diffusion process. This duality will allow us to
relate the strong-noise problem to the coalescence problem
which we shall solve.

We consider on the one hand amplitudes evolving ac-
cording to the sFKPP Eq. (4) and, on the other hand, the
reaction-diffusion process of a one-dimensional population
A on a lattice of spacing h: at each site, one can have
particle creation or recombination, and particles can dif-
fuse to a neighboring site

Ai!
�
Ai � Ai; Ai � Ai!

"2=h
Ai; and Ai !

D=h2

Ai�1; (5)

where Ai designs a particle at lattice site i.
One shows [9] that the particle system and the amplitude

in the sFKPP equation are related through a duality relation
which, in the continuum limit h! 0, can be written
114005
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where N�x; t� is the particle density in the reaction-
diffusion system. Physically, this duality equation means
that, if one wants to obtain the scattering amplitude at
rapidity t � ��Y, one can either keep the target fixed and
evolve the projectile wave function considered as a particle
system, or fix the projectile and consider evolution of
scattering amplitudes off the target. One knows [13,14]
that splitting in the projectile leads to linear growth and
saturation in the target while merging in the projectile
corresponds to fluctuations in the target.

Therefore, to obtain information on the evolution of the
average amplitudes for the sFKPP equation, we shall study
the dual particle system and then use relation (6). The limit
we are interested in is the strong-noise limit (large "). This
corresponds to heavy saturation in the particle system
(projectile), i.e. two particles at the same lattice site auto-
matically recombine into a single one. This limit is often
referred to as the diffusion-controlled limit. When � is
rescaled to give a constant, small, ratio �="2, we can
alternatively study the coalescence model. In this model,
one can have at most one particle per lattice site. One
particle can diffuse to the neighboring site at rate D=h2

or give birth to a new one in a neighboring site at rate !=h
(with ! � 2D�="2 as we shall see later).

This system has been studied [12] and is fully solvable
using the method of interparticle probability distribution
function. The main idea is to introduce E�x; y; t� as the
probability that sites between x and y � x included are
empty at time t. One obtains that, due to diffusion and
creation, E satisfies the following differential equation

@tE � fD�@2
x � @2

y� �!�@y � @x�gE; (7)

with the boundary condition limy!xE�x; y; t� � 1.
The particle density can be obtained from the derivative

of E:

N�x; t� � @yE�x; y; t�jy!x:

Remarkably enough, the evolution Eq. (7) is linear. It can
be solved exactly [12] and, for a given initial condition
E�x; y; t�, introducing the dimensionless variables
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D
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D
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D
t;

one finds

E�x; y; t� � e�� � e��
Z 1
�1

d
0
Z 1

0
d� 0G�
; 
0; �; � 0; ��

� 	E�
0; � 0; �� � e��
0
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where the Green function G�
; 
0; �; � 0; �� is given by
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Before considering the solution of this system in the
context of the duality relation, let us give the relation
between the parameters � and "2 of the initial system
with ! and D in the coalescence model. The trick is to
require that both systems have the same equilibrium den-
sity. For the coalescence model, one notices that
exp�� !

D �y� x�� is a time-independent solution leading
to a particle density Neq � !=D. In the case of process
(5), at equilibrium, diffusion does not play any role and we
have to find equilibrium at each site between creation and
annihilation. This is achieved when Neq � 2�="2. Hence,
one has ! � 2D�="2.
III. RESULTS AND SOLUTION

Let us now put together the results from duality and
coalescence and derive the sFKPP solution.

By carefully choosing the initial condition, Eq. (6) sim-
plifies. If one starts with one particle at position x, i.e.
N�~x; 0� � ��~x� x�, then the left-hand side of (6) becomes
simply 1� hu�x; t�i. By starting with k particles at position
x1; . . . ; xk, one similarly obtains h	1� u�x1; t�
 . . . 	1�
u�xk; t�
i.

