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We study O��2
s�0� perturbative corrections to matrix elements entering two-body exclusive decays of

the form �B! ��, �K in the QCD factorization formalism, including chirally enhanced power
corrections, and discuss the effect of these corrections on direct CP asymmetries, which receive their
first contribution at O��s�. We find that the O��2

s�0� corrections are often as large as the O��s�
corrections. We find large uncertainties due to renormalization scale dependence as well as poor
knowledge of the nonperturbative parameters. We assess the effect of the perturbative corrections on
the direct CP violation parameters of B0 ! ����.
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I. INTRODUCTION

In recent years a wealth of new data on two-body non-
leptonic B decays to light pseudoscalar final states has been
produced by the CLEO [1–3], BABAR [4–12] and BELLE
[13–17] experiments. This experimental program provides
a rich context for the precision study of the weak sector of
the standard model. However, in nonleptonic decays all of
the final-state particles are QCD bound states which inter-
act strongly with one another. There is therefore nonper-
turbative physics in the low energy matrix elements which
is an obstacle to precise calculations.

These low energy matrix elements can be evaluated if it
is assumed that they factorize into simpler matrix elements
[18]. For example,

h��K�j� �ub�V�A��su�V�Aj �Bi ! hK
�j��su�V�Aj0i

� h��j� �ub�V�Aj �Bi: (1)

The matrix elements on the right-hand side can be parame-
trized in terms of form factors and decay constants. This
‘‘naive factorization’’ prescription has in some cases
proven to be a remarkably successful approximation [19–
21]. As it stands, however, there is no way to improve the
calculation by making systematic corrections in a con-
trolled expansion. Moreover, the missing ‘nonfactorizable’
physics is responsible for final-state rescattering and strong
interaction phase shifts, and is therefore of considerable
interest.

Beneke, Buchalla, Neubert, and Sachrajda (BBNS) [22–
24] have argued that for certain classes of two-body non-
leptonic B decays the strong interactions which break
factorization are perturbative in the heavy quark limit
[22,23]. The physical picture behind this claim is ‘‘color
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transparency’’; gluons must be energetic to resolve the
small color dipole structure of the energetic light meson
in the final state. The BBNS proposal, called QCD facto-
rization, was accompanied by a demonstration that, for
heavy-light final states, it holds up to two-loop order [23]
in the heavy quark limit. This conclusion was subsequently
extended to all orders in perturbation theory [25,26].

The BBNS proposal reproduces naive factorization as
the leading term in an expansion in �s and �QCD=mb,
thereby placing naive factorization on a more secure theo-
retical foundation. Although there has been some recent
progress [27–33], at present there exists no systematic way
to address the �QCD=mb corrections. The perturbative
corrections, on the other hand, can be calculated, and the
O��s� corrections are known for a variety of decay modes
[22–24,34–36].

In this paper we study O��2
s�0� perturbative corrections

to B decays of the form B! ��, �K. Though this is only
a subset of the full O��2

s� correction, the method is moti-
vated by the empirical observation that the O��2

s�0� con-
tribution often dominates the full result. For example, this
is true for R�e�e� ! hadrons� [37], ���! �� � hadrons�
[38], and ��b! Xue ��e� [39]. The dominance of the
O��2

s�0� contribution becomes rigorous in the very formal
‘large-�0 limit’ of QCD, where the number of colors is
fixed and the number of flavors nf ! �1, resulting in
�0 � 11� 2=3nf ! 1.

The perturbative corrections we consider arise from
three sources: ‘nonfactorizable’ vertex corrections, QCD
penguin diagrams, and spectator quark interactions. In the
BBNS framework the computation of these amplitudes
requires the introduction of a number of nonperturbative
parameters. We study the numerical significance of the
uncertainties due to these parameters. We neglect power
corrections of the form O��QCD=mb�

n, with the exception
of a class of ‘‘chirally enhanced’’ corrections that can be
numerically significant. Renormalon studies of these de-
-1 © 2006 The American Physical Society
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cays indicate that the leading power corrections from soft
gluons are at O��QCD=mb� [40]. This is in contrast to B!
D� decays where a similar analysis points to leading
power corrections at O��QCD=mb�

2 [41,42].
The calculations presented in this paper are similar to

calculations performed earlier by Neubert and Pecjak in
[40], although they differ in several important ways. The
goal of the previous paper was to study power corrections
to B! LL decays in a manner similar to what had been
done for B! D���L decays in [41,42]. The authors calcu-
lated the amplitudes to O�1=�0�, which is subleading in the
large-�0 limit. With these expressions, they derived pre-
dictions for the CP asymmetries of several decay modes.
The calculation involved summing a class of graphs to all
orders in perturbation theory, and extracting from their
large order perturbative behavior information about power
corrections. Estimates of the O��ns�

n�1
0 � corrections were

also made in the large-�0 limit.
Our focus is the convergence behavior of perturbation

theory in the BBNS framework. Instead of calculating to
subleading order in the large-�0 limit, we restrict ourselves
to O��2

s�0� corrections. To avoid the need for Wilson
coefficients evaluated at NNLO, we concentrate on observ-
ables which vanish at leading order in perturbation theory.
In particular, we study the direct CP asymmetries for six
pseudoscalar final states ADir

CP���;�K�. Though several
of these modes also exhibit indirect CP violation, we
restrict our discussion to direct CP violation only. We
find that the O��2

s�0� corrections are similar in size to
the O��s� values. We also find that the greatest uncertainty
in the CP asymmetries is due to the renormalization scale
dependence, which is enhanced by the O��2

s�0� correc-
tions. In contrast, the uncertainties induced in the asym-
metries by nonperturbative parameters are relatively small.
Of particular interest is the mode ADir

CP��
� �K0� which, to

the order we work, is independent of most of the non-
perturbative parameters in the analysis.

At the end of the paper we present a more detailed
analysis of the direct asymmetry parameter A��, which
has attracted considerable interest recently [8,15]. We find
that this parameter receives a substantial correction at
O��2

s�0�, the size of which we give as a function of the
unitarity angle �. We examine the relationship between
this quantity and the current experimental values, and find
them to be in agreement within the large theoretical and
experimental uncertainties.

The structure of this paper is as follows: in the first
Section we briefly review the theoretical context for our
calculation; in the subsequent Section we give an outline of
our method and collect most of our analytical results. This
is followed by a brief phenomenological study of direct CP
asymmetries for a variety of different decays to ��, �K
final states, paying special attention to the O��2

s�0� cor-
rections. In the concluding Section we summarize our
results.
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II. THEORETICAL BACKGROUND

We work in the weak effective theory where the weak
bosons and top quark have been integrated out. The effec-
tive Hamiltonian, valid below MW , is

H eff �
GF���

2
p

X
p�u;c

��0�p

�
C1O

p
1 � C2O

p
2 �

X
i�3;...;6

CiOi

� C8gO8g

�
� h:c:; (2)

where the CKM matrix elements are �p � V�psVpb for the
�S � 1 Hamiltonian and �0p � V�pdVpb for decays to non-
strange final states. The effective operators mediating the
decays are divided into left-handed current-current opera-
tors �Op

1;2�, QCD penguin operators �O3;...;6�, and a chro-
momagnetic dipole operator (O8g). Explicitly, the operator
basis for the �S � 1 Hamiltonian is [43]

Op
1 �� �pb�V�A��sp�V�A; Op

2 �� �pibj�V�A� �sjpi�V�A;

O3���sb�V�A
X
q

� �qq�V�A; O4�� �sibj�V�A
X
q

� �qjqi�V�A;

O5���sb�V�A
X
q

� �qq�V�A; O6�� �sibj�V�A
X
q

� �qjqi�V�A;

O8g�
�gs
8�2mb �s�	��1��5�G

	�b: (3)

The �S � 0 operator set is as above with the s fields
replaced by d fields. In these expressions we use the short-
hand � �qq0�V�A � �q�	�1� �5�q

0 for the Dirac structures.
Roman indices on quark fields denote SU�3� color struc-
ture, and the summations over q in the penguin operators
O3�6 run over all five active quark flavors q 2
fd; u; s; c; bg. Some authors include in (3) a set of electro-
weak penguin operators which, however, produce only
small effects and are neglected in our analysis. The values
of the Wilson coefficients Ci�	� are obtained by matching
the effective theory onto the full theory at 	 � mW and
running down to 		mb. This procedure has been carried
out to NLO in QCD, the results of which can be found in
[43].

