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Constraining mass spectra with sterile neutrinos from neutrinoless double beta decay, tritium
beta decay, and cosmology
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We analyze the constraints on neutrino mass spectra with extra sterile neutrinos as implied by the LSND
experiment. The various mass related observables in neutrinoless double beta decay, tritium beta decay
and cosmology are discussed. Both neutrino oscillation results as well as recent cosmological neutrino
mass bounds are taken into account. We find that some of the allowed mass patterns are severely restricted
by the current constraints, in particular, by the cosmological constraints on the total sum of neutrino
masses and by the nonmaximality of the solar neutrino mixing angle. Furthermore, we estimate the form
of the four neutrino mass matrices and also comment on the situation in scenarios with two additional
sterile neutrinos.
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I. INTRODUCTION

Scenarios with four neutrinos became popular on the
wake of the LSND evidence of ��� � ��e transitions [1].
Interpreted in terms of neutrino oscillations, the indicated
mass scale for LSND is in the eV2 range. Together with the
evidence for neutrino oscillations from atmospheric (plus
K2K) and solar (plus KamLAND) neutrino observations,
requiring mass scales around 10�3 eV2 and 10�4 eV2,
respectively, a fourth sterile neutrino has to be introduced
in order to accommodate the presence of three distinct
mass-squared differences.

A priori, four neutrino scenarios allow for two possible
mass patterns:
(i) 2
� 2 scenarios, in which two pairs of neutrino
states are separated from each other by the LSND
mass scale. There are two possibilities for 2� 2
scenarios;
(ii) 3
� 1 scenarios, in which one single neutrino state
is separated by the LSND mass scale from the other
three states. There are four possibilities for 3� 1
scenarios;
Oscillation analyzes in both schemes were performed by a
number of authors [2–5] and also the astrophysical and
cosmological implications were investigated [6,7].
Historically, among the above two alternatives the 3� 1
scenarios were at first relatively disfavored [3] because of
the nonobservation of oscillations in short-baseline experi-
ments like KARMEN [8], Bugey [9] and CDHS [10].
Therefore the 2� 2 scenarios were found to be more
compatible with the existing data. The sterile neutrino
oscillation solution in 2� 2 scenarios was viable for
both solar and atmospheric neutrinos. However, Super-
Kamiokande data disfavored oscillation of the atmospheric
�� to purely sterile neutrinos [11], and later on the SNO
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data started establishing the neutral current component in
the solar �e flux [12]. For some time a mixed scenario,
where the atmospheric neutrino anomaly is due to �� �
�s;� and the solar neutrino anomaly is due to �e � �s;�,
remained compatible with all data [13]. However, all recent
analyzes show that 2� 2 scenarios are ruled out at a high�
from the existing data [14,15]. Both atmospheric and solar
neutrino data strongly disfavor oscillations to pure sterile
species. This disfavored the 2� 2 scenarios irrespective of
whether LSND results are confirmed or not. The most
updated analysis in the 3� 1 scheme performed in
[14,15] shows that nonevidence of neutrino oscillation in
other short-baseline (SBL) experiments combined with
atmospheric neutrino data from SuperK and K2K is incon-
sistent with the LSND signal at 95% C.L. and only mar-
ginal overlaps are found at 99% C.L. Thus, with increased
precision of solar and atmospheric neutrino flux measure-
ments the four neutrino explanation of the LSND anomaly
suffered a setback. This led to many alternative explana-
tions of the LSND anomaly including introduction of two
sterile neutrinos—the so-called 3� 2 scenario [16], CPT
violation [17], quantum decoherence effects violating CPT
[18], mass varying neutrinos [19], neutrino decay in four
neutrino scenarios [20], lepton number violating muon
decay [21], decay of a heavy neutrino [22] or extra dimen-
sional aspects [23].

Oscillation experiments can only measure the mass-
squared differences but not the absolute masses. The
most direct and model independent way to measure the
absolute masses is via kinematic measurements involving
nuclear beta decay. The best bound at present is m� <
2:3 eV (95% C.L.) coming from the Mainz tritium beta
decay experiment [24]. The KATRIN experiment is ex-
pected to increase the sensitivity down to �0:2 eV [25].

Information on absolute masses can also come from
neutrinoless double beta decay (0���). Neutrinoless
double beta decay experiments aim at observing the pro-
cess
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�A; Z� ! �A; Z� 2� � 2e�:

This is a lepton number violating process and its observa-
tion will establish the Majorana nature of neutrinos [26].
The decay width depends quadratically on the so-called
effective mass. We assume here that only the light
Majorana neutrinos implied by neutrino oscillation experi-
ments are exchanged in the diagram of 0���. In the basis
in which the charged lepton mass matrix is real and diago-
nal, the effective mass is then nothing but the absolute
value of the ee element of the neutrino mass matrix. The
best current limit on the effective mass is given by mea-
surements of 76Ge established by the Heidelberg-Moscow
collaboration [27] (with similar results obtained by the
IGEX experiment [28])

hmi � 0:35� eV; (1)

where � � O�1� indicates that there is an uncertainty
stemming from the nuclear physics involved in calculating
the decay width of 0���. The running projects NEMO3
[29] and CUORICINO [30] will be joined in the near future
by next generation experiments such as CUORE [31],
MAJORANA [32], GERDA [33], EXO [34], MOON
[35], COBRA [36], XMASS, DCBA [37], CANDLES
[38], CAMEO [39] (for a review see [40]). One can safely
expect that values of hmi 1 order of magnitude below the
limit from Eq. (1) will be probed within the next, say,

10 years.1 This means that scales of order
������������������
�m2

LSND

q
will

be fully probed, and are even under investigation now.
Since the effective mass measured in 0��� also depends
on the neutrino mixing angles, the neutrino mass scale and
ordering, as well as the mass-squared differences, it is
possible to obtain additional constraints on sterile neutrino
scenarios using neutrinoless double beta decay [42–44].

Important constraints on sterile neutrinos can also come
from cosmology. Inclusion of an extra neutrino, even if
sterile, can be in conflict with cosmological observations.
The problems are increased if the extra sterile neutrino is
massive and has significant mixing with the active species.
In particular the Big Bang Nucleosynthesis model of stan-
dard cosmology, which explains light element abundances
of the Universe, puts constraints on the number of neutrino
species. The latest bound found in [45] for instance is
1:7<N� < 3:0 at 95% C.L. and in [46] it is quoted that
N� � 3:14�0:70

�0:65. The differences in the results are due to
different inputs regarding the uncertainties in the primor-
dial He abundance. Observations of the Cosmic
Microwave Background and of large-scale structures can
also constrain the number of neutrino species. A summary
of these bounds obtained by various groups including
1Not to forget, those experiments aim also to put the con-
troversial [41] evidence of part of the Heidelberg-Moscow
collaboration to the test.
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different data sets can be found in [47]. The upper limit
on the number of neutrinos in these analysis can vary from
6 to 8. A recent bound as quoted in [47] is N� � 4:2�1:7

�1:2 at
95% C.L. Another important constraint from cosmology
comes on the sum of total masses of all the neutrinos, � �P
mi. For four light neutrinos with degenerate masses the

bound is �< 1:7 eV (95% C.L.) from WMAP and 2dF
data [47]. For four (five) neutrinos, with one (two) of them
carrying a mass, the bound is �< 1:05�1:64� eV (95%
C.L.) [48]. Improvement of these numbers within 1 order
of magnitude is expected [47]. Note that these bounds
depend on the priors and data sets used, for slightly more
stringent bounds see, e.g., [49]. The above constraints can
however be evaded if the abundances of sterile neutrinos in
the early Universe can be suppressed. This requires going
beyond the framework of standard cosmology and intro-
ducing mechanisms such as primordial lepton asymmetries
[50], low reheating temperature [51], additional neutrino
interactions [52] etc.2

Turning back to oscillations, the MiniBooNE experi-
ment [54] is expected to confirm or refute the LSND signal
and is expected to publish results within the next 6 months
or so. If MiniBooNE does not confirm the LSND signal,
then with the data collected with 1021 protons on target
they can rule out the entire 90% area allowed by LSND
with 4 to 5� [54]. If however they confirm the LSND
signal then this will give rise to an intriguing situation in
what regards the explanation of global oscillation data
from accelerator, reactor, atmospheric and solar neutrino
experiments. If confirming the LSND result, MiniBooNE
can not distinguish the allowed four (or five) neutrino mass
spectra. To understand the implied mass and mixing
scheme, other observables are therefore crucial. This con-
cerns, in particular, observables depending on the neutrino
masses and ordering. Inasmuch one can use these future
measurements to identify the neutrino spectrum is one of
the motivations of this work. We stress here that we assume
only the neutrino oscillation explanation of the LSND
result is correct, i.e., the new physics alternatives (not
necessarily predicting a signal for MiniBooNE) put for-
ward in Refs. [17–23] are not required.

