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Monte Carlo simulation of single spin asymmetries in pion-proton collisions
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We present Monte Carlo simulations of both the Sivers and the Boer-Mulders effects in the polarized
Drell-Yan ��p" ! ����X process at a kinematics suitable to the COMPASS setup. For the Sivers
effect, we adopt two different parametrizations for the Sivers function to explore the statistical accuracy
required to extract unambiguous information on this parton density. In particular, we verify the possibility
of checking its predicted sign change between semi-inclusive deep-inelastic scattering (SIDIS) and Drell-
Yan processes, a crucial test of nonperturbative QCD. For the Boer-Mulders effect, because of the lack of
parametrizations we can make only guesses. The goal is to explore the possibility of extracting
information on the transversity distribution, the missing piece necessary to complete the knowledge of
the nucleon spin structure at leading twist, and the Boer-Mulders function, which is related to the long-
standing problem of the violation of the Lam-Tung sum rule in the unpolarized Drell-Yan cross section.
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I. INTRODUCTION

The recent measurement of single-spin asymmetries
(SSA) in semi-inclusive lp" ! l0�X deep-inelastic scatter-
ing (SIDIS) on transversely polarized hadronic targets [1–
4] has renewed the interest in the problem of describing the
spin structure of hadrons within quantum chromodynamics
(QCD) [5], and has stimulated since then a large produc-
tion of phenomenological and theoretical papers.
Experimental evidence of large SSA in hadron-hadron
collisions was well known for many years [6,7], but it
has never been consistently explained in the context of
perturbative QCD in the collinear massless approximation
[8]. The idea of going beyond the collinear approximation
opened new perspectives about the possibility of explain-
ing these SSA in terms of intrinsic transverse motion of
partons inside hadrons, and of correlations between such
intrinsic transverse momenta and transverse spin degrees
of freedom. The most popular examples are the Sivers [9]
and the Collins [10] effects. In the former case, an asym-
metric azimuthal distribution of detected hadrons (with
respect to the normal to the production plane) is obtained
from the nonperturbative correlation pT � P � ST , where
pT is the intrinsic transverse momentum of an unpolarized
parton inside a target hadron with momentum P and trans-
verse polarization ST . In the latter case, the asymmetry is
obtained from the correlation k� PhT � sT , where a parton
with momentum k and transverse polarization sT frag-
ments into an unpolarized hadron with transverse momen-
tum PhT . In both cases, the sizes of the effects are
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represented by new transverse-momentum dependent
(TMD) partonic functions, the so-called Sivers and
Collins functions, respectively.

However, SSA data in hadronic collisions have been
collected so far typically for semi-inclusive pp�"� ! h�"�X
processes, where the factorization proof is complicated by
higher-twist correlators [11] and the power-suppressed
asymmetry can be produced by several (overlapping)
mechanisms. On the contrary, the theoretical situation of
the SIDIS measurements is more transparent. On the basis
of a suitable factorization theorem [12,13], the cross sec-
tion at leading twist contains convolutions involving sepa-
rately the Sivers and Collins functions with different
azimuthal dependences, sin����S� and sin����S�,
respectively, where �, �S, are the azimuthal angles of
the produced hadron and of the target polarization with
respect to the axis defined by the virtual photon [14].
According to the extracted azimuthal dependence, the
measured SSA can then be clearly related to one effect
or the other [1,2].

Similarly, in the Drell-Yan process H1H
"
2 ! l�l�X the

cross section displays at leading twist two terms weighted
by sin����S� and sin����S�, where now �, �S, are
the azimuthal orientations of the final lepton plane and of
the hadron polarization with respect to the reaction plane
[15]. Adopting the notations recommended in Ref. [16],
the first one involves the convolution of the Sivers function
f?1T with the standard unpolarized parton distribution f1.
The second one involves the transversity distribution h1

and the Boer-Mulders function h?1 , a TMD distribution
which is most likely responsible for the violation of the
Lam-Tung sum rule in the corresponding anomalous
cos2� asymmetry of the unpolarized Drell-Yan cross sec-
-1 © 2006 The American Physical Society
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FIG. 1 (color online). The Collins-Soper frame.
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tion [15]. Hence, a simultaneous measurement of unpolar-
ized and single-polarized Drell-Yan cross sections would
allow one to extract all the unknowns from data [17,18].
Both h1 and h?1 describe the distribution of transversely
polarized partons; but the former applies to transversely
polarized parent hadrons, while the latter to unpolarized
ones. On an equal footing, f?1T and f1 describe distributions
of unpolarized partons. The correlation between pT and ST
inside f?1T is possible only for a nonvanishing orbital
angular momentum of partons. Then, extraction of Sivers
function from SIDIS and Drell-Yan data would allow one
to study the orbital motion and the spatial distribution of
hidden confined partons [19], as well as to test its peculiar
universality property [20].

In a series of previous papers, we performed numerical
simulations of single-polarized Drell-Yan SSA for the
pp" ! ����X [21] and �pp" ! ����X [17] processes.
With proton beams, we considered collisions at

���
s
p
�

200 GeV in the kinematic conditions for the foreseen
upgrade of RHIC (RHIC II). Even if in pp collisions the
nonvalence partonic contribution to the elementary anni-
hilation is unavoidable (leading, in principle, to lower
counting rates), still the kinematics selects a portion of
phase space that emphasizes this contribution. The net
result is that with a reasonable sample of Drell-Yan events
the statistical accuracy allows one to unambiguously ex-
tract the Sivers function from the corresponding sin���
�S� asymmetry, as well as to clearly test its predicted sign
change with respect to the SIDIS asymmetry [21]. In �pp
collisions, the cross section is dominated by the valence
contribution to the annihilation of a parton (from p) and an
antiparton (from �p); hence, in general, it is not suppressed
as in the previous case (for a quantitative check in our
Monte Carlo, see Sec. IV B of Ref. [21]). In Ref. [17], we
selected antiproton beams of 15 GeV, as they could be
produced at the high energy storage ring (HESR) at GSI
[22,23], and we simulated collisions at

���
s
p
	 14 GeV in

the so-called asymmetric collider mode. The goal was to
explore the minimal conditions required for an unambig-
uous extraction of h1 and h?1 from a combined analysis of
the sin����S� and cos2� asymmetries in the full
(unpolarized� polarized) cross section.