The low energy dynamics are contained in the matrix
elements of the four-quark operators Oi. In the BBNS
framework these matrix elements are given by

hM1M2jOj �Bi � FB!M1�m2
M2
�fM2

Z 1

0
dxTI�x��M2

�x�

� �M1 $ M2� �
Z 1

0
dxdyd
TII�x; y; 
�

��M1
�y��M2

�x��B�
� �O

�
�QCD

mb

�
; (4)

where M1 is the meson which receives the spectator quark
of the B meson and M2 is called the ‘‘emission meson’’.
The nonperturbative elements in this expression are the B
decay form factors FB!M, the final-state meson decay
constants fM, and the light-cone momentum distribution
-2
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amplitudes �M, which give the probability for a valence
quark to carry a particular fraction of the meson’s light-
cone momentum. The quark and antiquark composing the
emission meson M2 are assigned momentum fractions x
and �x, respectively. Likewise the quark and antiquark inM1

are assigned momentum fractions y and �y, respectively.
The light antiquark in the B meson is assigned momentum
fraction 
 of the B meson momentum. In the heavy quark
limit, we can neglect components of momentum transverse
to the light cone, and consider only the Fock state contain-
ing the valence quark and antiquark. Thus we have �x �
1� x, and likewise for y and 
.

The factorization-breaking corrections are contained in
the hard-scattering kernels TI�x� and TII�x; y; 
�, each of
which has a perturbative expansion. At leading order, the
hard-scattering kernels take the values [22,23,44]

TI�x� � 1�O��s�; TII�x; y; 
� � 0�O��s� (5)

and, given that the light-cone wavefunctions �Mi
are nor-

malized to unity, (4) reduces to naive factorization.
The nonperturbative light-cone distribution amplitudes

(LCDAs) �M in (4) are defined by [45,46]

hP�p�j �q��z2�q��z1�j0i � i
fP
4

Z 1

0
dxei�xp
z2� �xp
z1�

�

�
p6 �5��x� �	P�5

�
�p�x�

� �	�p	�z2 � z1��
���x�

6

��
��
:

(6)

In this equation ��x� is the meson twist-2 LCDA, and
�p;��x� are twist-3 LCDAs which will contribute to the
‘‘chirally enhanced’’ power corrections below. The quan-
tity 	P appearing in (6) is a ‘‘chiral enhancement’’ factor

	P �
m2
P

mq �m �q
; (7)

where q and �q are the quarks which comprise the valence
state of the pseudoscalar meson P. In practice one intro-
duces these LCDAs into Feynman amplitudes by replacing
quark bilinears with a projection matrix M [24]

�u �;a�xp����;abv�;b� �xp� !
ifP
4Nc

Z 1

0
dxMP

�����;aa; (8)

where

MP � p6 �5��x� �	P�5
p6 2p6 1

p1 
 p2
�p�x�: (9)

In these expressions Greek indices denote Dirac structure,
Roman indices denote color structure, and � is an arbitrary
combination of Dirac and color matrices. The momenta
p1;2 are the momenta of the meson quark and antiquark,
respectively. In the collinear limit p1 � xp and p2 � �xp.
In order to arrive at (9) from the definition (6) the equations
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of motion for the twist-3 LCDAs and an integration by
parts have been used to eliminate �� [24,47].

Throughout this paper we write the twist-2 LCDAs as a
decomposition over Gegenbauer polynomials as [48]

�M�x� � 6x�1� x�
�

1�
X1
n�1

�Mn �	�C
3=2
n �2x� 1�

�
; (10)

where the Gegenbauer polynomials C3=2
n �y� are defined by

the generating function

C3=2
n �y� �

1

n!

dn

dhn
�1� 2hy� h2��3=2

��������h�0
: (11)

The Gegenbauer moments �Mi have been studied using
nonperturbative methods in QCD and, for many light
mesons, estimates exist for the leading moments �M1;2
[45,49,50]. In the far ultraviolet 	! 1 we have �Mi !
0, so at the scale 		mb, which is still large compared to
the nonperturbative scale of QCD, the Gegenbauer mo-
ments �Mi are expected to be small. This statement will be
made more quantitative in Sec. IV. In the approximation of
including only ‘‘chirally enhanced’’ twist-3 contributions,
the twist-3 LCDA equations of motion constrain �p�x� to
take its asymptotic form �p�x� � 1 [24].

Following the authors of [24] we use the factorization
formula (4) to rewrite matrix elements of (2) in the conve-
nient form

h�KjHeffj �Bi �
GF���

2
p

X
p�u;c

�ph�KjT pj �Bi; (12)

where

T p � a1�pu� �ub�V�A � � �su�V�A � a2�pu��sb�V�A

� � �uu�V�A � a3

X
q

� �sb�V�A � � �qq�V�A

� ap4
X
q

� �qb�V�A � � �sq�V�A � a5

X
q

� �sb�V�A

� � �qq�V�A � a
p
6

X
q

��2�� �qb�S�P � � �sq�S�P (13)

where � �qq0�S�P � �q�1� �5�q
0, and a summation over q 2

fu; dg is implied. There is a similar expression for �� final
states, obtained by replacing the s quark by a d quark.
Matrix elements of operators containing the � product are
to be evaluated as one would in naive factorization

hM1M2jj1 � j2jBi � hM1jj1jBihM2jj2j0i or

hM2jj1jBihM1jj2j0i;
(14)

where the choice depends on the specific quark content of
the mesons in the process under consideration. The non-
factorizable corrections are contained in the coefficients ai.
Though we have not explicitly indicated it in (13), in
general these coefficients are mode specific, dependent
on the shapes of the LCDAs of the final-state particles.
We present the explicit forms for ai in Sec. III.
-3
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FIG. 1. The form of the dashed gluon line in Figs. 2– 4 at each
order in perturbation theory. Where an undressed gluon line
provides the O��s� contribution, the fermion-loop self-energy
correction produces the O��2

s�0� contributions.
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III. PERTURBATIVE CORRECTIONS

We consider three classes of diagrams: factorization-
breaking vertex diagrams, strong interactions with the
initial state spectator quark, and QCD penguin diagrams.
They are shown in Figs. 2–4. The first and third of these
classes contribute to the hard-scattering kernel TI in (4);
the second contributes to TII. In this paper we do not
include the power-suppressed weak annihilation diagrams
which have been studied by other authors [24].