In this paper we examine what constraints from current
and future data can be obtained on possible neutrino mass
spectra in scenarios with one or more sterile neutrinos. For
the four allowed 3� 1 scenarios we give the neutrino
masses, their sum as testable in cosmology, the kinematic
neutrino mass for tritium experiments and the effective
mass in neutrinoless double beta decay. We include the
most recent values of mass-squared differences and mixing
angles from latest global analyzes of oscillation data. We
furthermore reconstruct the possible mass matrices in four
neutrino scenarios that are consistent with the current data.
Finally, we also comment on 3� 2 scenarios.
2See, however [53].
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The paper is build up as follows: In Sec. II we discuss
our parametrization of the four neutrino mixing matrix and
summarize the relevant formulae for the neutrino masses,
their sum, the kinematic neutrino mass measured in beta
decay experiments and the effective mass that can be
observed in neutrinoless double beta decay. In Sec. III
we apply this framework to 3� 1 scenarios. Approx-
imate forms of the neutrino mass matrices in 3� 1
schemes that are consistent with the current data are given
in Sec. IV. In Sec. V we comment on the above quantities in
the 3� 2 scheme, before presenting our summary and
conclusions in Sec. VI. The oscillation probabilities for
the relevant short-baseline oscillation experiments are
delegated to the appendix. Although 2� 2 scenarios are
highly disfavored we also add for the sake of completeness
an appendix on the implications of such scenarios for
neutrino masses from cosmology, beta decay and neutrino-
less double beta decay. We also discuss the form of mass
matrices in the 2� 2 scenarios.
3This corresponds to jU�ij
2 � 0:065, which is the highest

allowed value of jU�ij
2 at 99% C.L. according to [14].
II. FOUR NEUTRINO MIXING AND NEUTRINO
MASSES

Neutrino mixing is described by the unitary Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix U [55]. For four
Dirac neutrinos it contains 6 angles �12;13;14;23;24;34 and
three phases �13;14;24 (‘‘Dirac phases’’). Their Majorana
nature, which we shall assume, adds another three phases
(‘‘Majorana phases’’), which do not have any consequen-
ces in neutrino oscillations [56]. We parametrize U as

U� R34
~R24

~R14R23
~R13R12P�

Ue1 Ue2 Ue3 Ue4

U�1 U�2 U�3 U�4

U�1 U�2 U�3 U�4

Us1 Us2 Us3 Us4

0
BBB@

1
CCCA;

(2)

where the Rij represent rotations in ij generation space, for
instance:

R34 �

1 0 0 0
0 1 0 0
0 0 c34 s34

0 0 �s34 c34

0
BBB@

1
CCCA or

~R14 �

c14 0 0 s14e�i�14

0 1 0 0
0 0 1 0

�s14e
i�14 0 0 c14

0
BBB@

1
CCCA;

(3)

with the usual notation sij � sin�ij and cij � cos�ij. The
diagonal matrix P contains the three Majorana phases,
which we denote 	;� and 
:

P � diag�1; e�i	=2; e�i��=2��13�; e�i�
=2��14��: (4)

For most purposes it is sufficient to analyze the individual
experimental data in a two-flavor framework. Depending
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on the neutrino mass spectrum, one can then identify
certain elements of the PMNS matrix with the mixing
angle in a two-neutrino oscillation probability. For the
parameters governing solar (and KamLAND), atmospheric
(and K2K) and short-baseline reactor neutrino oscillation it
holds at 3� [57,58]

7:0	 10�5 eV2 <�m2

 < 9:3	 10�5 eV2; (5)

0:25< sin2�
 < 0:40; (6)

with best-fit values of �m2

 � 8	 10�5 eV2 and sin2�
 �

0:31. The atmospheric mass-squared difference and mixing
angle at 3� are known within [15]

1:3	 10�3 eV2 <�m2
A < 4:2	 10�3 eV2; (7)

0:33< sin2�A < 0:66; (8)

with best-fit values of �m2
A � 2:2	 10�3 eV2 and

sin2�A � 1=2. The mixing angle �13 at 3� is restricted to
lie below the value [59]

sin 2�CHOOZ < 0:044: (9)

In Appendix A we give the expressions for the oscillation
probabilities in short-baseline accelerator and reactor ex-
periments and also for the 1 km reactor experiment
CHOOZ. For all the short-baseline experiments excepting
CHOOZ the one mass scale dominance approximation
holds to a good precision. A comparison of the probabil-
ities in the 3� 1 picture (recall that 2� 2 scenarios are
highly disfavored) with the two generation LSND proba-
bility reveals that sin22�LSND in 3� 1 scenarios is always
of the form 4jUeij

2jU�ij
2, where jUeij

2 is constrained to be
small from Bugey reactor and solar neutrino data and
jU�ij

2 is constrained to be small from CDHS and atmos-
pheric data. The index i depends on the mass ordering. In
Ref. [14,15] the allowed area in the 3� 1 schemes is given
in the �m2

LSND � sin22�LSND plane. The plot shows two
overlap points at 99% C.L. corresponding to

��m2
LSND; sin22�LSND� � �0:9 eV2; 0:002� and

�1:8 eV2; 0:001�: (10)

In our following analysis we take these two allowed values
as the illustrative values of �m2

LSND and take jUeij
2 as

0.008 and 0.004, respectively.3 It is to be noted that the
MiniBooNE sensitivity plots in, e.g., Ref. [60], give an
allowed region around �m2

LSND � 0:9 eV2, which would
be obtained if they confirm the LSND signal [60]. Another
allowed region is found for which
-3
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�m2
LSND � �0:2� 0:5� eV2 and

sin22�LSND � 0:01� 0:04: (11)

We therefore give in the following another set of plots for
which we allow �m2

LSND and sin22�LSND to vary in this
range. To extract jUeij

2 from sin22�LSND we assume that
jUeij ’ jU�ij. With this approximation we have 4jUeij

4 �

sin22�LSND, which gives jUeij
2 ’ 0:05� 0:1. It is to be

noted that this range is not allowed at 99% C.L. according
to the analysis of [14]. Nevertheless we take this range as
an illustrative example to compare with the other two cases
with a relatively higher �m2

LSND and lower sin22�LSND.
The neutrino mass matrix is given by

m� � U�mdiag
� Uy; where mdiag

� � diag�m1; m2; m3; m4�:

(12)

We will order the four neutrinos such that m4 >m3 >
m2 >m1 so that �m2

LSND is always given by �m2
LSND �

m2
4 �m

4
1 � �m2

41. Depending on the relative ordering
within the scheme, there are four possibilities for 3� 1
and two possibilities for 2� 2. We display all six cases in
Figs. 1 and 2. One might compare this situation with the
three-flavor case, where there are only two possibilities, the
normal and inverted ordering. The other two mass differ-
ences correspond to �m2


 and �m2
A. One can determine the

individual masses as functions of the smallest massm1 and
the three mass-squared differences:

m2 �
������������������������
m2

1 � �m2
21

q
; m3 �

������������������������������������������
m2

1 ��m2
21 � �m2

32

q
;

m4 �
������������������������������������������������������������
m2

1 � �m2
21 � �m2

32 � �m2
43

q
�

������������������������������
m2

1 � �m2
LSND

q
:

(13)

As an immediate application, we can then calculate the
sum of neutrino masses �,

� � m1 �m2 �m3 �m4: (14)

for which interesting constraints from cosmology apply.
4
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FIG. 1. The four allowed
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Since the individual neutrino masses m1;2;3;4 depend cru-
cially on the mass spectrum, their sum � will do so as well.
For the four possible 3� 1 neutrino spectra from Fig. 1 we
display the neutrino masses and their sum � as a function
of the smallest mass in Fig. 3.

When in addition the mixing matrix elements of the
PMNS matrix are specified, one can determine m�, the
parameter measured in the direct neutrino mass searches in
nuclear beta decay experiments such as KATRIN. We will
denote this parameter the ‘‘kinematic mass.’’ It is given by:

m� �
���������������������������������������������������������������������������������������������
jUe1j

2m2
1 � jUe2j

2m2
2 � jUe3j

2m2
3 � jUe4j

2m2
4

q
:

(15)

With the inclusion of mixing, the parameters entering the
mass measured in beta decay can be expressed in terms of
the lowest mass, the mixing matrix elements jUeij

2 and the
mass-squared differences. Consequently this quantity can
4

1
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3� 1 mass orderings.
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also put constraints on the possible mass schemes and their
ordering [61]. For three-neutrino frameworks this has no
observable effect since the future sensitivity on m� corre-
sponds to quasidegenerate neutrinos, for which unitarity of
the PMNS matrix leads to no dependence on the mixing
matrix elements and for which the normal and inverted
ordering generate identical results. In the various four
neutrino scenarios to be discussed in the following, this
will change.

Neutrinoless double beta decay experiments are sensi-
tive to the effective mass which is given as

hmi�
��������
X
U2
eimi

���������jjUe1j
2m1�jUe2j

2m2ei	

�jUe3j
2m3e

i��jUe4j
2m3e

i
j

� jm1c
2
12c

2
13c

2
14�m2e

i	c2
13c

2
14s

2
12�m3e

i�c2
14s

2
13

�m4e
i
s2

14j

�c2
14jc

2
13�m1c

2
12�m2e

i	s2
12�m3e

i�t213��m4e
i
t214j:

(16)

We defined here tij � tan�ij. As can be seen, hmi is sensi-
tive to the Majorana phases which may be present in the
neutrino mass matrix. The three Dirac phases do not appear
in hmi. The effective mass depends on 10 out of the 16
parameters of the general 4	 4 neutrino mass matrix. This
might be compared with the three-flavor case, in which hmi
depends on 7 out of a total of 9 parameters. Moreover, as in
the three-flavor case (for recent analyzes, see [62,63]),
there is a strong dependence on the mass spectrum.

We conclude that the three mass related observables hmi,
m� and � are powerful tools to discriminate among the
113003
various possible mass orderings. This will be the subject of
the next section.

III. NEUTRINO MASSES AND NEUTRINOLESS
DOUBLE BETA DECAY IN 3� 1 SCENARIOS

In the next Subsections we discuss the predictions for
the sum of neutrino masses, the neutrino mass measured in
nuclear beta decay experiments and the effective mass
measured in neutrinoless double beta decay in the different
3� 1 scenarios. A common feature of the effective mass is
that it can be expressed as a known three-flavor contribu-
tion obtained, e.g., in [62,63] plus an additional term
related to the LSND scale.

A. Neutrino masses and neutrinoless double beta decay
in scenarios 3� 1Aa and 3� 1Ab

As can be seen in Fig. 1, the scenarios 3� 1Aa and 3�
1Ab have three quasidegenerate neutrinos with a mass
given by the LSND scale and a fourth, lightest state sepa-
rated by the LSND scale. It holds that �m2


 � m2
4 �m

2
3,

�m2
A � m2

3 �m
2
2 and �m2


 � m2
3 �m

2
2, �m2

A �
m2

4 �m
2
3, respectively. For the 3� 1Aa case we can use

Eq. (13) to express the masses in terms of the smallest mass
and the three mass-squared differences as

m2 �
����������������������������������������������������������������
m2

1 � �m2
LSND � �m2


 � �m2
A

q
;

m3 �
�����������������������������������������������
m2

1 � �m2
LSND � �m2




q
;

m4 �
������������������������������
m2

1 � �m2
LSND

q
:

(17)

For the 3� 1Ab case �m2
A and �m2


 replace each other.
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4We note here that the predictions for 0��� and m� are
identical (i.e., up to corrections of order �m2

A=�m2
LSND) to the

one of (the highly disfavored) scenario 2� 2A, treated in
Appendix B. Therefore, one can not distinguish these scenarios
via 0��� or tritium decay experiments. However, since one has
�2�2A ’ 2

3 �3�1Aa;b, there would be a chance to distinguish them
via cosmological measurements.