Here, we will reconsider the same scenarios but for the
��p" ! ����X process using the pion beam at
COMPASS. As for �p beams, the elementary mechanism
is dominated by the annihilation between valence partons
(from p) and valence antipartons (from �). Indeed, a large
Sivers effect was predicted in this context by using the
same Sivers function fitted to the measured sin����S�
asymmetry in SIDIS [24]. Taking advantage on the high
statistics reachable with pions, in our Monte Carlo we
simulate both sin����S� SSA in the Drell-Yan cross
section. For the Sivers effect we use two parametrizations
of f?1T : the one of Ref. [25], which was deduced by fitting
the recent HERMES data for the sin����S� SSA [2]; the
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one of Ref. [21], which is constrained by the recent RHIC
data for the pp" ! �X process at higher energy [26]. For
the Boer-Mulders effect, since there is no such abundance
of data and fits, we follow Ref. [15] to constrain h?1 by the
azimuthal asymmetry of the corresponding unpolarized
Drell-Yan cross section (see also Refs. [27,28] for a similar
analysis). Then, we insert, as we did in Ref. [17], very
different input test functions for h1 in order to explore the
sensitivity of the simulated SSA within the statistical
accuracy.

In Sec. II, we review the formalism and the details of the
numerical simulation. In Sec. III, we present and discuss
our results. Finally, in Sec. IV we draw some conclusions.
II. GENERAL FRAMEWORK FOR THE
NUMERICAL SIMULATION

In a Drell-Yan process, an antilepton-lepton pair with
individual momenta k1 and k2 is produced from the colli-
sion of two hadrons with momentum Pi, massMi, and spin
Si, with i � 1, 2. The center-of-mass (c.m.) square energy
available is s � �P1 � P2�

2 and the invariant mass of the
final lepton pair is given by the timelike momentum trans-
fer q2 
 M2 � �k1 � k2�

2. If M2, s! 1, while keeping
the ratio 0 � � � M2=s � 1 limited, a factorization theo-
rem can be proven [29] ensuring that the elementary
mechanism proceeds through the annihilation of a parton
and an antiparton with momenta p1 and p2, respectively,
into a virtual photon with timelike momentum q2. If P�1
and P�2 are the dominant light-cone components of hadron
momenta in this regime, then the partons are approxi-
mately collinear with the parent hadrons and carry the
light-cone momentum fractions 0 � x1 � p�1 =P

�
1 , x2 �

p�2 =P
�
2 � 1, with q� � p�1 , q� � p�2 by momentum con-

servation [15]. The transverse components piT of pi with
respect to the direction defined by Pi�i � 1; 2�, are con-
strained again by the momentum conservation qT � p1T �
p2T , where qT is the transverse momentum of the final
lepton pair. If qT � 0 the annihilation direction is not
known. Hence, it is convenient to select the so-called
Collins-Soper frame [30] described in Fig. 1. The final
lepton pair is detected in the solid angle ��;��, where, in
particular, � (and all other azimuthal angles) is measured
-2
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in a plane perpendicular to the indicated lepton plane but containing ĥ � qT=jqTj.
The full expression of the leading-twist differential cross section for the H1H

"
2 ! l�l�X process can be written as [15]

d�
d�dx1dx2dqT

�
d�o

d�dx1dx2dqT
�

d��"

d�dx1dx2dqT

�
�2

3Q2

X
q

e2
q

�
A�y�F �fq1 �H1�f

q
1 �H2� � B�y� cos2�F

�
�2ĥ � p1Tĥ � p2T � p1T � p2T�

h?q1 �H1�h
?q
1 �H2�

M1M2

��

�
�2

3Q2 jS2T j
X
q

e2
q

�
A�y� sin����S2

�F

�
ĥ � p2T

fq1 �H1�f
?q
1T �H

"
2�

M2

�

� B�y� sin����S2
�F

�
ĥ � p1T

h?q1 �H1�h
q
1�H

"
2�

M1

�

� B�y� sin�3���S2
�F

�
�4ĥ � p1T�ĥ � p2T�

2 � 2ĥ � p2Tp1T � p2T � ĥ � p1Tp
2
2T�

h?q1 �H1�h
?q
1T �H

"
2�

2M1M
2
2

��
;

(1)
where � is the fine structure constant, d� � sin�d�d�, eq
is the charge of the parton with flavor q, �Si is the azimu-
thal angle of the transverse spin of hadron i, and

A�y� � �12� y� y
2� �

cm 1
4�1� cos2��

B�y� � y�1� y� �
cm 1

4sin2�:
(2)

The TMD functions fq1 �H�, h
?q
1 �H�, describe the distribu-

tions of unpolarized and transversely polarized partons in
an unpolarized hadron H, respectively, while f?q1T �H

"� and
the pair hq1�H

"�, h?q1T �H
"�, have a similar interpretation but

for transversely polarized hadrons H". The convolutions
are defined as

F �DFq1 �H1�DF
q
2 �H

�"�
2 � 


Z
dp1Tdp2T��p1T � p2T � qT�

� �DF1�x1;p1T ; �q=H1�

�DF2�x2;p2T ; q=H�"�2 �

� �q$ �q�: (3)

In previous papers, we made numerical simulations of
the SSA generated in Eq. (1) by the azimuthal dependences
cos2� and sin����S2