The diagrams at O��2
s�0� are obtained by replacing the

gluon in the O��s� diagram by a gluon with a fermion-loop
self-energy correction, as shown in Fig. 1, followed by the
replacement nf ! �3�0=2.
B M1

M2

B M1

M2

B M1

M2

B M1

M2

FIG. 2. The factorization-breaking vertex diagrams.
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All of the perturbative corrections are contained in the
coefficients ai defined in (13). These coefficients may be
written as
a1 � C1 �
C2

Nc

�
1� CF

�
�s�	�

4�
VM2
�

�
�s�	�

4�

�
2
�0

~VM2

�
�

4CF�2

Nc

�
�s�	h�

4�
HM2M1

�

�
�s�	h�

4�

�
2
�0

~HM2M1

��
;

a2 � C2 �
C1

Nc

�
1� CF

�
�s�	�

4�
VM2
�

�
�s�	�

4�

�
2
�0

~VM2

�
�

4CF�2

Nc

�
�s�	h�

4�
HM2M1

�

�
�s�	h�

4�

�
2
�0

~HM2M1

��
;

a3 � C3 �
C4

Nc

�
1� CF

�
�s�	�

4�
VM2
�

�
�s�	�

4�

�
2
�0

~VM2

�
�

4CF�2

Nc

�
�s�	h�

4�
HM2M1

�

�
�s�	h�

4�

�
2
�0

~HM2M1

��
;

ap4 � C4 �
C3

Nc

�
1� CF

�
�s�	�

4�
VM2
�

�
�s�	�

4�

�
2
�0

~VM2

�
�

4CF�2

Nc

�
�s�	h�

4�
HM2M1

�

�
�s�	h�

4�

�
2
�0

~HM2M1

��

�
CF
Nc

�
�s�	�

4�
PpM2;2

�

�
�s�	�

4�

�
2
�0

~PpM2;2

�
;

a5 � C5 �
C6

Nc

�
1� CF

�
�s�	�

4�
V 0M2
�

�
�s�	�

4�

�
2
�0

~V 0M2

�
�

4CF�2

Nc

�
�s�	h�

4�
H0M2M1

�

�
�s�	h�

4�

�
2
�0

~H0M2M1

��
;

ap6 � C6 �
C5

Nc

�
1� CF

�
�s�	�

4�
��6� �

�
�s�	�

4�

�
2
�0��4�

��
�
CF
Nc

�
�s�	�

4�
PpM2;3

�

�
�s�	�

4�

�
2
�0

~PpM2;3

�
;

(15)
where Ci � Ci�	�. The nonperturbative physics is con-
tained in the functions labeled V, H, and P, according to
the type of diagram from which they arise. In particular, the
nonfactorizable vertex corrections, treated in Sec. III A
below, produce the functions V�0�M and ~V�0�M . The scattering
of hard gluons off the spectator quark, treated in Sec. III B,
gives rise to the functions H�0�M2M1

and ~H�0�M2M1
. Graphs with

penguin topologies, discussed in Sec. III C, produce the
PpM2;n

and ~PpM2;n
functions, where n refers to the twist of the

LCDA that enters the evaluation of the function. All of
these functions consist of convolutions of hard-scattering
kernels with meson light-cone distribution amplitudes, as
will be shown below.

The scale at which renormalization scale dependent
quantities are to be evaluated differs depending on the
source of the contribution. In particular, while the vertex
B M1

M2

B M1

M2

FIG. 3. The factorization-breaking spectator scattering dia-
grams.
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B M1

M2

B M1

M2

FIG. 4. The penguin and magnetic dipole diagrams.
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and penguin diagrams are evaluated at a scale 		mb, the
spectator scattering contributions are evaluated at a lower

scale 	h 	
������������������
mb�QCD

q
. This applies to all scale dependent

quantities multiplying the spectator scattering functions
H�0�, including the Wilson coefficients [24].

A. Vertex diagrams

The first class of diagrams we consider are those shown
in Fig. 2 in which a hard gluon is exchanged between the
emission meson M2 and the quarks involved in the B!
M1 transition. These amplitudes are proportional to both
fM2

and FB!M1
0 �0� and contribute to the kernel TI in (4). In

terms of the coefficients ai in (15) they produce V�
0�
M2

at

O��s� and ~V�
0�
M2

at O��2
s�0�.

Although when evaluated in D � 4� 2� dimensions
each of these diagrams contains a 1=�2 pole from infrared
and collinear divergences, these cancel in the sum of the
four diagrams, leaving a residual UV 1=� pole to be
renormalized. We renormalize in the MS scheme, treating
�5 in the naive dimensional regularization (NDR) prescrip-
tion [51]. For completeness we restate the result of
Ref. [24] for the O��s� contributions

VM � �6
�

ln
�
	2

m2
b

�
�

5

3

�
� 1�

Z 1

0
dxg�x��M�x�; (16)
and

V0M � �6
�

ln
�
	2

m2
b

�
�

5

3

�
� 11�

Z 1

0
dxg�1� x��M�x�;

(17)
where the integration kernel is

g�x� �
�

3�1� 2x�
2�1� x�

ln�x� �
1

2
�7� 3i�� � �x$ �x�

�

�

�
ln�x�

2�1� x�
� 2i� ln�x� � ln2�x� � 2Li2�1� x�

� �x$ �x�
�
: (18)
114004
For the next order result we find

~V M � �3
�

ln
�
	2

m2
b

�
�

5

3

�
2
�

�
ln
�
	2

m2
b

�
�

5

3

�

�
Z 1

0
dxg�x��M�x� �

Z 1

0
dxh�x��M�x� �

65

12
;

(19)

and

~V 0M � �3
�

ln
�
	2

m2
b

�
�

5

3

�
2
�

�
ln
�
	2

m2
b

�
�

5

3

�Z 1

0
dxg�1

� x��M�x� �
Z 1

0
dxh�1� x��M�x� �

5

12
:

(20)

The function h�x� appearing in this expression is given
by

h�x��
�
�

3�1�3x�
4�1�x�

ln2�x��
�
7�1�2x�
4�1�x�

�
3

2
i�
�

ln�x�

�
3xLi2�1�x�

2�1�x�
�

1

4
�15�7i����x$ �x�

�

�

�
ln3�x��

�
5�3x

4�1�x�
�2ln�1�x�� i�

�
ln2�x�

�

�
1

4�1�x�
�2�2�

3

2
i�
�

ln�x��
4�3x

2�1�x�
Li2�1�x�

�2Li3�1�x��4Li3�x���x$ �x�
�
: (21)

This function has previously been derived in [42]; we
confirm that result.