SRUBABATI GOSWAMI AND WERNER RODEJOHANN PHYSICAL REVIEW D 73, 113003 (2006)
Since the neutrino masses are governed mainly by
�m2

LSND, the predictions of scenarios 3� 1Aa and 3�
1Ab for all mass related observables are almost identical
[44] and therefore we treat these two cases together. Since
the minimal mass of the three quasidegenerate neutrinos is������������������

�m2
LSND

q
, it follows for the sum of neutrino masses that

�3�1Aa;b * 3
������������������
�m2

LSND

q
: (18)

The left panel of Fig. 3 shows the four masses and their
sum � as a function of the smallest mass m1. The three
heavier masses are indistinguishable and much larger than
the lightest state unless m1 ’ 1 eV. In Fig. 3 we have fixed
�m2

LSND at 0:9 eV2 and hence �3�1Aa;b * 2:8 eV. It fol-
lows that these two schemes would already be in conflict
with a cosmological limit of � � 1 eV unless �m2

LSND &

0:1 eV2. Nevertheless, let us discuss these scenarios fur-
ther. One would expect that m1 � m2;3;4 holds, so that the
fourth state with mass m1 effectively decouples in what
regards the predictions.

Neutrino data implies in scenario 3� 1Aa (3� 1Ab)
that sin22�LSND � 4jUe1j

2jU�1j
2 (see Appendix A) and

that sin2�CHOOZ ’ jUe2j
2 (sin2�CHOOZ ’ jUe4j

2). One fur-
thermore has jUe3j

2 ’ cos2�
 and jUe4j
2 ’ sin2�
 (case

3� 1Aa) or jUe3j
2 ’ cos2�
 and jUe2j

2 ’ sin2�
 (case
3� 1Ab).

To an excellent approximation, the predictions for neu-
trinoless double beta decay are very similar to the three-
flavor case with quasidegenerate neutrinos [44]. In that
case the normal and inverted mass ordering can not be
distinguished via 0���, since their predictions differ only
by corrections of order �m2

A=m0, where m0 is the common
three-neutrino mass scale. Analogously, the scenarios 3�
1Aa and 3� 1Ab can not be distinguished via 0���, since
they generate identical results up to corrections of order
�m2

A=�m2
LSND. For 3� 1Aa, one has

hmi3�1Aa ’ j
������������������������������
�m2

LSND �m
2
1

q
�c2

 � s

2

e

i�	���

� sin2�CHOOZei�
���� � e�i�m1jUe1j
2j

� jhmiQD
3 �m1e�i�jUe1j

2j: (19)

We have defined c
 � cos�
, s
 � sin�
 and used that
�m2

LSND  �m2
A  �m2


. We also have defined

hmiQD
3 � m0�cos2�
 � e

i�	���sin2�


� ei�
���sin2�CHOOZ� with

jhmiQD
3 j & m0

1� tan2�12 � 2sin2�CHOOZ

1� tan2�

’ m0 cos2�
; (20)

with m0 �
������������������������������
�m2

LSND �m
2
1

q
. The quantity hmiQD

3 is just the
usual three-flavor effective mass with the common mass
scale given by the LSND scale. The contribution of hmiQD

3
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is at least 1 order of magnitude above the term correspond-
ing to the LSND scale: for instance, if m1 � 0:3 eV,
�m2

LSND � 0:9 eV2, and with cos2�
 ’ 0:2� 0:5, one
has hmiQD

3 * 0:2 eV and m1sin22�LSND ’ 0:002 eV.
Hence, neglecting further m2

1 with respect to �m2
LSND,

and also sin2�CHOOZ, one finds

hmi3�1Aa ’
������������������
�m2

LSND

q �������������������������������������������������������
1� sin22�
sin2��� 
�=2

q
: (21)

Case 3� 1Ab is obtained by replacing 	 with 
. Because
of the nonmaximal solar neutrino mixing, the effective
mass can not vanish in case of scenarios 3� 1Aa and 3�

1Ab, its range is given by
������������������
�m2

LSND

q
cos2�
 &

hmi3�1Aa;b &
������������������
�m2

LSND

q
. Therefore, for �m2

LSND �

0:9 eV2 it follows that hmimin ’ 0:19 eV whereas for
�m2

LSND � 1:8 eV2 we have hmimin ’ 0:27 eV. If
�m2

LSND is in the range �0:2–0:5� eV2, then hmimin will
be somewhat lower. This approximate behavior is repro-
duced in Fig. 4 where we have plotted the effective mass as
a function of the smallest mass. Also included in the figure
is the predicted value of the parameter m�, together with
the anticipated KATRIN limit on m� of 0.2 eV. For com-
parison, we also gave the present Heidelberg-Moscow
bound on the effective mass, together with a prospective
future limit of 0.04 eV. Note that the minimum values of
hmi in the limit of vanishingly small m1 are slightly lower
than those mentioned above because of the nonzero value
of sin2�CHOOZ. The limit on the effective mass of 0:35� eV
rules out part of the predicted range: for instance, if
sin2�
 � 0:28 and �m2

LSND � 0:9 eV2, then sin2���

�=2 * 0:93 to obey the constraint of hmi & 0:35 eV.
For sin2�
 � 0:31�0:25; 0:40� and �m2

LSND � 0:9 eV2,
we have that hmi * 0:36�0:48; 0:19� eV, whereas for
�m2

LSND � 1:8 eV2 it holds hmi * 0:51�0:69; 0:27� eV.
Therefore, if sin2�
 turns out to be on the lower side of
its currently allowed range, then scenarios 3� 1Aa; b face
serious problems with the constraints from 0���.

The kinematic neutrino mass in scenarios 3� 1Aa; b is
directly given by the LSND scale:

m3�1Aa;b
� ’

������������������
�m2

LSND

q
: (22)

For fixed �m2
LSND the prediction for m� is therefore a line,

whereas when a range of values for �m2
LSND is given, we

also have a range of values for m�.
We can summarize the situation4 for scenarios 3�

1Aa; b as follows:
-6
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hmi3�1Aa;b ’ m3�1Aa;b
�

�������������������������������������
1� sin22�
sin2�

q

’
�3�1Aa;b

3

�������������������������������������
1� sin22�
sin2�

q
; (23)

where � is some combination of Majorana phases. Some
constraints on these parameters might be obtained in this
scenario. The kinematic mass m� predicted by this sce-
nario is much above the KATRIN sensitivity and it will be
disfavored if KATRIN confirms m� around 0.2 eV. The
same is true when cosmological searches do not find a
signal close to their current bounds. Future limits on the
effective mass below roughly 0.05 eV will also rule out
scenarios 3� 1Aa; b. A limit of 0.1 eV will rule out the two
overlap points at 0.9 and 1:8 eV2.

B. Neutrino masses and neutrinoless double beta decay
in scenario 3� 1B

The structure of scenario 3� 1B is depicted in Fig. 1.
We identify �m2


 � m2
2 �m

2
1 and �m2

A � m2
3 �m

2
2. The

heaviest neutrino m4 is separated by the LSND scale from
the remaining three, which enjoy a normal ordering. We
can express m2, m3 and m4 in terms of the lowest mass m1

and the three mass-squared differences as

m2 �
�����������������������
m2

1 � �m2



q
; m3 �

����������������������������������������
m2

1 � �m2
A ��m2




q
;

m4 �
������������������������������
m2

1 � �m2
LSND

q
: (24)

In Fig. 3 we show—with �m2
LSND taken as 0:9 eV2 —the

four masses as well as their sum as a function of the
113003
smallest mass m1. We have ‘‘unification’’ of m2 and m1

when m1 * 0:01 eV and of m3 and m2 when m1 *

0:01 eV. For small m1 & 0:01 eV one finds

�3�1B ’
������������������
�m2

LSND

q
: (25)

To have � & 1 eV, it is required thatm1 & 0:01�0:1� eV if
�m2

LSND ’ 1�0:2� eV2.
In this scheme it turns out that jUe3j

2 ’ sin2�CHOOZ and
4jUe4j

2jU�4j
2 � sin22�LSND. The remaining elements of

the e-row of U are jUe1j
2 ’ cos2�
 and jUe2j

2 ’ sin2�
.

Neglecting m1, we have m2 ’
�����������
�m2




p
, m3 ’

�����������
�m2

A

q
and

m4 ’
������������������
�m2

LSND

q
. In this case, we can decompose the effec-

tive mass in a term well-known from three-flavor analyzes
and a contribution from the LSND scale [44], namely:

hmi3�1B ’ jhmiNH
3 �

������������������
�m2

LSND

q
ei
jUe4j

2j; where

hmiNH
3 � m1cos2�
 �

�����������
�m2




q
ei	sin2�


�
�����������
�m2

A

q
ei�sin2�CHOOZ: (26)

The term jhmiNH
3 j corresponds to the effective mass in case

of three neutrinos with a normal hierarchy. The maximal
value of jhmiNH

3 j in the range ofm2
1 � �m2


 is known to be

less than 0.007 eV [62,63], whereas
������������������
�m2

LSND

q
jUe4j

2 ’

0:008 eV and 0.005 eV for the cases with �m2
LSND �

0:9 eV2 and 1:8 eV2, respectively. Therefore, if m1 is
negligible and if �m2

LSND � 0:9 eV2, there can be no
complete cancellation, and a lower (upper) limit on hmi
of 0.001 (0.015) eV can be expected. Ifm1 is negligible and
-7
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FIG. 5 (color online). Same as previous figure for scenario 3� 1B.
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�m2
LSND � 1:8 eV2, however, there can be complete can-

cellation, and the upper limit of hmi is 0.012 eV. For both
values of �m2

LSND it turns out that also larger values form1

can lead to a vanishing effective mass, defining a ‘‘cancel-
lation regime’’ in Fig. 5. If we vary �m2

LSND in the range
�0:2–0:5� eV2 andm1 is small, then hmi is controlled by the

term jUe4j
2
������������������
�m2

LSND

q
, which is between 0.02 and 0.07 eV,

and consequently there is no complete cancellation. For
higher values of m1 there can be complete cancellation in
this case also. If the LSND scale is fixed to 0.9 or 1:8 eV2

and m1 * 0:1 eV, then the masses m1;2;3 are quasidegen-
erate and their contribution to the effective mass dominates
the contribution fromm4. Consequently, the effective mass
in this case is hmi3�1B ’ m0�1� sin22�
sin2	=2�, where
m0 denotes the common mass scale of the three lightest
neutrinos and �CHOOZ has been neglected. For the
MiniBooNE range of �0:2–0:5� eV2 this happens for
slightly larger values of m1, but the important aspect that
the effective mass is nonzero in this case holds as well. The
reason for this is that solar neutrino mixing is nonmaximal.
All the discussed features are reflected in Fig. 5.