� for antiproton beams H1 � �p
[17], by the sin����S2

� dependence for proton beams
H1 � p [21], as well as for double-polarized Drell-Yan
processes with H"1 � H"2 � p" [31]. A combined measure-
ment of these SSA allows one to completely determine the
intertwined unknown transversity h1 and Boer-Mulders
function h?1 , and the Sivers function f?1T . The
Monte Carlo simulation was performed for high-energy
proton beams (

���
s
p
� 200 GeV) in the conditions of the

foreseen upgrade of RHIC (RHIC II), and for antiproton
beams of 15 GeVas they could be produced at HESR-GSI.
In the latter case, several scenarios were explored for 5 &
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���
s
p

& 14 GeV and 1:5<M< 2:5, 4<M< 9 GeV, in
order to avoid overlaps with the strange, charm, and bottom
quarkonia [where the elementary annihilation does not
necessarily proceed through a simple intermediate virtual
photon, as it is assumed in Eq. (1)]. Here, we reconsider the
sin����S2

� and sin����S2
� asymmetries by using pion

beams of 50–100 GeV as they can be produced at
COMPASS, in the fixed target mode such as to approxi-
mately reach the same c.m. energy considered at HESR-
GSI, namely

���
s
p
	 10–14 GeV. Most of the technical de-

tails of the simulation are mutuated from our previous
works; hence, we will heavily refer to Refs. [17,21] in
the following.

The Monte Carlo events have been generated by the
following cross section [17]:

d�
d�dx1dx2dqT

� K
1

s
jT �qT; x1; x2;M�j

2
X4

i�1

ci�qT; x1; x2�

� Si��;�;�S2
�; (4)

where the event distribution is driven by the elementary
unpolarized annihilation, whose transition amplitude T
has been highlighted. In Eq. (1), we assume a factorized
transverse-momentum dependence in each parton distribu-
tion such as to break the convolution F , leading to

jT j2 � A�qT; x1; x2;M�F�x1; x2�; (5)

where qT 
 jqT j. The function A is parametrized and
normalized as in Ref. [32], where high-energy Drell-Yan
�� p collisions were considered. The average transverse
momentum turns out to be hqTi> 1 GeV=c (see also the
more recent Ref. [33]), which effectively reproduces the
influence of sizable QCD corrections beyond the parton
model picture of Eq. (1). It is well known [34] that such
corrections induce also large K factors and an M scale
-3
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dependence in parton distributions, determining their evo-
lution. As in our previous works [17,21,31], we conven-
tionally assume in Eq. (4) that K � 2:5, but we stress that
in an azimuthal asymmetry the corrections to the cross
sections in the numerator and in the denominator should
compensate each other, as it turns out to actually happen at
RHIC c.m. square energies [35]. Since the range of M
values here explored is close to the one of Ref. [32], where
the parametrization of A, F, and ci in Eq. (4) was deduced
assumingM-independent parton distributions, we keep our
same previous approach [17,21,31] and use

F�x1;x2��
�2

12Q2

X
q

e2
qf

q
1 �x1; �q=H1�f

q
1 �x2;q=H2��� �q$q�;

(6)

where the unpolarized distribution fq1 �x� for various flavors
q � u, d, s, is taken again from Ref. [32].

The whole solid angle ��;�� of the final lepton pair in
the Collins-Soper frame is randomly distributed in each
variable. The explicit form for sorting it in the Monte Carlo
is [17,21]

X4

i�1

ci�qT; x1; x2�Si��;�;�S2
� � 1� cos2��

	�x1; x2; qT�
2

� sin2� cos2�

� jS2Tjc4�qT; x1; x2�

� S4��;�;�S2
�: (7)

If quarks were massless, the virtual photon would be only
transversely polarized and the angular dependence would
be described by the functions c1 � S1 � 1 and c2 � 1,
S2 � cos2�. Violations of such azimuthal symmetry in-
duced by the function c3 


	
2 are due to the longitudinal

polarization of the virtual photon and to the fact that quarks
have an intrinsic transverse-momentum distribution, lead-
ing to the explicit violation of the so-called Lam-Tung sum
rule [32]. QCD corrections influence 	, which in principle
depends also on M2 [32]. Azimuthal cos2� asymmetries
induced by 	 were simulated in Ref. [17] using the simple
parametrization of Ref. [15] and testing it against the
previous measurement of Ref. [32].

If we consider the Sivers effect in Eq. (1), the last term in
Eq. (7) becomes

S4��;�;�S2
� � �1� cos2�� sin����S2

� (8)

and the corresponding coefficient c4 reads

c4�qT; x1; x2� �

P
q
e2
qF �ĥ � p2T

fq1 �x1;p1T �f
?q
1T �x2;p2T �

M2


P
q
e2
qF �f

q
1�x1;p1T�f

q
1 �x2;p2T�

; (9)

where the complete dependence of the involved TMD
parton distributions has been made explicit.
114002
Vice versa, if we consider the Boer-Mulders effect in
Eq. (1), the last term in Eq. (7) becomes

S4��;�;�S2
� � sin2� sin����S2

� (10)

and the corresponding coefficient c4 reads

c4�qT; x1; x2� � �

P
q
e2
qF �ĥ � p1T

h?q1 �x1;p1T �h
q
1 �x2;p2T �

M1


P
q
e2
qF �f

q
1�x1;p1T�f

q
1 �x2;p2T�

:

(11)

In the following, we will discuss different inputs for the
x and pT dependence of these distributions which allow
one to calculate the convolutions and determine c4. In any
case, following Refs. [17,21,31], the general strategy is to
divide the event sample in two groups, one for positive
values ‘‘U’’ of S4 in Eq. (8) or (10), and another one for
negative values ‘‘D,’’ then taking the ratio �U�D�=�U�
D�. Data are accumulated only in the x2 bin, i.e. they are
summed upon x1, �, and qT . Statistical errors for the spin
asymmetry �U�D�=�U�D� are obtained by making 10
independent repetitions of the simulation for each individ-
ual case, and then calculating for each x2 bin the average
asymmetry value and the variance. We checked that 10
repetitions are a reasonable threshold to have stable num-
bers, since the results do not change significantly when
increasing the number of repetitions beyond 6.