One may notice from a comparison of the factorized
operator (13) with the pattern of vertex graph contributions
to the ai coefficients in (15) that the unprimed functions V,
~V are associated with �V � A� � �V � A� operator struc-
tures, while V 0, ~V 0 are associated with �V � A� � �V � A�
structures. The remaining operator structure present in (13)
is �S� P� � �S� P�, and this receives a nonzero vertex
contribution only when the twist-3 LCDAs �p are in-
cluded. We have used the fact that, in the approximation
of including only the ‘‘chirally enhanced’’ terms at twist-3,
�p has its asymptotic form �p�x� � 1 to carry out the
momentum fraction integrals, resulting in the constants
‘�6’ and ‘�4’ appearing in a6 of (15) at O��s� and
O��2

s�0�, respectively.
Using the Gegenbauer expansion for the LCDAs �M,

we carry out the integration over momentum fraction x to
obtain
Z 1

0
dxg�x��M�x� � �

15

2
� 3i��

�
11

2
� 3i�

�
�M1

�
21

20
�M2 �

�
79

36
�

2

3
i�
�
�M3 � 
 
 


(22)
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and
Z 1

0
dxh�x��M�x� � �

2�
33

2
� 6i�

�

�
3�2�

65

6
�

11

2
i�
�
�M1

�

�
3

2
�2�

7359

400
�

9

10
i�
�
�M2

�

�
5

18
�2�

10481

720
�

37

15
i�
�
�M3 � 

 


(23)

Thus the vertex diagrams introduce complex phases into
the amplitude, and the magnitude of the phase depends on
the shape of the LCDAs parametrized by �Mi .

B. Spectator scattering diagrams

The two diagrams involving hard scattering with the
spectator quark are shown in Fig. 3. The O��s� corrections
are expressed in Ref. [24] in terms of two functions H�

0�
M2M1

as shown in (15). We choose to write these functions as

H�
0�
M2M1

�
fBfM1

m2
BF

B!M1
0 �0�

Z 1

0
dx
Z 1

0
dy
Z 1

0
d


�

�
2H
�0�
M2M1
�x; y; 
��M2

�x��M1
�y��B�
�

�
2	M1

mb
3H
�0�
M2M1
�x; y; 
��M2

�x��M1
p �y��B�
�

�
;

(24)

where we have divided the integration kernel into twist-2
(H�

0�) and twist-3 �3H�
0�� components. In the approximation


 x, y, which one expects to be valid through most of
phase space, the integration kernels are

2HM2M1
�x; y; 
� � 3H

0
M2M1
�x; y; 
� �

1

�x �y 

;

2H
0
M2M1
�x; y; 
� � 3HM2M1

�x; y; 
� �
1

x �y

:

(25)

If one replaces the light-cone distribution functions �M
with their expansions in terms of Gegenbauer polynomials
(10) and carries out the integrations in (24), one finds

H�
0�
M2M1

�
fBfM1

mB�BF
B!M1
0 �0�

�
9�1� �M1

1 � �
M1
2 � 
 
 
�

� �1� �M2
1 � �

M2
2 � 
 
 
�

�
6	M1

mb
XM1
H �1� �

M2
1 � �

M2
2 � 
 
 
�

�
; (26)

where the ellipses denote higher order Gegenbauer mo-
ments, and in ‘�=�’ the top symbol applies to H and the
bottom symbol to H0. Following Refs. [22–24] we have
also introduced two parameters �B and XM1

H defined by
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Z 1

0
d


�B�
�


�
mB

�B
;

Z 1

0
dy

�M1
p �y�

�y
� XM1

H : (27)

Because the light quark in the B meson carries a small
momentum fraction, the wavefunction �B�
� has support
only for 0< 
 & �QCD=mb. The definition (27) then im-
plies �B 	�QCD. It is necessary to introduce the parameter
XM1
H because, with the asymptotic form for �M1

p � 1, the
integration contains a logarithmic divergence when the B
meson spectator quark enters M1 as a soft quark �y	 0.
This divergence is a consequence of our having neglected
the small transverse components of momentum and quark
off-shellness [24]. XM1

H is therefore a new complex non-
perturbative parameter, and by power counting it is of size
XM1
H 	 ln�mb=�QCD�.
At next perturbative order one finds two new functions

~H�
0�
M2M1

defined by

~H�
0�
M2M1

�

�
ln
�
	2

m2
B

�
�

5

3

�
H�

0�
M2M1

�
fBfM1

m2
BF

B!M1
0 �0�

Z 1

0
dx
Z 1

0
dy

�
Z 1

0
d

�

2
~H�
0�
M2M1
�x;y;
��M2

�x��M1
�y��B�
�

�
2	M1

mb
3

~H�
0�
M2M1
�x;y;
��M2

�x��M1
p �y��B�
�

�
;

(28)

where the new hard-scattering kernels are

2
~HM2M1

�x; y; 
� � 3
~H0M2M1

�x; y; 
� �
ln�
 �y�
�x �y 


;

2
~H0M2M1

�x; y; 
� � 3
~HM2M1

�x; y; 
� �
ln�
 �y�
x �y


:

(29)

Carrying out the integrations explicitly one arrives at

~H�
0�
M2M1

�

�
ln
�
	2

m2
B

�
�

5

3

�
H�

0�
M2M1

�
fBfM1

mBF
B!M1
0 �0�

�

�
27

2�B

�
1�

17

9
�M1

1 �
43

18
�M1

2 �




�
�1��M2

1

��M2
2 �


��

9
~�B
�1��M1

1 ��
M1
2 �


�

��1��M2
1 ��

M2
2 �


��

6	M1

mb

� ~XM1
H

�B
�
XM1
H
~�B

�

��1��M2
1 ��

M2
2 �


�

�
: (30)

The large coefficients in the second line of (30) result from
the integral

R
1
0 ln �y��y�= �ydy. In the Gegenbauer expansion

of the LCDA � all of the Gegenbauer moments �i enter
with large coefficients, so only if the moments themselves
decrease quickly will this integral be well represented by
the terms we retain. In addition we have been forced to
introduce two additional parameters similar to those in
-6
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(27):

Z 1

0
d


ln
�B�
�



�
mB

~�B
;

Z 1

0
dy

ln �y�M1
p �y�
�y

� ~XM1
H :

(31)

By power counting these parameters are of order ~�B 	
�QCD= ln��QCD=mb� and ~XM1

H 	 Li2��mb=�QCD�.

C. QCD penguin diagrams

An important source of strong phases in the decay
amplitudes are the QCD penguin diagrams, shown in
Fig. 4. These diagrams give rise to the functions PpM;i and
~PpM;i appearing in (15). The four quark operators in the
Hamiltonian (3) contribute to the left-hand diagram, while
the chromomagnetic dipole operator O8g contributes in the
right-hand diagram.

We begin by stating the results at O��s�. At twist-2 one
finds [24]

PpM;2 �
Z 1

0
dxPp2 �x��M�x�

Pp2 �x� � C1

�
4

3
ln
mb

	
�

2

3
�G�sp; x�

�
� C3

�
8

3
ln
mb

	
�

4

3

�G�0; x� �G�1; x�
�
� �C4 � C6�

�
4nf
3

ln
mb

	

� �nf � 2�G�0; x� �G�sc; x� �G�1; x�
�

� 2Ceff
8g

1

1� x
; (32)

where nf � 5 is the number of active quark flavors, sq �
�mq=mb�

2, and Ceff
8g � C8g � C5.

The function G�s; x� in (32) is given by the integral

G�s;x���4
Z 1

0
duu�1�u� ln�s�u�1�u��1�x�� i��:

(33)

The integral
R

1
0 dxG�sp; x���x� is complex and contributes

to the strong phase of the amplitude for s < 1=4; that is, for
all quark flavors except the b quark.