The kinematic neutrino mass is for m1 � 0

m3�1B
� ’

��������������������������������������������������������������������������������������������������
�m2


sin2�
�sin2�CHOOZ�m2
A�jUe4j

2�m2
LSND

q
;

(27)

which is essentially determined by the term������������������
�m2

LSND

q
jUe4j. For �m2

LSND � 0:9 eV2 as well as
�m2

LSND � 1:8 eV2 this product is ’ 0:085 eV, whereas
for �m2

LSND in the range �0:2–0:5� eV2 it can vary between
(0.1–0.2) eV. This is reproduced in Fig. 5. It is to be noted
that m3�1B

� can be 1 order of magnitude larger than the
maximal effective mass. We can summarize scenario 3�
1B for small m1 as
113003
�3�1B ’
������������������
�m2

LSND

q
>m3�1B

�  hmi3�1B: (28)

Looking at Figs. 3 and 5, we can make the following
statements: if cosmology improves the limit on � to be

below
������������������
�m2

LSND

q
, scenario 3� 1B can be ruled out. An

effective mass above 0.05 (0.01) eV rules out both overlap
points at �m2

LSND � 0:9 and 1:8 eV2 when m1 &

0:1�0:01� eV is assumed to be small. In this case a suc-
cessful KATRIN search will make this also possible.

C. Neutrino masses and neutrinoless double beta decay
in scenario 3� 1C

The mass spectrum for the scenario 3� 1C is depicted
in Fig. 1. We identify �m2


 � m2
3 �m

2
2 and �m2

A � m2
3 �

m2
1. The heaviest neutrino m4 is separated by the LSND

scale from the remaining three, which enjoy an inverted
mass ordering. With this identification the different masses
can be expressed in terms of the smallest mass m1 and the
mass-squared differences as

m2 �
����������������������������������������
m2

1 � �m2

 � �m2

A

q
; m3 �

�����������������������
m2

1 � �m2
A

q
;

m4 �
������������������������������
m2

1 � �m2
LSND

q
: (29)

In Fig. 3 we show the four masses as well as their sum as a
function of the smallest mass m1. We always have quasi-
degeneracy between m2 andm3, andm1 is quasidegenerate
with them once it is in the vicinity of 0.1 eV. The results on
the total sum of masses are hardly distinguishable from
3� 1B,

�3�1C ’
������������������
�m2

LSND

q
: (30)

For the mixing matrix elements one finds jUe1j
2 ’

sin2�CHOOZ as well as 4jUe4j
2jU�4j

2 � sin22�LSND and
jUe2j

2 ’ cos2�
 and jUe3j
2 ’ sin2�
.
-8



10
-5

10
-4

10
-3

10
-2

10
-1

10
010

-4

10
-3

10
-2

10
-1

10
0

10
1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
0

10
1

∆m
2

LSND
= 0.9 eV

2 ∆m
2

LSND
= 1.8 eV

2 ∆m
2

LSND
= (0.2 - 0.5) eV

2

3+1C

<
m

>
, m

β in
 e

V

m
1
 in eV

 mβ

<m> <m>
<m>

 mβ  mβ

Heidelberg-Moscow LimitHeidelberg-Moscow Limit Heidelberg-Moscow Limit

KATRINKATRIN KATRIN

Future 0νββFuture 0νββ Future 0νββ

FIG. 6 (color online). Same as previous figure for scenario 3� 1C.

CONSTRAINING MASS SPECTRA WITH STERILE . . . PHYSICAL REVIEW D 73, 113003 (2006)
We show in Fig. 6 our result for the effective mass as
well as for the kinematic mass as a function of the smallest
mass. The effective mass in the limit of small m1 is

hmi3�1C ’ j
�����������
�m2

A

q
�ei�cos2�
 � ei	sin2�
�

�
������������������
�m2

LSND

q
ei
jUe4j

2j; (31)

which can also be written as

hmi3�1C ’ jhmiIH3 �
������������������
�m2

LSND

q
ei
jUe4j

2j; (32)

where the term jhmiIH3 j corresponds to the effective mass in
case of three neutrinos with an inverted hierarchy [44]. The
contribution of the smallest mass m1 plays a subleading
role as it is also multiplied by small sin2�CHOOZ. The

absolute value of hmiIH3 is known to be
�����������
�m2

A

q
	�������������������������������������������������������

1� sin22�
sin2��� 	�=2
p

and lies (for m2
1 � �m2

A) be-
tween 0.007 and 0.05 eV [62,63]. Whether there is com-
plete cancellation in hmi3�1C or not depends on the value of������������������

�m2
LSND

q
jUe4j

2. For �m2
LSND � 0:9�1:8� eV2 it is given

by ’ 0:008�0:005� eV. Therefore, for �m2
LSND � 0:9 eV2

there can be complete cancellation as is seen in the first
panel of Fig. 6 but since for �m2

LSND � 1:8 eV2 the value

of
������������������
�m2

LSND

q
jUe4j

2 is less than 0.007 eV, there is no com-
plete cancellation in this case (note that it is the other way
around in scenario 3� 1B). The lower limit on the effec-
tive mass is roughly 10�3 eV. Similarly, in the case where
we vary �m2

LSND from �0:2–0:5� eV2 and jUe4j
2 from 0.05

to 0.1, the value of the product
������������������
�m2

LSND

q
jUe4j

2 can be
smaller than 0.06 eV and therefore in this case also there
can be complete cancellation over a wide range of m1. The
maximum value of the effective mass in the small m1 limit
113003
is roughly

hmi3�1C
max ’

�����������
�m2

A

q
�

������������������
�m2

LSND

q
jUe4j

2: (33)

Since the product
������������������
�m2

LSND

q
jUe4j

2 is approximately the
same for 0.9 and 1:8 eV2, it follows that hmi3�1C

max takes
the same value ( ’ 0:07 eV) in these two cases. If m1 is
around 0.1 eV, then the three lightest masses are quaside-
generate, and similar comments as for scenario 3� 1B
discussed in the previous subsection apply.

The kinematic neutrino mass for m1 ’ 0 is

m3�1C
� ’

�����������������������������������������������
�m2

A � jUe4j
2�m2

LSND

q
; (34)

which is somewhat larger than the maximum effective
mass. The blue (dark) band in Fig. 6 shows m� against
m1. It is to be noted that in the first two columns of Fig. 6
the width of m� is due to the variation over the allowed
range of �m2

A as �m2
LSND is held fixed in these plots. In the

third column the width is due to variation of both �m2
LSND

and �m2
A. Let us summarize the situation:

�3�1C ’
������������������
�m2

LSND

q
 m3�1C

� * hmi3�1C
max : (35)

Ruling out scenario 3� 1C could be achieved if cosmol-

ogy improves the limit on � below
������������������
�m2

LSND

q
. For small

m1 & 0:1 eV and a successful KATRIN search both over-
lap points at �m2

LSND � 0:9 and 1:8 eV2 are ruled out. An
effective mass above 0.07 eV rules out all three cases under
discussion, unless m1 * 0:1 eV.

IV. FOUR NEUTRINO MASS MATRICES

Models incorporating an extra sterile neutrino have been
developed in many papers [64–68]. In this section we wish
to summarize the typical mass matrices that are consistent
-9
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with the experimental data in 3� 1 scenarios. In particular,
we look for simpleU�1� flavor symmetries which can force
the approximate form of the mass matrices. The mass
matrices for the 2� 2 scenarios are discussed in
Appendix B.

3� 1 scenarios have the property that the sterile neu-
trino does practically not participate in solar and atmos-
pheric neutrino oscillations. Consequently, there is very
little dependence on the respective sterile neutrino fraction.
Another general aspect of the results in 3� 1 scenarios is
that the well-known three-flavor mass and mixing matrices
(see the overviews in [63,69]) are ‘‘embedded’’ in the four-
flavor mass and mixing matrices. This means, in particular,
that the corrections to the usual three-flavor mass matrix

are of order5 m4sin2�LSND � 
2
������������������
�m2

LSND

q
’

�����������
�m2




p
. We

introduced here a small parameter  ’ 0:1, to estimate
the different mass and mixing scales in the four neutrino
framework. Both the LSND and the CHOOZ mixing angle
are assumed to be of order , and the mass scales are
related through �m2


 ’ 
2�m2

A ’ 
4�m2

LSND. In the ap-

proximation we are using, terms of order 2
������������������
�m2

LSND

q
are

subleading.
5We have been made aware of an upcoming analysis on this
subject [70].
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A. The mass matrix in scenarios 3� 1Aa and 3� 1Ab

In case of scheme 3� 1Aa, one has
U3�1Aa ’

  cos�
 sin�

 sin�A � sin�
 cos�A cos�
 cos�A
 cos�A sin�
 sin�A �cos�
 sin�A
1   

0
BBB@

1
CCCAP;

(36)
where we set the Dirac phases to zero and included small
terms of order � 0:1 without writing possible order one
coefficients. These terms indicate the typical order of both
the CHOOZ angle sin�CHOOZ and the LSND parameter
sin�LSND. The above mixing matrix is unitary only to order
. In principle, the order one entries receive additional
terms of order  to cure this. The following analysis,
however, is not harmed by this. With a given mass hier-
archy we can obtain now the approximate form of the mass
matrix. By looking at Fig. 3, we can see that typically m4 ’
m3 ’ m2  m1 holds. So, setting m1 � 0, we have
m3�1Aa
� �

������������������
�m2

LSND

q ei�c2

 � e

i
s2

 cAc
s
�e

i� � ei
� sAc
s
�e
i� � ei
� 

� ei	s2
A � c

2
A�e

i�s2

 � e

i
c2

� cAsA�ei	 � ei
c2


 � e
i�s2

� 

� � ei	c2
A � s

2
A�e

i�s2

 � e

i
c2

� 

� � � 0

0
BBB@

1
CCCA
Here we have defined cA � cos�A and sA � sin�A. A
matrix with the entries of the s column zero and the
remaining elements of order one conserves the flavor
charge Ls.