A. The Sivers effect

Recently, the HERMES collaboration released new SSA
data for the SIDIS process on transversely polarized pro-
tons [2], which substantially increase the precision of the
previous data set [1]. As a consequence, different parame-
trizations of the Sivers function f?1T have been extracted
from this data set and found compatible also with the
recent COMPASS data [4] (for a useful comparison among
the various approaches see Ref. [36]). Following Ref. [21],
we first simulate the Sivers effect using the parametrization
of Ref. [25],

f?q1T �x;pT� � �2Nq
�aq � bq�aq�bq

a
aq
q b

bq
q

xaq�1� x�bq

�
M2M0

p2
T �M

2
0

fq1 �x;pT�

� �2Nq
1

�hp2
Ti

�aq � bq�aq�bq

a
aq
q b

bq
q

xaq�1� x�bq

�
M2M0

p2
T �M

2
0

e�p
2
T=hp

2
T ifq1�x�; (12)

where M2 is the mass of the polarized proton, pT 
 jpT j,
and hp2

Ti � 0:25 �GeV=c�2 is deduced by assuming a
Gaussian ansatz for the pT dependence of f1 in order to
reproduce the azimuthal angular dependence of the SIDIS
-4
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unpolarized cross section (Cahn effect). Flavor-dependent
normalization and parameters in the x dependence are
fitted to SIDIS SSA data neglecting the (small) contribu-
tion of antiquarks. The resulting parametersM0 andNq, aq,
bq, with q � u, d, are listed in Table I. The sometimes poor
resolution of the fit forced us to select only the central
values in order to produce meaningful numerical
simulations.

Following the steps described in Sec. III-1 of Ref. [21],
in particular, the predicted sign change of f?1T when going
from SIDIS to Drell-Yan, we insert the opposite of Eq. (12)
into Eq. (9) and simplify it down to

c4 �
4M0qT
q2
T � 4M2

0

1

9

�
8Nu
�au � bu�au�bu

aauu b
bu
u

xau2 �1� x2�
bu

� Nd
�ad � bd�

ad�bd

aadd b
bd
d

xad2 �1� x2�
bd

�
: (13)

As an alternative choice, we adopt the new parametri-
zation described in Ref. [21]. It is inspired to the one of
Ref. [37], where the transverse momentum of the detected
pion in the SIDIS process was assumed to come entirely
from the pT dependence of the Sivers function, and was
further integrated out building the fit in terms of specific
moments of the function itself. The x dependence of that
approach is retained, but a different flavor-dependent nor-
malization and an explicit pT dependence are introduced
that are bound to the shape of the recent RHIC data on
pp" ! �X at

���
s
p
� 200 GeV [26], where large persisting

asymmetries are found that could be partly due to the
leading-twist Sivers mechanism. The expression adopted is

f?q1T �x;pT� � Nqx�1� x�
M2p

2
0pT

�p2
T �

p2
0

4 �
2
fq1 �x;pT�

� Nqx�1� x�
M2p2

0pT

�p2
T �

p2
0

4 �
2

�
1

�hp2
Ti
e�p

2
T=hp

2
T ifq1 �x�; (14)

where p0 � 2 GeV=c, and Nu � �Nd � 0:7. The sign,
positive for u quarks and negative for the d ones, already
takes into account the predicted sign change of f?1T from
Drell-Yan to SIDIS.
TABLE I. Parameters for the Sivers distribution from
Ref. [25].

Quark up Quark down

Nu 0:32� 0:11 Nd �1:0� 0:12
au 0:29� 0:35 ad 1:16� 0:47
bu 0:53� 3:58 bd 3:77� 2:59

M2
0 0:32� 0:25 �GeV=c�2

114002
Again, following the steps described in Sec. III-2 of
Ref. [21], we can directly insert Eq. (14) into Eq. (9) and
get

c4 � x2�1� x2�

�
2p0qT
q2
T � p

2
0

�
2 8Nu � Nd

9
: (15)

The qT shape is different from Eq. (13) and the peak
position is shifted at larger values. This is in agreement
with a similar analysis of the azimuthal asymmetry of the
unpolarized Drell-Yan data (the violation of the Lam-Tung
sum rule [15]). But, more specifically, it is induced by the
observed xF � qT correlation in the above-mentioned
RHIC data for pp" ! �X, when it is assumed that the
SSA is entirely due to the Sivers mechanism. This suggests
that the maximum asymmetry is reached in the upper
valence region such that xF � x2 	 hqTi=5 [26].

B. The Boer-Mulders effect

Contrary to the Sivers effect, the lack of data for the
Boer-Mulders effect does not allow one to build reasonable
parametrizations either of h?q1 �x;pT� or of hq1�x;pT�.
Therefore, similarly to what was done in our previous
papers [17,31], the strategy of the numerical simulation
is based on making guesses for the input x and pT depen-
dence of the parton distributions, and on trying to deter-
mine the minimum number of events required to
discriminate various SSA produced by very different input
guesses. In fact, this would be equivalent to state that in this
case some analytic information on the structure of these
TMD parton distributions could be extracted from the SSA
measurement.

Following Refs. [15,17], the pT dependence of the par-
ton distributions is parametrized as

fq1 �x;pT� �
�T
�
e��Tp

2
Tfq1 �x�

h?q1 �x;pT� �
MCMH

p2
T �M

2
C

fq1 �x;pT�

hq1�x;pT� �
�T
�
e��Tp

2
Thq1�x�;

(16)

where �T � 1 GeV�2, MC � 2:3 GeV, and MH is the
mass of the hadron involved (i.e., M1 or M2). In particular,
the pT dependence of h?1 is fitted to the measured cos2�
asymmetry of the corresponding unpolarized Drell-Yan
cross section, which is small for 1 & qT & 3 GeV=c
(see, for example, Fig. 4 in Ref. [15]). Correspondingly,
the sin����S� SSA will turn out to be small for the
considered statistically relevant qT range (see Sec. III B).