The order O��2
s�0� results at twist-2 we find to be

~PpM;2 �
�

ln
�
	2

m2
b

�
�

5

3

�
PpM;2

�
Z 1

0
dx ln�x� 1� i��Pp2 �x��M�x�: (34)

A similar situation exists when one turns to the twist-3
terms. One finds the leading corrections involve
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PpM;3 �
Z 1

0
dxPp3 �x��

M
p �x�

Pp3 �x� � C1

�
4

3
ln
mb

	
�

2

3
�G�sp; x�

�
� C3

�
8

3
ln
mb

	
�

4

3

�G�0; x� �G�1; x�
�
� �C4 � C6�

�
4nf
3

ln
mb

	

� �nf � 2�G�0; x� �G�sc; x� �G�1; x�
�
� 2Ceff

8g ;

(35)

where the twist-3 distribution function �M
p �x� has replaced

the twist-2 distribution in (32).
The O��2

s�0� function is, in a manner closely analogous
to (34), given by

~PpM;3 �
�

ln
�
	2

m2
b

�
�

5

3

�
PpM;3

�
Z 1

0
dx ln�x� 1� i��Pp3 �x��

M
p �x�: (36)

The expressions which result from carrying out the
integrations over momentum fractions are quite compli-
cated for the penguin diagrams, and we refrain from pre-
senting them here.
IV. PHENOMENOLOGICAL ANALYSIS

In this section we take the analytic results of Sec. III and
study direct CP asymmetries for various �� and �K final
states. We begin by giving the expressions for the decay
amplitudes and the definitions for the CP asymmetries. In
the next subsection we collect and discuss the input pa-
rameters we use to obtain numerical results. This is fol-
lowed by a presentation and discussion of the results.

A. Definitions of branching ratios and CP asymmetries

In terms of the coefficients ai and the factorized matrix
elements defined by

AM1M2
� i

GF���
2
p �m2

B �m
2
M1
�FB!M1

0 �m2
M2
�fM2

; (37)

the B! �K decay amplitudes are

A�B�!�� �K0���p

�
ap4�

2	K

mb
ap6

�
A�K;

�
���
2
p

A�B�!�0K���
�
�ua1��pa

p
4��p

2	K

mb
ap6

�
A�K

���ua2�AK�;

�A� �B0!��K���
�
�ua1��pa

p
4��p

2	K

mb
ap6

�
A�K;

���
2
p

A� �B0!�0 �K0��A�B�!�� �K0��
���
2
p

A�B�

!�0K���A� �B0!��K��: (38)
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In these expressions ai � ai��K�, �p � V�psVpb, and a
summation over p 2 fu; cg is implicit in expressions like
�pa

p
i . The last relation is a consequence of isospin

symmetry.
The B! �� decay amplitudes are given by

�A� �B0!������
�
�0ua1��0pa

p
4��

0
p

2	�

mb
ap6

�
A��;

�
���
2
p

A�B�!���0�� ��0u�a1�a2��A��;

A� �B0!�0�0��
���
2
p

A�B�!���0�

�A� �B0!�����; (39)

where now ai � ai���� and �0p � VpbV�pd. The CP con-
jugate decay amplitudes are obtained from the above by
replacing ��0�p ! ��

�0�
p ��. Note that none of these decay

modes are dependent on a3 or a5. These factors, therefore,
play no further role in our discussion.
CP violation can occur either directly via a difference

between CP conjugate decay rates ��B! f� � �� �B! �f�
or, for neutral B mesons, indirectly via B0 � �B0 mixing.
Accordingly, we treat the two cases separately.

For the decays B� ! �� �K0, B� ! �0K�, and �B0 !
��K�, the CP asymmetry is time independent and is
defined as

A CP� �f� �
jA� �B! �f�j2 � jA�B! f�j2

jA� �B! �f�j2 � jA�B! f�j2
; (40)

where our sign convention is set by defining �B � �B0, B� as
an initial state containing a b quark, and B � B0, B� as
containing an initial b antiquark. This CP asymmetry
vanishes in the limit of naive factorization, and first occurs
at order �s in the BBNS formalism. As such, it can be
calculated to order �2

s�0 with knowledge of only the next-
to-leading order Wilson coefficients.

For the neutral B meson decays to final states f for
which there are interference effects between B0 ! f and
B0 ! �B0 ! f, the resulting CP asymmetry is time depen-
dent

A CP�t; �f��
jA� �B0�t�! �f�j2�jA�B0�t�!f�j2

jA� �B0�t�! �f�j2�jA�B0�t�!f�j2
: (41)

In this paper the modes which fall into this class are �B0 !
�0KS, �B0 ! ����, and �B0 ! �0�0. This asymmetry is
often written as

A CP�t; �f� �A �f cos��mt� � S �f sin��mt�; (42)

where A �f characterizes the direct CP violation due to
interference of different diagrams contributing to the de-
cay, and S �f measures the indirect CP violation which
originates from mixing between the B0 and �B0 initial
states. Measuring the time dependence of the CP asym-
metry allows one to separate the contributions of these two
mechanisms.
114004
Similar to the case of the time independent CP asym-
metry above, A �f first occurs at order �s, and can be
calculated with knowledge of only the leading order
Wilson coefficients. Note that A �f is simply the time
dependent asymmetry evaluated at t � 0, and is given by
(40). S �f on the other hand is nonzero in naive factorization,
and its determination requires knowledge of the NNLO
Wilson coefficients. As such, we will not consider S �f any
further in this paper.

If we write the Feynman amplitudes (38) and (39) in the
form A � ��0�u u� �

�0�
c c and decompose the two terms into

perturbative contributions

u � u0 �
�s
4�

u1 �
�2
s

�4��2
�0u2

c � c0 �
�s
4�

c1 �
�2
s

�4��2
�0c2;

(43)

then we have

A Dir
CP��2Im���0�u ��

�0�
c ���

�
Im�u�c�

j��0�u j2juj2�j�
�0�
c j2jcj2�2Re���0�u ��

�0�
c ���Re�u�c�

(44)

We can expand ADir
CP to order O��2

s�0� to obtain

ADir
CP �

2 Im���0�u ��
�0�
c ���

���0�u u0 � �
�0�
c c0����

�0�
u ��u0 � ��

�0�
c ��c0�

�

�
�s
4�
�u0 Im�c1� � c0 Im�u1��

�
�2
s

�4��2
�0�u0 Im�c2� � c0 Im�u2��

�
; (45)

where we have used the fact that u0 and c0 are real. Note
that to this order the direct CP asymmetry is not sensitive
to the real part of the perturbative corrections. Note also
that, as anticipated, we require only the next-to-leading
order behavior of the Wilson coefficients.

B. Comparison to previous work

As mentioned earlier, the calculations presented in this
paper are similar to calculations presented earlier by
Neubert and Pecjak in [40]. Performing a renormalon
analysis, they estimated both perturbative and power cor-
rections in the context of the large-�0 limit. This limit is a
way of organizing the perturbative expansion that differs
from what is typically done in renormalization group im-
proved (RG-improved) perturbation theory. The most im-
portant difference is the power counting. Rather than
expanding in the strong coupling, �0 is taken to be large
and one expands in powers of 1=�0. �s is still considered
to be a small parameter in this limit and scales like �s 	
O�1=�0�. In practice the large-�0 scaling is implemented
by switching to a rescaled coupling b�	� related to the
-8
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leading order running of �s:

�s�	� ! b�	� � �0
�s�	�

4�
�

1

log�	2=�2
MS
�
; (46)

where b�	� 	O�1�. In contrast to RG-improved perturba-
tion theory, log�M=	� is of O�1� in the large-�0 limit.
Furthermore, before one expands in 1=�0, all occurrences
of nf are replaced by nf ! �3�0=2.