Obviously, the upper left 3	 3-block ofm� corresponds
to the well-known three-flavor mass matrix in case of
quasidegenerate neutrinos. Apart from the usual �-� ex-
change symmetry [71], we can have several interesting
special cases: depending on the relative CP parities of
the three heavy neutrinos, and setting for simplicity �A �
�=4 and �
 � �=4, we can have 3	 3 matrices propor-
tional to the unit matrix (	 � � � 
 � 0) or with only a
nonvanishing ee and �� element (� � 
 � � and 	 � 0)
[69]. The mixing matrix in scenario 3� 1Ab is obtained
by exchanging the second and fourth row of the mixing
matrix, i.e.,

U3�1Ab ’

 sin�
 cos�
 
 cos�
 cos�A � sin�
 cos�A sin�A
 �cos�
 sin�A sin�
 sin�A cos�A
1   

0
BBB@

1
CCCAP:

(37)

The mass matrix looks identical to case 3� 1Aa, the only
change being the replacement 	$ 
. This is analogous to
the three-flavor case, in which the structure of the mass
matrix for quasidegenerate neutrinos does not depend on
whether the neutrinos are normally and inversely ordered.

B. The mass matrix in scenario 3� 1B

The mixing matrix is given by

U3�1B ’

cos�
 sin�
  
� sin�
 cos�A cos�
 cos�A sin�A 

sin�
 sin�A �cos�
 sin�A cos�A 
   1

0
BBB@

1
CCCAP:

(38)

Regarding the mass states, we have for a smallest mass

m1 & 0:005 eV that m4 ’
������������������
�m2

LSND

q
 m3 ’

�����������
�m2

A

q
’

m4 m2 ’
�����������
�m2

A

q
’ m42. The mass matrix then reads

m3�1B
� �

������������������
�m2

LSND

q 0 0 0 
� s2

A cAsA 
� � c2

A 
� � � 1

0
BBB@

1
CCCA:

Again, the upper left 3	 3-block corresponds to the well-
known three-flavor mass matrix, which can be obtained by
-10
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demanding Le to be conserved.6 A four-flavor mass matrix with only the ss element nonzero conserves7 Le � L� � L�. As
long as m1 (and therefore also m2 and m3) are 1 order of magnitude below m4, the main structure of the mass matrix
remains, i.e., the ss entry is 1 order of magnitude larger than the remaining ones.

C. The mass matrix in scenario 3� 1C

The mixing matrix is given by

U3�1C ’

 cos�
 sin�
 
sin�A � sin�
 cos�A cos�
 cos�A 
cos�A sin�
 sin�A �cos�
 sin�A 
   1

0
BBB@

1
CCCAP: (39)

The three light neutrinos correspond approximately to the well-known inverted hierarchy case of three neutrinos. With

m1 ’ 0 and m3’m2’
�����������
�m2

A

q
’m4’

������������������
�m2

LSND

q
, we get

m3�1C
� �

������������������
�m2

LSND

q ei	c2

�e

i�s2

 �e

i	�ei��cAs
c
 �ei	�ei��sAs
c
 
� �ei	s2


�e
i�c2

�c

2
A �e

i	s2

�e

i�c2

�cAsA 

� � �ei	s2

�e

i�c2

�s

2
A 

� � � 1

0
BBB@

1
CCCA:
The full four-flavor matrix conserves approximately (i.e.,
when we neglect ) the flavor charge Le � L� � L�. We
have again for the upper left 3	 3 block the well-known
three-flavor mass matrix of an inverted hierarchy, which
displays for �A � �=4 a �-� symmetry.

If we set �
 � �=4 and choose8 	 � 0 and � � �, then
all entries except the ss, e� and e� elements vanish to
order :

m3�1C
� �

������������������
�m2

LSND

q 0 1 1 0
� 0 0 0
� � 0 0
� � � 1

0
BBB@

1
CCCA: (40)

The global symmetry forcing this form of the mass matrix
is Le � L� � L�, which was introduced first for the three-
flavor case [72], but was used also for the four-flavor case
[68].

V. COMMENTS ON 3� 2 SCENARIOS

By means of introducing more sterile neutrinos, the
goodness of fit for explaining the LSND and other short-
baseline data can, not really surprisingly, be improved. In
this respect, the 3� 2 scenario has been put forward to
make the interpretation of all neutrino data less problem-
atic [16]. These schemes have three neutrinos actively
oscillating among themselves and two additional sterile
neutrinos responsible for the LSND anomaly. Models to
accommodate 3� 2 scenarios can be found in [73]. With 5
6Conservation of Le in case of four flavors would be achieved
when the �s and �s entries are also of order one.

7Obviously, conserving Le � L� � L� in case of three flavors
leads to Dirac neutrinos. For four-flavor scenarios one would
have to ask for Le � L� � L� � Ls conservation.

8Note that such a Pseudo-Dirac structure will lead to enhanced
stability with respect to radiative corrections.
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neutrinos participating in neutrino oscillations, 4 indepen-
dent �m2 are present. In addition to the three discussed
previously, we have to deal in addition with �m2

51.
In the analysis of Ref. [16] two best-fit points are given,

one of which corresponds to �m2
51 � 22 eV2, which is

clearly not consistent with cosmological constraints. The
second best-fit value is at

�m2
41 � 0:46 eV2; �m2

51 � 0:89 eV2;

Ue4 � 0:090; Ue5 � 0:125;

U�4 � 0:226; U�5 � 0:160:

(41)

This identification of the mixing matrix elements assumes
that the three active neutrinos are lighter than the two
sterile ones, i.e., a situation resembling scenarios 3� 1B
and 3� 1C. We can decompose the effective mass as a
term from the three active neutrinos and a term from the
two sterile ones, i.e.,

hmi3�2 � jhmi3ac � hmi2stj: (42)

In this case, the two additional mass scales imply an addi-
tional contribution to the effective mass, reading

hmi2st � jUe4j
2m4ei
 � jUe5j

2m5ei�

� jUe4j
2
������������������������
m2

1 ��m2
41

q
ei
 � jUe5j

2
������������������������
m2

1 � �m2
51

q
ei�;

(43)

where we have introduced a fourth relevant Majorana
phase �. If m1 � 0, then the best-fit values given above
yield jhmi2stj ’ �0:01–0:02� eV, where the range is caused
by the effect of the Majorana phases.

The cosmological mass parameter is � ’������������������������
m2

1 ��m2
41

q
�

������������������������
m2

1 � �m2
51

q
, which for m1 � 0 is

1.6 eV, remarkably close to the current relevant limit
from cosmology (1.64 eV) obtained in Ref. [53].
-11
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The contribution to the neutrino mass measurable in
KATRIN is roughly

m� ’
��������������������������������������������������������������������������������������
jUe4j

2�m2
1 � �m2

41� � jUe5j
2�m2

1 ��m2
51�

q
; (44)

which for m1 � 0 is 0.1 eV, but can reach testable values if
m1 * 0:1 eV.

If the three active neutrinos display an inverted hier-
archy, then their contribution jhmi3acj to the effective mass
(see scenario 3� 1C in Sec. III C) lies between hmi ������������

�m2
A

q
and hmi �

�����������
�m2

A

q
cos2�
, or numerically:

(0.007–0.06) eV. Complete cancellation between hmi3ac

and hmi2st is possible. On the other hand, positive interfer-
ence of the two terms can lead to hmi ’ 0:08 eV. If the
three active neutrinos enjoy a normal mass ordering with
m1 � 0, then their contribution hmi3ac to hmi does not
exceed 0.007 eV (see scenario 3� 1B in Sec. III B), so
that hmi2st dominates and represents basically the predic-
tion for hmi. Note however that these considerations take
use of the best-fit values of the fourth and fifth neutrino
sector. Varying these parameters within their allowed range
and/or effects of nonzero m1 might easily allow for severe
cancellation. Moreover, one might also exchange �m2

41
and �m2

51, leading to identical values for �, slightly larger
values ofm� and jhmi2stj ’ �0:003� 0:02� eV (all ifm1 �

0). Consequently, the effective mass vanishes for both
orderings of the three active neutrinos. The upper limit is
0.02 (0.08) eV for normally (inversely) ordered active
neutrinos.

Up to now the two sterile neutrinos were assumed be
heavier than the active ones. Also possible is that the two
additional neutrinos are lighter than the three active ones,
thereby resembling scenarios 3� 1Aa and 3� 1Ab. For
the mixing matrix elements one has to exchange the indices
4$ 1 and 5$ 2. The three active ones generate an effec-

tive mass larger than roughly
������������������������
�m2

51 �m
2
1

q
cos2�
, which

for m1 � 0 is 0.1 eV (see Sec. III A). The contribution of
the additional neutrinos is significantly suppressed. The

KATRIN parameter is approximately
������������
�m2

51

q
’ 0:9 eV,

surely a testable value. Cosmology will have to probe � ’

3
������������
�m2

51

q
’ 2:8 eV, which is incompatible already with

current limits.
Finally, it should be clear that the known three-flavor

mass and mixing matrices are embedded in the 5	 5 mass
and mixing matrices. We note that scenarios with 3 or more
sterile neutrinos will also show this ‘‘embedding.’’