Inserting the expressions (16) into Eq. (11) and follow-
ing the steps in Sec. IV C of Ref. [17] and in Sec. VI of
Ref. [15], we get
-5
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c4 � �
2MCqT
q2
T � 4M2

C

�

P
q
e2
qf

q
1 �x1; �q=H1�h

q
1�x2; q=H"2� � � �q$ q�

P
q
e2
qf

q
1 �x1; �q=H1�f

q
1 �x2; q=H2� � � �q$ q�

� �
2MCqT
q2
T � 4M2

C

f�x1; h �qi=H1�h1�x2; hqi=H"2�
f�x1; h �qi=H1�f1�x2; hqi=H2�


 �
2MCqT
q2
T � 4M2

C

h1�x2; hqi=H"2�
f1�x2; hqi=H2�

; (17)

where the second step is justified by assuming that the
contribution of each flavor to each parton distribution can
be approximated by a corresponding average function [17].

Two choices with opposite features will be selected for
the ratio h1�x2; hqi=H"2�=f1�x2; hqi=H2�, namely, the as-
cending function

�����
x2
p

and the descending one
��������������
1� x2

p
,

that both respect the Soffer bound. The goal is to determine
the minimum number of events (compatible with the kine-
matical setup and cuts) required to produce azimuthal
asymmetries that can be clearly distinguished like the
corresponding originating distributions. We identify this
as the criterion to establish when information on the ana-
lytical structure of the involved parton distributions can be
extracted from SSA data.
III. RESULTS OF THE MONTE CARLO
SIMULATIONS

In this section, we present results for Monte Carlo simu-
lations of both the Sivers and the Boer-Mulders effects in
the Drell-Yan process ��p" ! ����X using input from
the previous Secs. II A and II B, respectively. The goal is
twofold. On one side, to explore the sensitivity of the
simulated asymmetry to the different input parametriza-
tions of Eqs. (12) and (14), as well as to directly verify,
within the reached statistical accuracy, the predicted sign
change of the Sivers function between SIDIS and Drell-
Yan [20]; on the other side, to make realistic estimates of
the minimum number of events required to extract as de-
tailed information as possible on the chiral-odd distribu-
tions h?1 and h1.

For the Sivers effect, we consider pion beams with
energy of 100 GeV hitting a transversely polarized proton
target such that

���
s
p
	 14 GeV, i.e. the same c.m. energy

available at HESR at GSI in the so-called asymmetric
collider mode with antiprotons of 15 GeV and protons of
3.3 GeV [17]. For the Boer-Mulders effect, it is useful to
stick to lower energies in order to keep a significant statis-
tics (see also Sec. III B); therefore, we use pion beams of
50 GeV with

���
s
p
	 10 GeV. The muon pair invariant mass

is constrained in the range 4<M< 9 GeV and 1:5<
M< 2:5 GeV, respectively, in order to explore approxi-
mately the same x range and to avoid overlaps with the
114002
resonance regions of the �cc and �bb quarkonium systems.
The transversely polarized proton target is obtained from a
NH3 molecule where each H nucleus is fully transversely
polarized and the number of ‘‘polarized’’ collisions is 25%
of the total number of collisions [17].

In the Monte Carlo, the events are sorted according to
the cross section (4), supplemented by Eqs. (5) and (6). The
asymmetry is simulated by Eq. (7). In particular, for the
Sivers effect we use Eqs. (8) and (13) or (15), according to
the input parametrization selected for the Sivers function.
For the Boer-Mulders effect, we use Eqs. (10) and (17).
The events are divided in two groups, one for positive
values (U) of sin����S2

� in Eq. (8) or of sin����S2
�

in Eq. (10), and another one for negative values (D), and
taking the ratio �U�D�=�U�D�. Data are accumulated
only in the x2 bins of the polarized proton, i.e. they are
summed over in the x1 bins for the pion, in the transverse
momentum qT of the muon pair and in their zenithal
orientation �.

Proper cuts are applied to the qT distribution according
to the different inputs. As for the Sivers effect, the flavor-
independent Lorentzian shape in the pT dependence of
Eq. (12) produces a maximum asymmetry for qT 	
1 GeV=c and a rapid decrease for larger values.
Consequently, transverse momenta are selected in the
range 0:5< qT < 2:5 GeV=c, because for larger cutoffs
the asymmetry is diluted. For the case of Eq. (14), the
peak position in qT is shifted at higher values and the cut is
modified as 1< qT < 3 GeV=c. In this way, the ratio
between the absolute sizes of the asymmetry and the
statistical errors is optimized for each choice, while the
resulting hqTi 	 1:8 GeV=c is in fair agreement with the
one experimentally explored at RHIC [26]. As for the
Boer-Mulders effect, we keep the latter cut 1< qT <
3 GeV=c. The � angular dependence for the Boer-
Mulders effect is constrained in the range 60� < �<
120� due to Eq. (10), because outside these limits the
azimuthal asymmetry is too small [17]. On the contrary,
for the Sivers effect there is no need to introduce cuts
because of the �1� cos2�� term in Eq. (8) [21].

We have considered different initial samples. The Sivers
mechanism is explored starting from 100 000 events with
the �� beam and 25 000 with the �� beam, because the
Monte Carlo indicates that the cross section involving ��

is statistically disfavored by approximately the factor 1=4
[38]; in such a way, the two samples can be collected in the
same time. As for the Boer-Mulders effect, the lacking of
any parametrization makes it impossible to perform an
isospin analysis; hence, we used 200 000 events with the
�� beam. Statistical errors for �U�D�=�U�D� are ob-
tained by making 10 independent repetitions of the simu-
lation for each individual case, and then calculating for
each x2 bin the average asymmetry value and the variance.
We checked that 10 repetitions are a reasonable threshold
to have stable numbers, since the results do not change
-6
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significantly when increasing the number of repetitions
beyond 6.