This unusual counting scheme forces one to sum certain
classes of diagrams to all orders in perturbation theory. The
fermion bubbles of Fig. 1 are a special case as they scale as
�s�0 	O�1� after the replacement nf ! �3�0=2. Thus
one must sum an infinite number of fermion bubbles into
gluon propagators. The use of such summations is a com-
mon technique in renormalon analyses [52].

In [40], in order to calculate the ai to subleading order,
both the hard-scattering kernels and the Wilson coeffi-
cients had to be calculated to NLO in the large-�0 limit.
As the hard-scattering kernels are O�1�, the Wilson coef-
ficients had to be calculated to O�1=�0�. Because they are
determined by matching at the weak scale (	 � mW) and
running down to the scale of the decay (		mb), it was
necessary to have the O�1=�0�matching as well. However,
it was argued by the authors that the difference between the
NLO matching and O�1=�0� matching was negligible so
that the currently known one-loop (NLO) matching was
sufficient.

To run the Wilson coefficients correctly, the elements of
the anomalous dimension matrix had to be determined to
the appropriate order. Because the current-current opera-
tors enter at O�1� in the matching, pieces of the anomalous
dimension matrix which depend on these operators were
determined to O�1=�0�. Current-current operators affect
the running of both the penguin operators and the current-
current operators themselves. For the penguin operators,
their effect can be determined from the LO anomalous
dimension matrix in [43]. For the current-current operators
this has been calculated in [53]. Penguin operators enter at
order O�1=�0� at the matching scale. As such, to calculate
the elements of the anomalous dimension matrix which
depend on the penguin operators, it was only necessary to
calculate the diagrams to O�1�. Unlike the current-current
operators, penguin diagrams in the effective theory can be
of O�1� because of factors of nf which occur in fermion
loops.

In contrast, the calculations we perform in this paper are
in the context of the usual RG-improved perturbation
theory, where log�M=	� 	O�1=�s�, and one calculates
order by order in �s. We have calculated the hard-
scattering kernels to O��2

s�0�. This corresponds to insert-
ing a single fermion bubble into the gluon propagators of
the O��s� diagrams and replacing nf ! �3�0=2. Both the
previous authors and ourselves had to decide what to do
about the factors of nf which appear in the penguin dia-
grams. The factors of nf which enter from the fermion
114004
bubble have corresponding diagrams with gluon and ghost
loops which justify their replacement, but these diagrams
are not present for other factors of nf which emerge from
penguin diagrams. The previous authors took two different
approaches to this problem and considered the cases where
they either replaced nf ! �3�0=2 or they left these fac-
tors of nf alone. They achieved better results from the
second approach, which is physically better justified. We
choose to use only this latter approach in this paper.

To further aid in our calculations, we choose to calculate
quantities that first occur at O��s� in perturbation theory. It
is easily understood that such quantities require only the
NLO Wilson coefficients from [43]. The leading order
terms in the Wilson coefficients sum logs of the form
�ns logn�M=	� and scale as O�1�. The NLO terms sum
logs of the form �n�1

s logn�M=	� and scale as O��s�.
Because a two-loop calculation is necessary to calculate
these NLO terms they may contain factors of �0 in the
form

�n�2
s �0logn�1�M=	� 	 �s�0: (47)

If we were only after a O��s� result, we would need the
O�1� (LO) Wilson coefficient and the O��s� hard-
scattering kernel. At O��2

s�0� however, we need not only
the O�1� Wilson coefficient and the O��2

s�0� hard-
scattering kernel, but also the O��s� (NLO) Wilson coef-
ficient and the O��s� hard-scattering kernel. Since we only
need the piece of the NLO Wilson coefficient proportional
to �0 we are effectively keeping some unnecessary higher
order pieces. Either way, we require only the NLO Wilson
coefficients.

An important effect of the differences between the two
approaches is reflected in the different contributions to the
hard-scattering kernels which must be calculated. In order
to calculate the coefficients (15), we need many hard-
scattering and vertex contributions. Neubert and Pecjak
needed fewer of these contributions, but those they did
need were needed to all orders in �n�1

s �n0 . This difference
has important phenomenological effects. The contributions
we include are sensitive to unknown nonperturbative pa-
rameters. As we will see, these parameters can introduce a
large uncertainty in various observables.

C. Input data

The numerical analysis in Sec. IV D requires various
parameters as theoretical inputs. In this section we collect
these input parameters together.

1. Model independent parameters

For the running coupling �s�	� we use

�s�	� �
4�

�0 ln�	2=�2
QCD�

�
1�

�1

�2
0

ln�ln�	2=�2
QCD��

ln�	2=�2
QCD�

�
;

(48)
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where, in terms of the number of colors Nc and flavors nf,
�0 �
11Nc � 2nf

3
;

�1 �
34N2

c

3
�

10Ncnf
3

� 2CFnf;

CF �
N2
c � 1

2Nc
:

(49)
We take �QCD � 223 MeV, which is equivalent to running
with nf � 5 flavors from �s�MZ� � 0:1185.

The Wilson coefficients calculated to NLO in QCD are
shown in Table I.

We choose to work in the Wolfenstein parametrization
VCKM �

1� �2

2 � A�3�� i��

�� 1� �2

2 A�2

A�3�1� � i�� �A�2 1

0
BBB@

1
CCCA

�O��4�: (50)
In the analysis below we will sometimes plot observables
as a function of the unitarity angle � � arg�V�ub�. In that

case we write �� i�� �
������������������
2 � �2

p
e�i�. We take the

numerical values of the CKM parameters from a recent
global fit [54]: A � 0:83� 0:04, � � 0:2224� 0:0020,������������������
2 � �2

p
� 0:398� 0:040, and � � �64� 11�o.

For the B meson lifetimes we use the PDG values [55]:
�� �B0� � 1:536� 0:014 ps and ��B�� � 1:671�
0:018 ps. Our quark pole masses aremb � 4:2 GeV,mc �
1:3 GeV, and we set ms;u;d � 0. Finally, for the ‘‘chiral
enhancement’’ factor defined in (7), which is a renormal-
ization scale dependent quantity, we use [36]
TABLE I. Numerical values of the Wilson coefficients Ci in
the NDR scheme at NLO, in units of 10�3. We have used the
input parameters �QCD � 223 MeV, mt � 174 GeV, mb �

4:2 GeV, and mW � 80:4 GeV. The soft scales are defined using
�h � 500 MeV.

	������������������
�hmb=2

p �������������
�hmb

p ���������������
�h2mb

p
mb=2 mb 2mb

C1 1258.0 1195.2 1150.4 1147.7 1087.8 1048.6
C2 �474:8 �378:7 �305:3 �300:7 �193:3 �114:4
C3 35.7 27.4 21.6 21.2 13.8 9.0
C4 �77:7 �62:8 �52:0 �51:3 �36:0 �25:0
C5 11.9 12.4 11.9 11.9 9.9 7.7
C6 �118:6 �88:2 �68:5 �67:4 �43:3 �28:3
Ceff

8g - - - �169:0 �151:0 �136:0
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	P�mb=2� � 0:85
mb

2
; 	P�mb� � 1:14

mb

2
;

	P�2mb� � 1:42
mb

2
; (51)

for both P � �, K.