In addition, let us start with a step function for the
amplitude u�x; 0� � ��x�. Then h

Q
x	1� u�x; 0�


N�x;t�i
is the probability that, in the particle process, all sites x 
0 are empty. For the case of the strong noise, i.e. when the
particle system is the coalescence model, this probability is
directly obtained in terms of the density E and the duality
relation becomes

hu�x; t�i � 1� Ex��1; 0; t�;

with the initial condition

Ex�~x; ~y; 0� � 1� �x� ~x��~y� x�:

Inserting this initial condition inside the general solution
(8), we get after a bit of algebra
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2
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Dt
p
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1�

1

2
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�
x� ~x�!t

2
������
Dt
p

��	

�
1

2
e��!=D��~y�~x�

�
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�
~y� ~x� 2!t���������

8Dt
p

�

� erfc
�

~x� ~y� 2!t���������
8Dt
p

�
� erfc

�
x� ~x�!t

2
������
Dt
p

�

�

�
1�

1

2
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�
x� ~y�!t

2
������
Dt
p

��	

where erfc�x� is the complementary error function. The
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limit ~x! �1, ~y! 0 in this expression gives

hu�x; t�i �
1

2
erfc

�
x�!t

2
������
Dt
p

�

�
1

2
����������
D�t
p

Z 1
�1

d~x�~x� x�e�	�~x�!t�
2=4Dt
: (9)

This result calls for some comments. First, it corre-
sponds to a wave traveling at an average speed

! �
2D�

"2 :

This result confirms the decrease of the velocity but con-
trasts with the speed obtained in the weak-noise limit by
perturbative analysis around the F-KPP speed ’ 2

�������
D�
p

�

�2
�������
D�
p

j log�"�j�2:
The expression (9) shows that the amplitude could be

obtained from a superposition of step functions around x �
!t with a Gaussian noise of width

���������
2Dt
p

. The interesting
point here lies in the dispersion coefficient: in the weak-
noise analysis, it behaves like j log�"�j�3. We have proven
that this rise goes to 2D when the noise becomes strong.

In addition, one can probe the correlators of the ampli-
tude by starting with an initial condition with particles at
positions xmin � x1 < . . .< xk � xmax:

E�x; y; 0� � 1�
Xk
i�1

�x� xi�1��xi � x��y� xi�;

with, formally, x0 � �1. Following the same lines as
above, one gets

h	1� u�x1; t�
 . . . 	1� u�xk; t�
i � 1�
1

2
erfc

�
xmin �!t

2
������
Dt
p

�
:

We need to use this relation to obtain the correlations of u
instead of 1� u. This is obtained as follows:

hu�x1; t� . . . u�xk; t�i � hf1� 	1� u�x1; t�
g . . .

� f1� 	1� u�xk; t�
gi

�
X

A�f1;...;kg

���Ah
Y
i2A

	1� u�xi; t�
i

�
X

A�f1;...;kg

���Ah1� u�xmin�A�; t�i;

where ]A is the cardinal of the set A and min�A� is its
minimum. The sum can be reordered to give

hu�x1; t� . . . u�xk; t�i

� 1�
Xk
j�1

h1� u�xj; t�i
X

A�fj�1;...;kg

���]A

� 1�
Xk
j�1

	1� hu�xj; t�i

Xk�j
n�0

���n
k� j
n

� �
;

In the last expression, only the term with j � k survives
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FIG. 1. Comparison between the F-KPP and sFKPP wave
fronts at t � 0, 5, 10, 15 and 20. Solid curve: numerical simu-
lation of the F-KPP equation. Dashed curve: analytic result for
"2 � 1:5. Dotted curve: analytic result for "2 � 3.
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hence (with xmax � xk)

hu�x1; t� . . . u�xk; t�i �
1

2
erfc

�
xk �!t

2
������
Dt
p

�
� hu�xk; t�i:

This simple result can again be seen as a superposition of
step functions with a Gaussian dispersion. u�x1� . . . u�xk� is
nonzero provided u does not vanishes at the position with
largest coordinate (xk). Hence, the whole dynamics is the
same as if only one particle were lying at position xk in the
initial condition.2

In order to illustrate the effect of the noise, we have
plotted in Fig. 1 the time evolution of the wave front
hu�x; t�i for numerical simulations of the F-KPP equation
and for our solution (9) ("2 � 1:5 and 3). In each case, the
initial condition is a step function. We clearly see that the
effect of the strong noise is to slow down considerably the
front and add significant distortion.
IV. INTERPRETATION OF RESULTS

Coming back to QCD variables, we find (assuming
without loss of generality L1  . . .  Ln)

hT�L1; Y� . . .T�Lk; Y�i � Ak�1
0 hT�Lk; Y�i

�
Ak0
2

erfc
�
Lk � c ��Y�������������������

2Ddiff ��Y
p

�
; (10)

with the speed of the traveling front and the diffusion
2Of course, the same argument holds for the product of 1�
u�xi� and the fronts around x1.
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coefficient

c � A1 �
�A2A

2
0

��2
s

and Ddiff � 2A2: (11)

Let us discuss the physical interpretation of these results.
We start by Eq. (10). It is remarkable that the strong-
fluctuation limit gives, as an analytic solution, the asymp-
totic result inferred in previous studies [7,15]. It proves the
universal feature that high-energy scattering amplitudes
are described by a superposition of Heavyside functions
with Gaussian dispersion. We confirm analytically that the
correlators are driven by the amplitude of the largest
momentum in the process. This is the main result of this
paper.