A. The Sivers effect

We first consider two samples, one of 100 000 Drell-Yan
events for the ��p" ! ����X reaction at

���
s
p
	 14 GeV

and for muon invariant mass in the 4<M< 9 GeV range,
and another one of 25 000 events for the ��p" ! ����X
reaction in the same kinematic conditions. Both samples
can be accumulated approximately in the same time ac-
cording to Eq. (13) based on the parametrization (12) of the
Sivers function [25]; as already discussed, the transverse-
momentum distribution is constrained in the range 0:5<
qT < 2:5 GeV=c. The samples are collected in x2 bins and
for each bin two groups of events are stored, one corre-
sponding to positive values (U) of sin����S2

� in Eq. (8),
and one for negative values (D).

In Fig. 2, the asymmetry �U�D�=�U�D� is shown for
each bin x2. Average asymmetries and (statistical) error
bars are obtained by 10 independent repetitions of the
simulation. Boundary values of x2 beyond 0.7 are excluded
because of very low statistics. The triangles indicate the
results with the �� beam obtained by Eq. (13) assuming
that f?1T changes sign from the parametrization (12) of the
SIDIS data to the considered Drell-Yan [20]. For sake of
comparison, the squares illustrate the opposite results that
one would obtain by ignoring such prediction. Finally, the
open triangles and open squares refer to the same situation,
−0.3
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−0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FIG. 2 (color online). The asymmetry �U�D�=�U�D� with
positive (U) and negative (D) values of sin����S2

� in Eq. (8)
(see text), for Drell-Yan events from the Sivers effect in the
��p" ! ����X reaction at

���
s
p
	 14 GeV, 4<M< 9 GeV,

and 0:5< qT < 2:5 GeV=c, using the parametrization of
Eq. (12) for the Sivers function (see text). Triangles indicate
100 000 events collected in x2 bins for the �� beam and with
Nu > 0; squares for Nu < 0. Open triangles indicate 25 000
events for the �� beam and with Nu > 0; open squares for Nu <
0.
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respectively, but for the �� beam. The sensitivity of the
parameters in Table I to the HERMES results for the Sivers
effect, reflects in a more important relative weight of the d
quark over the u one in the valence x2 range, with opposite
signs for the corresponding normalization Nf, f � u, d.
Consequently, in the valence picture of the ������ � p
collision where the � �uu� �dd annihilation dominates, the
SSA for the Drell-Yan process induced by �� has opposite
sign with respect to ��. Moreover, it has an absolute
bigger size because the �dd annihilations are weighted
more than the �uu ones. Apart from very low x2 values
where the parton picture leading to Eq. (1) becomes ques-
tionable, the error bars are very small and allow for a clean
reconstruction of the asymmetry shape and, more impor-
tantly, for a conclusive test of the predicted sign change in
f?1T .

In Fig. 3, the asymmetry �U�D�=�U�D� between
positive (U) and negative (D) values of sin����S2

� in
Eq. (8), is shown for each bin x2 in the same conditions and
notations as in Fig. 2, but the events are now collected
according to Eq. (15) based on the parametrization (14) of
the Sivers function [21], and the transverse-momentum
distribution is constrained by 1< qT < 3 GeV=c. The
rest of the kinematics is unchanged, namely

���
s
p
	

14 GeV and 4<M< 9 GeV. Notations are as in Fig. 2:
the triangles indicate the results for 100 000 events with the
�� beam obtained by Eq. (15) using a positive normaliza-
tion Nu, which already accounts for the sign change of f?1T
from SIDIS to Drell-Yan; the squares illustrate the results
obtained by ignoring such prescription. The open triangles
and open squares refer to the same situation, respectively,
but for 25 000 events with the �� beam. Again, the oppo-
site normalizations of the two flavors u, d, determine the
opposite SSA between the �� and the �� beams. But now
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FIG. 3 (color online). The same situation with the same nota-
tions as in Fig. 2, but for the parametrization of Eq. (14) with
1< qT < 3 GeV=c (see text).
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in Eq. (14) the relative weight of u and d distributions is the
same, hence the absolute sizes of the SSA are approxi-
mately the same irrespective of the charge of the � beam.
As already anticipated in Sec. II A, the qT distribution
induced by the parametrization (14) is also related to the
observed xF � qT correlation in the RHIC data for pp" !
�X [26], when it is assumed that the SSA is entirely due to
the Sivers mechanism. This suggests that the maximum
asymmetry is reached in the upper valence region such that
xF � x2 	 hqTi=5	 0:4 for the considered cut in qT , as it
is confirmed in Fig. 3. Similarly to the case of the other
parametrization, the statistical error bars are very small and
allow for a detailed analysis of the (universality) properties
of f?1T .

B. The Boer-Mulders effect

For the Boer-Mulders effect, we have collected 200 000
Drell-Yan events for the ��p" ! ����X reaction at���
s
p
	 10 GeV with muon invariant mass in the 1:5<M<

2:5 GeV range and 1< qT < 3 GeV=c. In Fig. 4, the
asymmetry �U�D�=�U�D� is shown for each bin x2

between the events with positive (U) and negative (D)
values of sin����S2

� in Eq. (10). Triangles correspond
to the choice h1�x2; hqi=H

"
2�=f1�x2; hqi=H2� �

��������������
1� x2

p
in-

side Eq. (17), open triangles to the choice
h1�x2; hqi=H

"
2�=f1�x2; hqi=H2� �

�����
x2
p

. Here, hqi means
that each term in the sum upon flavors is replaced by a
common flavor-averaged contribution. Both choices re-
−0.01
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FIG. 4 (color online). The asymmetry �U�D�=�U�D� with
positive (U) and negative (D) values of sin����S2