2. Model dependent parameters

The matrix element for a B transition to a pseudoscalar
state M is given by

hM�q�j �q�	bj �B�h�i � FB!M� �p2��h	 � q	� � �FB!M0 �p2�

� FB!M� �p2��
m2
B �m

2
M

p2 p	; (52)

where the momentum transfer is p � h� q. In practice
this matrix element is always contracted with one of the
meson momenta, and using the Dirac equation it is always
possible to write these contractions in terms of
hM�q�j �qp6 bj �B�h�i � FB!M0 �p2��m2

B �m
2
M�, so that depen-

dence on F� drops out. Since we are studying mesons with
mass small compared to the Bmass, we need consider only
the point FB!M0 �0�. Estimates of this quantity have been
made from QCD light-cone sum rules [56–58], relativistic
quark models [59], and lattice calculations [60], with good
agreement between the various methods. Numerically we
take

FB!K0 �0� �
fK
f�
FB!�0 �0�;

FB!�0 �0� � 0:258� 0:031 GeV:

(53)

The decay constants fM are defined by

hM�p�j �q�	�5qj0i � �ifMp
	: (54)

In our data analysis we will take

f� � 0:1307� 0:0004 GeV�55�;

fK � 0:1598� 0:0016 GeV�55�;

fB � 0:180� 0:040 GeV�61�:

(55)

The general decomposition of the LCDAs �M has been
given earlier (10) in terms of the parameters �Mi , and
throughout Sec. III we stated our results in terms of these
parameters. A variety of phenomenological and sum rule
estimates have been made for these parameters
[45,49,50,61], and we adopt the values

��1 � 0; ��2 � 0:1� 0:3;

�K1 � 0:10� 0:12; �K2 � 0:1� 0:3:
(56)

Owing to their nonperturbative origin all of these parame-
ters are rather poorly known, and this is indicated by the
conservative error estimates. The exception to this rule is
��1 which deviates from zero only by SU�2� breaking
effects.
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Little is known about the LCDA for the light quark in the
B meson. Accordingly, in Sec. III B we, following
Ref. [24], parametrized the integrals over �B that we
encountered:

Z 1

0
d


�B�
�


�
mB

�B
	
mB

�h
;

Z 1

0
d


ln
�B�
�



�
mB

~�B
	
mB

�h
ln
�

�h

mB

�
;

(57)

where we take the soft scale to be �h � 500 MeV. In our
numerical analysis we assign a 100% uncertainty to these
integrals, varying 0<mB=�B < 2�mB=�h� and 0<
�mB=~�B < 2�mB=�h ln�mB=�h�� with a uniform proba-
bility distribution.

Also in Sec. III B we saw that integrals over the twist-3
LCDAs required the introduction of two other parameters

Z 1

0
dy

�M1
p �y�

�y
� XM1

H ;
Z 1

0
dy

ln �y�M1
p �y�
�y

� ~XM1
H :

(58)

The approximate magnitude of these parameters can be
estimated by power counting, but in general they can be
complex. Therefore, following Ref. [24] we write them as

XM1
H � �1� He

i�H � ln
�
mB

�h

�
;

~XM1
H � �1� ~He

i ~�H �Li2

�
�mb

�h

�
:

(59)

In the numerical analysis below we vary 0<H, ~H < 2
and allow the phases �H, ~�H to take arbitrary values.

In the numerical analysis which follows, our central
values are obtained by setting all of the input parameters
at the center of their ranges. For the arbitrary phases in XH
and ~XH we must choose a particular value for our ’central
value’. We choose �H, ~�H � �=2, which makes the real
and imaginary parts of the central values of XH and ~XH of
equal magnitude.

D. Results

The main numerical results of this paper are presented in
Table II which shows the results for the direct CP asym-
metries ADir

CP. After a general discussion of the results, we
include a more detailed discussion of the particular asym-
metry ADir

CP��
����. For each quantity we first state the

prediction at O��s�, then the O��2
s�0� correction and,

finally, the sum. We also state the results at three different
renormalization scales.

In addition, we estimate the uncertainties arising from
the model dependent parameters discussed in Sec. IV C 2.
We divide these parameters into three groups. The
Gegenbauer moments �1;2 which parametrize the shape
of the LCDAs, are varied with the 1� error bars given in
(56). The B decay formfactor FB!�0 �0� and B meson decay
114004
constant fB are varied with the 1� error bars given in (53)
and (55), respectively. Finally, the parameters arising from
the spectator scattering graph ��B; ~�B; XH; ~XH� are varied
with equal probability over the ranges given in Sec. IV C 2
above. These three groups are labeled LCDA ���;K1;2 �, FF
�fB; FB!�0 �0��, and SPEC ��B; ~�B; XH; ~XH� in our Table.
The sets of parameters are varied independently, and in all
cases the uncertainties we give are 1� standard deviations.
Note that there are additional sources of uncertainty we do
not consider, such as dependence on the CKM matrix
elements and quark masses. Our analysis does, however,
give insight into the relative size of perturbative corrections
and nonperturbative uncertainties.

1. CP asymmetries

Table II contains our results for the direct CP asymme-
tries ADir

CP. It should be noted that the values in Table II do
not take into account the contribution from weak annihi-
lation diagrams and as such should not be taken as rigorous
predictions of the BBNS method. They are however valid
for their purpose of studying the perturbative behavior of
the formalism. Notice that the asymmetry ACP��

��0� is
not shown in the table; as is clear from the definitions (39),
the amplitude for B� ! ���0 has only one weak phase
and therefore the asymmetry for this mode is zero (up to
small electroweak corrections which we have neglected).
The final column of Table II gives the current experimental
values for the CP asymmetries. They are from HFAG,
Summer 2005 compilation [62], apart from the observables
where different experiments do not agree, in which case the
errors are inflated according to the PDG prescription [55].

Though the relative sizes of the perturbative contribu-
tions at O��s� and O��2

s�0� in Table II are quite sensitive
to the renormalization scale, it is generally true that the two
contributions are of roughly the same size. This may be
understood as follows: the asymmetries are dominated by
the contributions from the penguin diagrams, and
�s�0j ~P=Pj=4�	 1, where P and ~P refer to the penguin
functions defined in Sec. III C.

There is no reduction in the renormalization scale de-
pendence of the asymmetries after adding the O��2

s�0�
terms. This behavior follows from our previous remarks: at
a given scale, the O��2

s�0� contributions are numerically
similar to the O��s� contributions. The sum, therefore,
follows the pattern established at O��s�.

The next to last columns of Table II show the sensitivity
of the asymmetries to the three classes of parameters
defined above. The dominant uncertainty for most of the
modes is due to the light-cone distribution amplitudes
(LCDA). These parameters are similar in size for each
decay mode (see (56)), and the asymmetry is proportional
to them. Consequently the size of the uncertainty in this
column scales roughly with the size of the asymmetry
itself.
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TABLE II. Numerical results for direct CP asymmetries ADir
CP, expressed in percent. We

present the O��s� and subleading O��2
s�0� perturbative corrections. Partial error estimates

whose meaning is explained in the text and experimental values are also presented.