VI. CONCLUSIONS AND SUMMARY

We have examined the constraints on LSND induced
scenarios with extra sterile neutrinos from current and
future bounds on neutrinoless double beta decay, tritium
beta decays and cosmological limits on the sum of neutrino
masses. Since 2� 2 scenarios are already disfavored by
113003
the present solar and atmospheric data we considered the
3� 1 scenario in the main part of the paper. The values of
�m2

LSND considered in our analysis are 0:9 eV2 and
1:8 eV2, allowed by a combined analysis of SBL�
atmospheric and K2K data [14,15]. We also considered
�m2

LSND to vary in the range �0:2–0:5� eV2, motivated by
MiniBooNE sensitivity plots. For sake of completeness we
discuss the 2� 2 scenarios in Appendix B. Within the 3�
1 scenario there are three possibilities, 3� 1Aa; b, 3� 1B
and 3� 1C. The sum of neutrino masses is ’ 3�1; 1�	������������������

�m2
LSND

q
, for scenario 3� 1Aa; b (3� 1B, 3� 1C) ne-

glecting the solar and atmospheric mass differences. The
effective mass can be written as a known three-flavor
contribution plus an additional term stemming from the
LSND scale. Let us summarize the different aspects:
(i) i
-12
n the 3� 1Aa and 3� 1Ab scenarios we have
three quasidegenerate neutrinos of mass������������������

�m2
LSND

q
and a fourth state separated from them

by the LSND mass scale. The sum of the masses is

’ 3
������������������
�m2

LSND

q
in the limit where the mass of the

lowest state is vanishingly small. This implies
small values of �m2

LSND ( ’ 0:1 eV2) to comply
with the cosmological bound of order 1 eV for
the sum total of the masses. For the considered
values of �m2

LSND the sum of masses already ex-
ceeds the cosmological limit of ’ 1 eV. Therefore
this scenario is highly constrained from cosmology
in particular for higher values of �m2

LSND. The
effective mass measured in neutrinoless double

beta decay varies from
������������������
�m2

LSND

q
cos2�
 to������������������

�m2
LSND

q
. Since �
 � �=4 is no longer allowed

by the current data, the minimum value of the
effective mass is nonzero in this case.9 Depending
on the value of �m2

LSND, the lower value of hmi
varies from ’ �0:04–0:2� eV. A part of this region
is already disfavored by the limit from the
Heidelberg-Moscow experiment. Low values of
sin2�
 and large values of �m2

LSND jeopardize sce-
narios 3� 1Aa and 3� 1Ab because the minimal
hmi becomes too large. The neutrino mass mea-

sured in beta decay in this scenario is ’
������������������
�m2

LSND

q
and coincides with the upper limit of the effective
mass in neutrinoless double beta decay;
(ii) t
he 3� 1B scenario corresponds to three-neutrino
states with a normal hierarchy separated from a
fourth state by the LSND mass scale. For small
m1 < 0:01 eV the sum of the masses is given by

�3�1B ’
������������������
�m2

LSND

q
. Hence, the cases �m2

LSND �

0:9 eV2 and �m2
LSND in the range �0:2–0:5� eV2 are

consistent with the cosmological mass bound.
Whether there is complete cancellation for the
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effective mass depends upon the product

jUe4j
2
������������������
�m2

LSND

q
. For our choice of parameters

and hierarchical masses we got very low values of
hmi only if �m2

LSND � 1:8 eV2. The mass mea-
sured in tritium beta decay is larger than hmi for
m1 & 0:1 eV;
(iii) s
cenario 3� 1C corresponds to the usual three
generation inverted hierarchy picture plus an addi-
tional neutrino at a higher scale separated by the
LSND gap. The second and the third state are

quasidegenerate at
�����������
�m2

A

q
. For m1 > 0:1 eV they

become quasidegenerate with the first state. The
cosmological constraint on the 3� 1C scenario is
approximately the same as for 3� 1B. The predic-
tion for hmi can be split into a contribution from a
three-neutrino inverted hierarchy scenario plus a

term ei
jUe4j
2
������������������
�m2

LSND

q
. The contribution of the

three-flavor term to hmi is between (0.007–
0.05) eV. Hence, in this case we get very low values
of hmi for �m2

LSND � 0:9 eV2 and in the range
�0:2–0:5� eV2.
Regarding the four neutrino mass and mixing matrices,
3� 1 scenarios ‘‘embed’’ in their mass and mixing
matrices the well-known three-flavor matrices. Correc-
tions to these three-flavor matrices are of order������������������

�m2
LSND

q
sin2�LSND, i.e., of order �m2


, for the mass ma-
trix and of order sin�LSND for the mixing matrix. The 3�
1B and 3� 1C scenarios can in principle be motivated by
an approximate Le � L� � L� global symmetry,10

whereas scenarios 3� 1Aa; b correspond to a Ls global
symmetry. Scenario 3� 1C can also be motivated by
conservation of Le � L� � L�.
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Note added.—The recent results from three year WMAP
data in combination with large-scale structure and super-
nova data gives the bound on the sum of three neutrino
masses to be �m� < 0:68 eV (95% C.L.) which is not very
different from the first year limit [74]. Therefore the bound
on the sum of neutrino masses that we use in this paper is
not expected to change significantly with this new data.
More stringent bounds can be obtained by including the
Lyman-	 forest data [75].
2� 2 scenarios, discussed in the appendix, have other
tes for global symmetries, for instance Le � L� � L� �
eover, there can be a �-s exchange symmetry in analogy
ccessful �-� exchange symmetry for three neutrinos.
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APPENDIX A: OSCILLATION PROBABILITIES
FOR SHORT-BASELINE EXPERIMENTS

Here we list the relevant probabilities for short-baseline
experiments in the 2� 2 and 3� 1 scenarios. The most
general expression for neutrino survival or conversion
probability for N neutrino generations is given by

P�	�� � �	� � 4
X
j>i

U	iU�iU	jU�jsin2

�
�L
ij

�
; (A1)

where i, j varies from 1 to N for N generations, and ij �
2:47�E�=MeV��eV2=�m2

ij� m. If the �m2
ij corresponds to

�m2

, �m2

A or �m2
LSND, we denote it with 
, A and

LSND, respectively. The actual form of the various survival
and transition probabilities will depend on the spectrum of
�m2 chosen. The above Eq. (A1) is assuming the
CP-phases to be zero. Below we list the relevant proba-
bilities for short-baseline experiments in the 2� 2 and 3�
1 scenarios for the reactor experiments Bugey [9], CHOOZ
[59] and the accelerator experiments CDHSW [10], LSND
[1], and MiniBooNE [54]. The energy and length scales
involved are such that one mass scale dominance approxi-
mation holds true in most of the following cases (excepting
CHOOZ):
(i) S
-13
cenario 3� 1Aa:

P�e�e � 1� 4U2
e1�1�U

2
e1�sin2��L=LSND�

�Bugey�

P�e�e � 1� 2U2
e1�1�U

2
e1� � 4U2

e2sin2��L=A�

�CHOOZ�

P���� � 1� 4U2
�1�1�U

2
�1�sin2��L=LSND�

�CDHSW�

P���e � 4U2
e1U

2
�1sin2��L=LSND�

�LSND;MiniBooNE�:

The relevant formulae for scenario 3� 1Ab are
obtained from the above by replacing 2$ 4.
(ii) S
cenario 3� 1B:

P�e�e � 1� 4U2
e4�1�U

2
e4�sin2��L=LSND�

�Bugey�

P�e�e � 1� 2U2
e4�1�U

2
e4� � 4U2

e3sin2��L=A�

�CHOOZ�

P���� � 1� 4U2
�4�1�U

2
�4�sin2��L=SBL�

�CDHSW�

P���e � 4U2
e4U

2
�4sin2��L=LSND�

�LSND;MiniBooNE�: (A2)
Note that the probabilities in the 3�1B picture can be
obtained from 3�1Aa by replacing Ue1 by Ue4, U�1 by
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U�4 and Ue2 by Ue3 in the CHOOZ probability. The prob-
abilities for the scenario 3�1C are the same as those of
3�1B excepting U2

e3 in CHOOZ probability is to be re-
placed by U2

e1. In the presence of CP violation the mixing
matrix elements are complex. In the above 3�1 oscillation
probabilities one then has to replace U2

	i with jU	ij
2.

Let us for the sake of completeness also give the oscil-
lation probabilities in the 2� 2 schemes:
(i) S
cenario 2� 2A:

P�e�e � 1� 4�U2
e1 �U

2
e2��1�U

2
e1 �U

2
e2�

	 sin2��L=LSND�

�Bugey�

P�e�e � 1� 2�U2
e1 �U

2
e2��1�U

2
e1 �U

2
e2�

� 4U2
e1U

2
e2sin2��L=A�

�CHOOZ�

P�e�e � 1� 4�U2
�1 �U

2
�2��1�U

2
�1 �U

2
�2�

	 sin2��L=LSND�

�CDHSW�

P���e � 4�Ue1U�1 �Ue2U�2�
2sin2��L=LSND�

�LSND;MiniBooNE�
11It is to be noted that the constraints on mixing angles from
SBL experiments are not as severe in the 2� 2 case as in the
3� 1 case.
The survival and oscillation probabilities in scenario
2� 2B are obtained from those of scenario 2� 2A by
making the change 1$ 3 and 2$ 4. In case there are
Dirac phases in the PMNS matrix, again U2

	i will have to
be replaced with jU	ij

2. In what regards the (LSND,
MiniBooNE) probability, the relevant term would read
jU�e1U�1 �U

�
e2U�2j instead of �Ue1U�1 �Ue2U�2�.

APPENDIX B: NEUTRINO MASSES AND
NEUTRINOLESS DOUBLE BETA DECAY IN 2� 2

SCENARIOS

1. Neutrino masses and neutrinoless double beta decay
in scenario 2� 2A

On the left side of Fig. 2 the mass ordering of scheme
2� 2A can be seen. In this scheme it holds that �m2


 �
�m2

43 and �m2
A � �m2

21. One has

m2 �
�����������������������
m2

1 � �m2
A

q
; m3 �

�����������������������������������������������
m2

1 � �m2
LSND ��m2




q
;

m4 �
������������������������������
m2

1 � �m2
LSND

q
: (B1)

The left side of Fig. 7 shows the four mass values and their
sum � as a function of the smallest mass m1. Because of
�m2

LSND  �m2
A the masses m4 and m3 are hardly distin-

guishable in the plot and for m1 * 0:1 eV the two lightest
masses m1 and m2 become quasidegenerate. To clarify the
role of the cosmology bounds on �, we included in the
figure a value of � � 1 eV. To let the sum of neutrino
masses lie below this limit, small values of �m2

LSND and of
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m1 are implied: for small m1 & 0:05 eV it holds that

m4 ’ m3 ’
������������������
�m2

LSND

q
 m2;1: (B2)

Hence, �’2
������������������
�m2

LSND

q
and therefore low values of

�m2
LSND & 0:3 eV2 are implied by the condition � & 1 eV.