� in Eq. (10)
(see text), for 200 000 Drell-Yan events from the Boer-Mulders
effect in the ��p" ! ����X reaction at

���
s
p
	 10 GeV, 1:5<

M< 2:5 GeV, and 1< qT < 3 GeV=c. Triangles for
h1�x2; hqi=H

"
2�=f1�x2; hqi=H2� �

��������������
1� x2

p
inside Eq. (17) (see

text); open triangles for h1�x2; hqi=H
"
2�=f1�x2; hqi=H2� �

�����
x2
p

.
Here, hqi represents a common average term that replaces each
contribution in the flavor sum (for further details, see text).
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spect the Soffer bound between h1 and f1 and have an
overall normalization 2=3, which seems a reasonable ex-
pectation on the basis of lattice results and first SIDIS
experimental data [15]. The error bars are only statistical
and are very small because of the copious statistics. As it is
evident in the figure, for x2 < 0:3 it is possible to distin-
guish the trend of the triangles (which statistically reflects
the descending trend of the input function

��������������
1� x2

p
) from

the one of the open triangles (referred to the ascending�����
x2
p

). In this limited range, it should be possible to extract
some information on the analytic dependence of h1�x�. We
made simulations also at the same kinematics of the pre-
vious Sivers effect, namely, for higher beam energy of
100 GeV and for muon pair invariant masses in the 4<
M< 9 GeV range, but using a smaller sample of 50 000
events. The statistical error bars remain very small and the
SSA is definitely nonvanishing, but a clear distinction
between the two trends is no longer possible.

The overall size of the SSA is rather small and the
reached statistical accuracy indicates that the size of the
sample is not responsible for this feature (see also
Ref. [28]). Rather, it is the outcome of a combination of
several sources. First of all, the pT dependence of h?1 in
Eq. (16): it is fixed to reproduce the data of Ref. [32],
which indicate significant SSA only for very large pT
beyond the range of interest here. Second, the target dilu-
tion factor: it is unavoidably introduced by the features of
the actual target that effectively reproduces a transversely
polarized proton; at COMPASS the wanted polarized
events are 1=4 of the total number of collisions on the
NH3 molecule. Finally, the Soffer bound: the various
choices for the ratio h1�x2; hqi=H

"
2�=f1�x2; hqi=H2� are

tightly limited by this constraint. Last but not least, the
lack of specific flavor-dependent parametrizations for
hq1�x;pT� and h?q1 �x;pT� further reduces the selectivity
power of the Monte Carlo output, as shown in Fig. 4 for
x2 > 0:3 and in our attempts at higher energy. This issue
calls for experimental data for the sin����S2

� asymme-
try in single-polarized Drell-Yan processes, which are
presently unavailable.
IV. CONCLUSIONS

In a series of previous papers [17,31], we investigated
the spin structure of the proton using numerical simula-
tions of single- and double-polarized Drell-Yan single-spin
asymmetries (SSA) for the �p�"�p" ! ����X process as
well as for the pp" ! ����X one [21]. We selected muon
pair invariant masses in the range 4<M< 9 GeV (and
also 12<M< 40 GeV for the case of proton beams),
where there is no overlap with the resonance regions of
the �cc and �bb quarkonium systems and the elementary
annihilation can be safely assumed to proceed through the
�qq! 
� mechanism. In particular, the Monte Carlo was
based on the Drell-Yan leading-twist cross section, because
-8
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higher twists may be suppressed as Mp=M, where Mp is
the proton mass.

As for single-polarized reactions, two interesting con-
tributions generate azimuthal asymmetries of the kind
sin����S� and sin����S�, where � and �S are the
azimuthal orientations of the plane containing the final
muon pair and of the proton polarization, respectively,
with respect to the reaction plane. The first one involves
the convolution of the transversity h1, the missing piece
necessary to complete the knowledge of the nucleon spin
structure at leading twist, and the Boer-Mulders h?1 , an-
other chiral-odd parton density which is most likely re-
sponsible for the violation of the Lam-Tung sum rule, the
long-standing problem of an anomalous cos2� asymmetry
of the corresponding unpolarized Drell-Yan cross section
[15]. The second convolution involves the so-called Sivers
function f?1T [9], a ‘‘naive T-odd’’ partonic density that
describes how the distribution of unpolarized quarks is
distorted by the transverse polarization of the parent had-
ron. As such, f?1T contains unsuppressed information on the
orbital motion of hidden confined partons and on their
spatial distribution inside the proton [19].

In this paper, we have reconsidered the same scenario
but for the ��p" ! ����X process at kinematics suit-
able for the COMPASS setup. As with antiproton beams,
the elementary mechanism is dominated by the annihila-
tion between valence partons (from p) and valence anti-
partons (from �). Taking advantage on the high statistics
reachable with pions, in our Monte Carlo we have simu-
lated both sin����S� SSA in the Drell-Yan cross section.
For the Sivers effect, we selected pion beams of 100 GeV
on transversely polarized fixed proton targets such that���
s
p
	 14 GeV, and we used two parametrizations of f?1T:

the one of Ref. [25], which was deduced by fitting the
recent HERMES data for the sin����S� SSA in SIDIS
[2]; the one of Ref. [21], which is constrained by the recent
RHIC data for the pp" ! �X process at higher energy
[26], when it is assumed that the SSA is driven by the
Sivers mechanism only. The main difference is that the
former displays an emphasized relative importance of the
unfavored d quark, and it gives an average transverse
momentum hqTi of the lepton pair lower than the latter.
Consistently, we have built SSA by integrating the qT
distribution with adequate cuts, namely 0:5< qT <
2:5 GeV=c for the former parametrization, and 1< qT <
3 GeV=c for the latter one. Results have been presented as
binned in the parton momenta x2 of the polarized proton,
i.e. by integrating also upon the antiparton partner mo-
menta x1 and the zenithal muon pair distribution � with no
further cuts. For the Boer-Mulders effect, since there is no
such abundance of data and fits, similarly to Ref. [17] we
have used very different input test functions and we have
explored the sensitivity of the simulated sin����S�
asymmetry within the reached statistical accuracy, inte-
grating qT in the range 1< qT < 3 GeV=c. The overall
114002
size of the asymmetry is small due to constraints that are
largely model independent; moreover, the predictive power
of the Monte Carlo is reduced by this crude flavor-
independent analysis. Hence, we have tried to counterbal-
ance this trend by collecting a larger sample using pion
beams at the lower energy of 50 GeV (hence,