Equation (11) relates the parameters of the amplitude
e.g. the average speed c and the diffusion constant Ddiff to
the parameters A0, A1, and A2 obtained from the expansion
(3) of the BFKL kernel. If one performs this expansion
choosing �0 �

1
2 or �0 � �c � 0:6275, as used in the

weak-noise limit, the value of A1 turns out to be negative.
This would lead to a negative speed which seems unphys-
ical in QCD. The way out of this inconsistency is to insert
the solution (10) directly into the exact evolution for
hT�L; Y�i. It has been shown [15] that it results, as ex-
pected, into a vanishing speed. The determination of c
through the evolution equation would depend on the cor-
rections to the error function, which disappear in the
strong-noise limit.

Let us sketch a heuristic argument indicating that a
physically meaningful behavior of these parameters can
be obtained in the limit �0 small. Indeed, this is suggested
by the fact that, in the strong-noise limit, each front is
approaching a Heavyside function (9) which suggests to
perform the kernel expansion near �0 � 0. Considering �0

small, one has A0 � 3��1
0 , A1 � �3��2

0 , and A2 � ��3
0 ,

leading to

c �
3

�2
0

�
3�

�3
0��

2
s
� 1

�
:

If one requires c! 0, one has to choose

�0 �

�
3�

��2
s

�
1=3
�
1� o

��
3�

��2
s

�
2=3
�	
;

where o�x� denotes a function falling to zero faster than x.
The physical parameters, in the strong-noise limit, are then

c! 0 and Ddiff �
2��2

s

3�
: (12)

It is interesting to notice that, if we choose �0 to satisfy the
only requirement that c! 0, the diffusion coefficient is
entirely determined, independently of the way this limit is
achieved.

On a more general ground, it is worth noting that the
strong-noise development should not be considered as a
strong coupling expansion since the initial Eq. (1) is de-
-4
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rived in a perturbative framework. Indeed, the genuine
expansion parameter in the strong-noise limit is ��2

s where
� could reach high values in the physical domain of interest
[16]. Thus, even in the perturbative regime, the noise
parameter ��2

s may be large. These predictions, together
with the weak-noise results, enclose the physical domain of
��2

s . The knowledge of both these limits, together with
information from numerical estimates [17], can lead to a
better understanding of the physics of fluctuations. An
expansion in 1=���2

s� also could lead to faster convergence
than the logarithmic weak-noise expansion [18].

V. SUMMARY

Let us summariz our results. We have used the duality
relation between the amplitude given by the stochastic
FKPP equation and the particle densities in a reaction-
diffusion process. This duality is physically similar to the
projectile-target duality noticed recently in high-energy
QCD when both saturation and fluctuation effects are taken
into account. The saturation in the target is related to
splitting in the projectile while fluctuations are mapped
to recombination in the particle system.

In the case of large fluctuations i.e. strong noise in the
sFKPP equation, the corresponding particle system can be
described as a coalescence problem. This process can be
solved exactly using the interparticle probability distribu-
tion function. We use this to compute the average value of
the amplitude as well as the correlators.
114005
The main result of our analysis is the analytic derivation
of the average scattering amplitude as a universal error
function (10) which also determines higher-order correla-
tors. This picture proposed in previous studies is thus
confirmed and shows that the results obtained in the limit
of strong fluctuations possess a physical meaning.

The fact that the correlators display the same behavior as
the amplitude itself is physically interesting. This is ob-
tained through a superposition of event-by-event ampli-
tudes which are 0 or 1. The dominant contribution to the
scattering process comes when all individual scatterings
are 1. This picture of a black and white target gives rise to
new scaling laws for deep inelastic scattering [15].

Since the physically acceptable values of the strong
coupling seem to lie in between the strong and the weak-
noise limits, a knowledge of both approaches is useful.

As an outlook, it would be interesting to extend our
formalism beyond the diffusive approximation and/or to
modified evolution kernels [19]. This may allow a better
determination of the speed and dispersion coefficient,
given by (12) in the diffusive approximation. Also, a
perturbative approach starting from the strong-noise limit
could prove useful. These questions certainly deserve fur-
ther studies.
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