Turning to the constraints on the mixing matrix ele-
ments, jUe1j

2 and jUe2j
2 are constrained by the short-

baseline reactor experiment Bugey and the reactor experi-
ment CHOOZ. sin22�LSND is given by the combination
�Ue1U�1 �Ue2U�2�

2 and the combination �jU�1j
2 �

jU�2j
2� will be constrained by the CDHS experiment. We

give the relevant expressions for the probability in
Appendix A. Since the one mass scale dominance approxi-
mation holds, one can use two-parameter plots to find the
constraints on these mixing parameters. However, for the
sake of illustration in this paper we use the values of
�m2

LSND and sin22�LSND from the MiniBooNE sensitivity
plot given, e.g., in [60]. We take the representative values11

for (�m2
LSND, sin22�LSND) as (0.3,0.02) and (0.9,0.008). To

extract Ue1 and Ue2 from sin22�LSND we make the plau-
sible assumption Ue1 ’ Ue2 and U2

�1 � U2
�2 � 0:5 as im-

plied by atmospheric data. This assumption was for
instance used in [43]. With this assumption we haveU2

e1 �
U2
e2 � 0:002�0:005� for �m2

LSND � 0:9�0:3� eV2. In any
case it is to be noted that in the 2� 2A scenario Ue1 and
Ue2 multiply the smaller masses m1 and m2, and as we will
see below their contribution to effective mass as well as the
mass measured in beta decay is subleading. We further-
more have jUe3j ’ cos�
 and jUe4j ’ sin�
.

Since m1 and m2 are small in scenario 2� 2A and in
addition multiplied with the small elements jUe1j

2 and
jUe2j

2, respectively, we can neglect terms including these
quantities in what follows. Then the effective mass in
scenario 2� 2A reads

hmi2�2A ’
������������������
�m2

LSND

q �������������������������������������������������������
1� sin22�
sin2��� 
�=2

q
: (B3)

The nonmaximality of solar neutrino mixing implies there-
fore a nonvanishing effective mass. This is in analogy to
the three-flavor case with an inverted hierarchy or quasi-

degenerate neutrinos. Choosing for instance
������������������
�m2

LSND

q
’

0:5 eV and the values of �
 from Eq. (6), we can predict
that

cos2�

������������������
�m2

LSND

q
’ 0:1 eV & hmi2�2A &

������������������
�m2

LSND

q

& 0:5 eV: (B4)

This range of hmi is well within reach of currently running
or planned 0��� experiments. In Fig. 8 we show the
effective mass as a function of the smallest neutrino mass
m1. We also show the present bound from the Heidelberg-
-14
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LSND � 0:2 eV2.

CONSTRAINING MASS SPECTRA WITH STERILE . . . PHYSICAL REVIEW D 73, 113003 (2006)
Moscow experiment in this figure, together with a prospec-
tive future limit. It is to be noted that some part of the
regions are already disfavored by the Heidelberg-Moscow
limit. Thus nonmaximality of solar neutrino mixing angle
coupled with the existing limit from Heidelberg-Moscow
experiment already puts some constraint on the 2� 2A
mass pattern.

Neglecting terms proportional to U2
e1m1 and U2

e2m2, we
have for the kinematic neutrino mass

m2�2A
� ’

��������������������������������������������
jUe3j

2m2
3 � jUe4j

2m2
4

q
’

������������������
�m2

LSND

q
: (B5)

Since cosmology implies that
������������������
�m2

LSND

q
is below roughly

0.3 eV, we expect that m� should be close to the lowest
value reachable by KATRIN, but close to the current limit
on the sum of neutrino masses from cosmology. Since

m2�2A
� ’

������������������
�m2

LSND

q
’ �2�2A=2

’
������������������
�m2

LSND

q �������������������������������������������������������
1� sin22�
sin2��� 
�=2

q
; (B6)

one can in principle obtain a set of consistency checks of
scenario 2� 2A, and obtain some information on the
Majorana phase combination �� 
.

2. Neutrino masses and neutrinoless double beta decay
in scenario 2� 2B

The right panel of Fig. 7 shows the values of the four
neutrino masses and their sum � in scenario 2� 2B, in
which one has �m2


 � m2
2 �m

2
1 and �m2

A � m2
4 �m

2
3.

We can write the masses of the neutrino states in terms
of the smallest mass m1 and the three mass-squared differ-
113003
ences as

m2 �
�����������������������
m2

1 � �m2



q
; m3 �

�����������������������������������������������
m2

1 � �m2
LSND � �m2

A

q
;

m4 �
������������������������������
m2

1 � �m2
LSND

q
: (B7)

For the mass values similar statements as for scenario 2�

2A apply, namely, that m4 ’ m3 ’
������������������
�m2

LSND

q
’ �2�2B=2,

where �m2
LSND should lie at the lower end of its allowed

range in order to obey the constraints from cosmology. The
smallest neutrino mass m1 should lie below 0.05 eV and
therefore m2 and m1 are typically not very close to each
other, unless m1 ’ 0:02� 0:05 eV.

In what regards the mixing matrix elements, scenario
2� 2B is obtained from scenario 2� 2A by exchanging
the indices 1$ 3 and 2$ 4. Hence, jUe1j and jUe2j are
roughly given by cos�
 and sin�
, respectively. The ele-
ments jUe3j and jUe4j, however, are implied to be small.

We show in Fig. 9 the effective mass as a function of the
smallest mass. The effective mass is approximately given
by

hmi2�2B ’ jcos2�
m1 � sin2�
m2ei	 � jUe3j
2m3ei�

� jUe4j
2m4e

i
j

’ jcos2�
m1 � sin2�
m2e
i	

�
������������������
�m2

LSND

q
�jUe3j

2ei� � jUe4j
2ei
�j

’ jsin2�

�����������
�m2




q
�

������������������
�m2

LSND

q
�jUe3j

2ei���	�

� jUe4j
2ei�
����j; (B8)

where we neglected m1 for the last approximation.
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FIG. 8 (color online). The effective mass hmi and the mass m� measured in beta decay experiments plotted as a function of the
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Since U2
e3 and U2

e4 are small, the two large masses m3

and m4 are multiplied with small mixing matrix elements,
whereas the small masses m1 and m2 are multiplied with
large mixing matrix elements. As a consequence, there can
be cancellations leading to a very small or zero effective
mass. Note the analogy of this situation with the three-
flavor case: in the inverted hierarchy the large masses are
multiplied with mixing matrix elements corresponding to
the large solar neutrino mixing, whose nonmaximality
allows no cancellation. In the normal hierarchy, the largest
mass m3 is multiplied with the smallest mixing matrix
element, and complete cancellation can occur. Since the
degree of cancellation depends on the values of the two
small quantities U2

e3 and U2
e4 for this case, we present our

results for �m2
LSND � 0:3 eV2 and two different choices

for U2
e3 and U2

e4. In the left panel we show the plot where
we assume U2

e3 ’ U
2
e4 � 0:005. In this case complete can-

cellation can occur. In the right panel we present our results
withU2

e4 � 0 andU2
e3 � 0:01. In this case the minimal hmi

has a higher value. The two terms in the last equation have

the typical order
�����������
�m2




p
sin2�
 ’ �2� 4� � 10�3 eV and������������������

�m2
LSND

q
jUe3j

2 ’ 0:005 eV. The upper limit on hmi2�2B

is then roughly given by 0.01 eV. Hence, we can in prin-
ciple distinguish scenario 2� 2A from 2� 2B via 0���
as long as m1 is small. This is analogous to the situation
normal vs inverted hierarchy in the three-flavor case.
113003
The kinematic neutrino mass as measurable in the
KATRIN experiment is given by

m2�2B
� �

������������������������������������������������������������������������������������������
jUe1j

2m2
1�jUe2j

2m2
2�jUe3j

2m2
3�jUe4j

2m2
4

q

’
���������������������������������������������������������������������������������������������������
cos2�
m2

1�sin2�
m2
2��m2

LSND�jUe3j
2�jUe4j

2
q

’
��������������������������������������������������������������������������������
�m2


sin2�
��m2
LSND�jUe3j

2�jUe4j
2�

q
; (B9)

where we neglected again m1 in the last approximation.
Both terms are of similar magnitude and we can expect that
m2�2B
� ’ 0:1 eV, larger than the effective mass by an order

of magnitude and below the future KATRIN limit.
APPENDIX C: THE MASS MATRIX IN THE 2� 2
SCENARIOS

Now we discuss the form of the mass matrices in 2� 2
scenarios. Our approach and the approximations made are
the same as for the 3� 1 case, and details are given in
Sec. IV.