���
s
p
	

10 GeV) and at lower muon invariant masses, 1:5<M<
2:5 GeV. Again, results have been presented as binned in
x2 by integrating also upon x1 and �, but with the further
constraint 60� < �< 120� induced by the factor sin2�
which drives the angular distribution of muon pairs.

Given the very different situations for the two analyses,
also the goals are different. For the Sivers effect, the
numerical simulation aims to establish the necessary sta-
tistical accuracy to distinguish different input parametriza-
tions and to test the (universality) properties of the Sivers
function, in particular, its predicted sign change when
going from SIDIS to the Drell-Yan process [20]. As for
the Boer-Mulders effect, the goal is to make input guesses
and to try to determine the minimum number of events
required to discriminate various SSA produced by very
different input guesses, that would allow one to extract as
detailed information as possible on the chiral-odd distri-
butions h?1 and h1.

In all cases, sorted events have been divided in two
groups, corresponding to opposite azimuthal orientations
of the muon pair with respect to the reaction plane (conven-
tionally indicated with U andD), and the asymmetry �U�
D�=�U�D� has been considered. Statistical errors have
been obtained by making 10 independent repetitions of the
simulation for each individual case and, then, calculating
for each x2 bin the average asymmetry and the variance.
For the Sivers effect, a starting sample of 100 000 events
has been selected for the �� beam. Since, from the Monte
Carlo, the cross section with �� turns out statistically
unfavored by a factor 1=4 [38], we have reduced the
sample to 25 000 events for the �� beam in order to
compare situations with the same ‘‘effective luminosity.’’
As for the Boer-Mulders effect, because of the unavail-
ability of fits and isospin analyses, we have used 200 000
events with the �� beam. In all cases, the 1=� behavior of
the cross section, induced by the 
� propagator, has a
twofold effect. It produces the highest density of events
for bins in the valence domain, typically for x2 	 0:3. At
the given

���
s
p

, it also grants that the considered invariant
mass range allows to explore the most populated portion of
phase space, while avoiding overlaps with ranges where
the elementary mechanism could be more complicated and
the leading-twist analysis more questionable. The direct
consequence is that, with a very large statistics of pions
available, very small error bars are reached, except for
boundary x2 values.

The availability of different parametrizations of the
Sivers function, obtained from independent sets of data,
allows for a deep analysis of the flavor dependence of the
-9
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resulting Drell-Yan SSA, as well as for a test of the
universal properties of this parton density. It turns out
that the asymmetry always changes sign when switching
from the �� to the �� beam, because in the valence
picture of the ������ � p collision the � �uu� �dd annihila-
tion dominates, and both parametrizations considered here
have weights with opposite signs for the u and d valence
quarks. The parametrization of Ref. [25], being deduced by
SIDIS data for the Sivers effect [2], displays a more
important relative weight of the d quark over the u, which
reflects in a smaller absolute size of the SSA with the ��

beam with respect to the �� case. No such evidence is
shown by the parametrization of Ref. [21], constrained by
data for the pp" ! �X process at

���
s
p
� 200 GeV [26],

where also the higher hqTi induces a maximum of the
asymmetry at higher x2, typically x2 	 0:4. In both of the
considered cases, we have simulated the asymmetry as-
suming or neglecting the predicted sign change of the
Sivers function when replacing the SIDIS with the Drell-
Yan process [20]. The corresponding results have, of
course, opposite signs, but, noticeably, the very small
statistical error bars allow one to clearly distinguish be-
tween one choice or the other extreme. We conclude that
with the considered sample of events it is possible to
perform such an important test of nonperturbative QCD
using pion beams and transversely polarized proton targets
in the kinematic conditions that can be prepared at
COMPASS.

For the Boer-Mulders effect, the lack of data and pa-
rametrizations of the involved parton distributions forbids
a thorough analysis. The pT dependence of h?1 is inherited
114002
by fitting the measured cos2� asymmetry of the corre-
sponding unpolarized Drell-Yan cross section; for the sta-
tistically relevant range 1 & qT & 3 GeV=c, the
sin����S� asymmetry turns out to be small. We have
further approximated the transversity distribution by using
a ‘‘flavor-averaged’’ ratio between h1�x2� itself and the
unpolarized parton distribution f1�x2�, and we have simu-
lated it by integrating upon x1, qT , �, and inserting very
different input test functions of x2, one ascending and one
descending, but all satisfying the general constraints (like
the Soffer bound, that puts a strong upper bound on the size
of h1 and, consequently, of the spin asymmetry). The small
statistical errors allow one to conclude that the resulting
�U�D�=�U�D� asymmetries, though small, are cer-
tainly nonvanishing. Two different trends in x2 can be
clearly distinguished only for x2 � 0:3, corresponding to
the ascending and descending input functions. The same
conclusion is not possible at higher x2 and, in general, at
higher muon invariant masses, like for the range 4<M<
9 GeV adopted in the analysis of the Sivers effect. Hence,
we conclude that in the present stage useful information on
the transversity h1 and/or the Boer-Mulders function h?1
could be extracted only for low invariant masses of the final
muon pair, 1:5<M< 2:5 GeV, and for a limited range of
parton momenta.
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