Decay Mode 	 O��s� O��2
s�0� Total Error Estimates Experiment

LCDA FF SPEC

ACP��
� �K0� mb=2 0.9 0.1 0.9 �0:1 �0:0 �0:0 �2:� 5:

mb 1.0 0.3 1.2 �0:1 �0:0 �0:0
2mb 1.2 0.4 1.6 �0:1 �0:0 �0:0

ACP��
0K�� mb=2 9.1 �1:4 7.7 �2:5 �0:5 �1:4 4:� 4:

mb 15.9 8.3 24.2 �3:0 �0:6
�0:7 �1:8

2mb 29.4 28.9 58.2 �4:1 �0:8
�0:9 �2:5

ACP��
�K�� mb=2 3.9 �3:1 0.7 �2:2 �0:0 �0:1 �11:5� 1:8

mb 9.3 4.8 14.0 �2:3 �0:0 �0:0
2mb 19.2 20.1 39.3 �3:1 �0:0 �0:1

ACP��
0KS� mb=2 �3:0 �1:2 �4:2 �0:9 �0:4 �1:1 2:� 13:

mb �3:2 �2:0 �5:2 �1:0 �0:4 �1:2
2mb �4:5 �4:3 �8:8 �1:1 �0:5

�0:4 �1:4
ACP��

���� mb=2 �2:6 1.6 �1:0 �1:1 �0:0 �0:1 37:� 23:
mb �3:6 �1:9 �5:6 �0:7 �0:0 �0:0

2mb �4:2 �4:3 �8:5 �0:5 �0:0 �0:0
ACP��0�0� mb=2 68.6 28.8 97.4 �16:0 �10:7

�12:3 �33:5 28:� 40:
mb 40.7 26.5 67.2 �10:4 �6:1

�6:9 �19:2
2mb 25.3 25.4 50.7 �5:7 �3:0

�3:4 �9:5
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Note also that three of the modes—�0K�, �0KS, and
�0�0—are particularly sensitive to the form factor (FF)
and spectator scattering (SPEC) parameters. Unlike other
decay modes, the FF and SPEC parameters in these modes
are proportional to the Wilson coefficient C1. The strong
sensitivity in these modes is simply a reflection of the large
size of C1 in comparison to the other Wilson coefficients.

On the other hand, the asymmetry ADir
CP��

� �K0� has no
dependence on the form factors or spectator scattering
parameters. This may be understood by examining our
master formula for the CP asymmetry, Eq. (45),

A Dir
CP / Im�u�c�

�
�s
4�
�u0 Im�c1� � c0 Im�u1��

�
�2
s

�4��2
�0�u0 Im�c2� � c0 Im�u2��: (60)

Because of the particular form of the amplitude for B� !
�� �K0 shown in (38), u0 � c0 and Im�ui� differs from
Im�ci� only by QCD penguin contributions. The result is
that in (60) only the QCD penguins contribute to the
asymmetry. Consequently this mode is insensitive to
most of the model dependence in the BBNS framework.

It is important to note that our values of the CP asym-
metries at O��s� for B� ! �0K� and �B0 ! ��K� ex-
hibit a much greater scale dependence than those of
Beneke and Neubert [63]. In our calculation of these
114004
asymmetries we keep the real parts of our amplitudes to
only LO in �s and it is the large scale dependence of these
real parts that leads to the large scale dependence of our
asymmetries. Beneke and Neubert on the other hand keep
the real parts of their amplitudes to NLO and it is these
higher order terms that result in their reduced scale
dependence.

Because of their different focus, it is difficult to compare
our results to those of Neubert and Pecjak [40]. These
authors were primarily interested in estimating the size
of nonperturbative corrections. Although they did calculate
some leading perturbative corrections, they sought only to
compare the size of these corrections to their estimate of
the power corrections. As such, almost all of the parame-
ters we chose to vary, including the renormalization scale,
the LCDAs, as well as the form factors and decay con-
stants, they simply held fixed, and no estimate of their
induced uncertainties was made. They did calculate the
CP asymmetries for the �B0 ! ��K� and B� ! �0K�

decay modes. Their results are consistent with our own, to
within our large uncertainties. Perhaps the most significant
comparison concerns the size of the subleading correc-
tions. They found, as we did, that the subleading correc-
tions are substantial and can be almost as large as the
leading order result.

Recently new measurements of the CP asymmetry in
�B0 ! ���� were released by the BABAR [12] and
BELLE [17] collaborations. In Fig. 5 we show our results
for the direct CP violation parameter A�� defined in (42)
-12
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FIG. 5 (color online). The CP-violating quantity A�� as a
function of the unitarity angle �. The three short-dashed curves
are the prediction at order O��s�, while the three solid curves
include the perturbative corrections up to O��2

s�0�. The lines in
each set correspond to the three different renormalization scales
	 � mb=2, 	 � mb and 	 � 2mb. The heavy dashed and dot-
dashed horizontal lines are the 1� experimental uncertainties for
BABAR and BELLE, respectively.
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as a function of the unitarity angle �. The current experi-
mental data for this quantity is

BABAR�12�: A�� � 0:09� 0:15�stat� � 0:04�syst�

BELLE�17�: A�� � 0:56� 0:12�stat� � 0:06�syst�;

(61)

The 1� ranges for these measurements are superimposed
in Fig. 5.

Figure 5 shows that the calculated CP asymmetry has a
large renormalization scale dependence at O��2

s�0�, which
dominates the uncertainty in the prediction. Within the
large error bars, the experimental results of BABAR are in
fair agreement with these calculations, while the results of
BELLE show a several � deviation. Clearly, more work is
required on both the experimental and theoretical sides
before any definitive statement can be made about the
success of the BBNS framework in this context. For in-
stance, the contributions from power-suppressed annihila-
tion diagrams should be included, as they are known to
have a large effect on strong phases [24,64].
114004
V. CONCLUSIONS

In this paper we have calculated perturbative corrections
to B! ��, �K decays up to O��2

s�0� in the QCD facto-
rization formalism, including ‘‘chirally enhanced’’ power
corrections but neglecting other corrections entering for-
mally at O��QCD=mb�. We have included contributions
from nonfactorizable vertex diagrams, QCD penguin dia-
grams, and spectator scattering diagrams. In all cases we
have derived analytic expressions for the hard-scattering
kernels for general light-cone quark momentum distribu-
tion functions.

We have used these analytic results to study the direct
CP asymmetries for a set of phenomenologically interest-
ing decay modes. We focused on the behavior of perturba-
tion theory for this observable, and we estimated the
uncertainties due to model dependent parameters.

For the direct CP asymmetries ADir
CP, we found that

contributions at O��2
s�0� are comparable to those at

O��s� for all the modes. This conclusion is in agreement
with the results of [40], which indicated a large perturba-
tive correction between one-loop and two-loop order in the
large-�0 limit. As well, we found a very strong dependence
on the renormalization scale; in some cases the asymmetry
varies over an order of magnitude.

For all modes, with the exception of ADir
CP��

0�0�, the
primary uncertainty at a given scale arises from uncertainty
over the shape of the light-cone momentum distribution
amplitude. The uncertainties arising from form factors and
spectator scattering model parameters are mode dependent
and relatively small. The asymmetry ADir

CP��
� �K0� is par-

ticularly clean in the QCD factorization framework, having
no dependence on form factors or spectator scattering
parameters. Finally, we have examined the direct CP vio-
lation parameter A�� in the �B0 ! ���� decay mode and
have found a large perturbative correction at O��2

s�0�. The
result agrees with the current experimental measurements,
though the errors for both theory and experiment are large.
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