1. The mass matrix in scenario 2� 2A

For scenario 2� 2A we can express the mixing matrix
as follows [2,3]:
U2�2A ’

  cos�
 sin�

cos�atm sin�atm  

� sin� sin�atm sin� cos�atm � cos� sin�
 cos� cos�

� cos� sin�atm cos� cos�atm sin� sin�
 � sin� cos�


0
BBB@

1
CCCAP: (C1)
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The parameter � indicates inasmuch sterile neutrinos participate in atmospheric or solar neutrino oscillations. For � � 0
atmospheric neutrinos oscillate completely into sterile ones and for � � �=2 solar neutrinos oscillate into sterile ones.
With a given mass hierarchy we can obtain now the approximate form of the mass matrix. Glancing at Fig. 7, we identify
two interesting possibilities, namely

�i�
������������������
�m2

LSND

q
’ m4 ’ m3  m2 ’

�����������
�m2




q
 m1; �ii�

������������������
�m2

LSND

q
’ m4 ’ m3  m2 ’ m1 ’ 0:1 eV: (C2)

The first case (i) corresponds to a very small mass m1 and the second one (ii) to two quasidegenerate pairs, though only a
small range of m1 values allows for this possibility. Since the form of m� is similar in both cases, we mainly discuss
case (i). We have then m2 ’ m42 and the mass matrix reads

m2�2A
� �

������������������
�m2

LSND

q ei�c2

 � e

i
s2

  c��e

i
 � ei�� s��e
i
 � ei��

� 0 c� s�
� � c2

��e
i
c2

 � e

i�s2

� c�s��e

i
c2

 � e

i�s2

�

� � � s2
��ei
c2


 � e
i�s2

�

0
BBB@

1
CCCA: (C3)
We defined the obvious notation c
 � cos�
 and s
 �
sin�
. Terms of order 2 and unimportant factors, such
as a coefficient c1ei
c
 � c2ei�s
 for the �� element, are
not included in our expressions. The factors c1;2 depend on
the precise values of the CHOOZ and the LSND angles.
Note that contributions of the atmospheric mixing are
suppressed in the mass matrix. If the heavy states m3 and
m4 have equal CP parities, or when � � 
, then this leads
to the vanishing of the e� and es entries ofm�, independent
of �. In case of opposite CP parities of �3 and �4 (which
would imply enhanced stability with respect to radiative
corrections), the ee element and the �s block of m� would
be slightly suppressed by a factor cos2�
. Assuming as yet
another approximation that �
 � �=4 would make these
entries vanish. Several special cases can be obtained from
the above matrix. For instance, if solar neutrinos oscillate
entirely in sterile neutrinos, i.e., � � �=2, then
113003
m2�2A
� �

������������������
�m2

LSND

q ei�c2

�e

i
s2

 0 0 ei
�ei�

� 0 0 0
� � 0 0
� � � ei
c2


�e
i�s2



0
BBB@

1
CCCA:

(C4)

This matrix conserves the flavor charge L� � L�. If we
choose equal CP parities of �3 and �4, or when � � 
,
then the e� entry vanishes.

In analogy, if atmospheric neutrinos oscillate entirely in
sterile neutrinos (� � 0) then one finds

m2�2A
� �

������������������
�m2

LSND

q ei�c2

�e

i
s2

 0 ei
�ei� 0

� 0 0 0
� � ei
c2


�e
i�s2

 0

� � � 0

0
BBB@

1
CCCA:

(C5)
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Opposite CP parities (a Pseudo-Dirac structure) of �3 and �4 will again lead to �m��e� � 0.
Now consider c� ’ s�. The mass matrix takes the form

m2�2A
� �

������������������
�m2

LSND

q ei�c2

 � e

i
s2

  �ei
 � ei�� �ei
 � ei��

� 0  
� � �ei
c2


 � e
i�s2

� �e

i
c2

 � e

i�s2

�

� � � �ei
c2

 � e

i�s2

�

0
BBB@

1
CCCA: (C6)
We therefore find an approximate �-s symmetry, in anal-
ogy to the successful �-� symmetry of the three-neutrino
case [71]. It is present when sterile neutrinos participate
equally in solar and atmospheric neutrino oscillations. The
�-s symmetry does strictly speaking only say that �m���� �
�m��ss, here it holds in addition that �m���s � �m��ss. If we
consider the matrix

m� �

a b d d
� h e e
� � f f
� � � f

0
BBB@

1
CCCA; (C7)

We see that one eigenvalue is zero. Setting for simplicity
b � h � e � 0 (these entries are suppressed in the pre-
113003
vious equation), leads to two vanishing mass eigenvalues

and m3;4 �
1
2 �a� 2f�

����������������������������������
8d2 � �a� 2f�2

p
�, and therefore

�m2

 � �a� 2f�

����������������������������������
8d2 � �a� 2f�2

p
. In this limit the at-

mospheric �m2 is vanishing. We have Ue1 � Ue2 � 0,

jUe3j
2 � 1

2� �a=2� f�=�
����������������������������������
8d2 � �a� 2f�2

p
� and jU�1j �

jU�1j � 1=
���
2
p

. Hence, the approximate form of Eq. (C1) is
almost reproduced when a ’ �2f. Small breaking terms
can in principle help to reach full agreement.

The second interesting case (ii) occurs when m4 ’
m3  m2 ’ m1 ’ m4 ’ 0:1 eV. The implications are
similar to case (i), but for completeness we give the result-
ing form of the mass matrix:
m2�2A
� �

������������������
�m2

LSND

q ei�c2

 � e

i
s2

  c��e

i
 � ei�� s��e
i
 � ei��

�  s�catmsatm s�
� � c2

��ei
c2

 � e

i�s2

� c�s��ei
c2


 � e
i�s2

�

� � � s2
��e

i
c2

 � e

i�s2

�

0
BBB@

1
CCCA: (C8)
Comparing with case (i), we see that the second row of the
mass matrix differs. It vanishes to first order when � � 0.

If � � 0 the atmospheric neutrino mixing angle has
some dependence on the form of the mass matrix. As an
additional approximation, let us take �
 � �=4. Then, for
ei
 � ei� � 0, i.e., a Pseudo-Dirac structure of the two
heavy masses, and c� ’ s�, we have

m2�2A
� �

������������������
�m2

LSND

q 0 0 1 1
� 0 1 1
� � 0 0
� � � 0

0
BBB@

1
CCCA: (C10)

This matrix conserves Le � L� � L� � Ls. Indeed, this
global symmetry has been used in [65] and, in somewhat
different form in [66], to explain the neutrino data includ-
ing LSND. Moreover, the above matrix has all diagonal
entries zero, a property typically shared by radiative mod-
els of neutrino mass generation. In Ref. [67] such a case is
treated.

2. The mass matrix in scenario 2� 2B

For scenario 2� 2B we can express the mixing matrix
by exchanging in the mixing matrix from scheme 2� 2A
the indices 1$ 3 and 2$ 4. Hence,
U2�2B ’

cos�
 sin�
  
  cos�atm sin�atm

� cos� sin�
 cos� cos�
 � sin� sin�atm sin� cos�atm

sin� sin�
 � sin� cos�
 � cos� sin�atm cos� cos�atm

0
BBB@

1
CCCAP: (C11)

Here we again put terms of order � 0:1, which is the typical order of both the CHOOZ angle and the LSND parameter.
We have again two cases of interest:

�i�
������������������
�m2

LSND

q
’ m4 ’ m3  m2 ’

�����������
�m2




q
 m1; �ii�

������������������
�m2

LSND

q
’ m4 ’ m3  m2 ’ m1 ’ 0:1 eV: (C12)

Let us start with case (i), for which
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m2�2B
� �

������������������
�m2

LSND

q 0  s� c�
� c2

atme
i� � s2

atme
i
 catmsatms��ei� � ei
� catmsatmc��ei� � ei
�

� � s2
��c

2
atme

i
 � s2
atme

i�� c�s��c
2
atme

i
 � s2
atme

i��

� � � c2
��c2

atme
i
 � s2

atme
i��

0
BBB@

1
CCCA

In contrast to scenario 2� 2A it is the solar neutrino mixing angle whose contribution to the mass matrix is suppressed.
Note again the approximate �-s exchange symmetry of the mass matrix in case of s� ’ c�. The (close-to-)maximality of
�atm allows to further simplify the mass matrix to

m2�2B
� �

������������������
�m2

LSND

q 0  s� c�
� ei� � ei
 s��e

i� � ei
� c��e
i� � ei
�

� � s2
��ei
 � ei�� c�s��ei
 � ei��

� � � c2
��ei
 � ei��

0
BBB@

1
CCCA: (C13)

Opposite (identical) CP parities of �3 and �4 lead to a vanishing �� entry and �s block (�� and �s elements). If we
indeed impose a Pseudo-Dirac structure on �3 and �4, then we have

m2�2B
� �

������������������
�m2

LSND

q 0  s� c�
� 0 s� c�
� � 0 0
� � � 0

0
BBB@

1
CCCA: (C14)

If c� ’ s� and the e� entry of m� (recall that there can be a coefficient) is more suppressed than the e� and es elements,
then we have again a mass matrix conserving Le � L� � L� � Ls. Setting � � 0 (atmospheric-sterile oscillations) and
�atm � �=4, then at leading order

m2�2B
� �

������������������
�m2

LSND

q 0 0 0 0
� ei� � ei
 0 ei� � ei


� � 0 0
� � � ei� � ei


0
BBB@

1
CCCA; (C15)

conserving Le � L�. Recall that � � �=2 in scenario 2� 2A lead to conservation of L� � L�. By choosing opposite or
identical CP parities one can further simplify the mass matrix. If � � �=2 (solar-sterile oscillations), then at leading order

m2�2B
� �

������������������
�m2

LSND

q 0 0 0 0
� ei� � ei
 ei� � ei
 0
� � ei� � ei
 0
� � � 0

0
BBB@

1
CCCA; (C16)

conserving Le � Ls. Finally, we note that case (ii), defined by m4 ’ m3  m2 ’ m1 ’ m4 ’ 0:1 eV, leads to

m2�2B
� �

������������������
�m2

LSND

q
  s� c�

� c2
atme

i� � s2
atme

i
 catmsatms��ei� � ei
� catmsatmc��ei� � ei
�

� � s2
��c

2
atme

i
 � s2
atme

i�� c�s��c
2
atme

i
 � s2
atme

i��

� � � c2
��c

2
atme

i
 � s2
atme

i��

0
BBBBBB@

1
CCCCCCA

’

  s� c�

� ei� � ei
 s��ei� � ei
� c��ei� � ei
�

� � s2
��ei
 � ei�� c�s��ei
 � ei��

� � � c2
��ei
 � ei��

0
BBBBBB@

1
CCCCCCA
; (C17)

where we set �atm � �=4. The difference with respect to case (i) lies in the electron row of m�. Nevertheless, for s� ’ c�
and ei� � ei
 one encounters again an approximate Le � L� � L� � Ls symmetry. Setting � � 0 gives

m2�2B
� �

������������������
�m2

LSND

q   0 1
� ei� � ei
 0 ei� � ei


� � 0 0
� � � ei� � ei


0
BBB@

1
CCCA; (C18)

conserving L�, if the ee and e� entries are not too strongly suppressed. On the other hand, for � � �=2 one finds
113003-19
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m2�2B
� �

������������������
�m2

LSND

q   1 0
� ei� � ei
 ei� � ei
 0
� � ei� � ei
 0
� � � 0

0
BBB@

1
CCCA; (C19)

i.e., a matrix conserving Ls when the ee and e� entries are not too strongly suppressed.
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