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Renormalization-group improved sum rule analysis for the bottom-quark mass
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We study the effect of resumming large logarithms in the determination of the bottom quark mass
through a nonrelativistic sum rule analysis. Our result is complete at next-to-leading-logarithmic accuracy
and includes some known contributions at next-to-next-to-leading logarithmic accuracy. Compared to
finite order computations, the reliability of the theoretical evaluation is greatly improved, resulting in a
substantially reduced scale dependence and a faster convergent perturbative series. This allows us to
significantly improve over previous determinations of the MS bottom quark mass, �mb, from nonrelativistic
sum rules. Our final figure reads �mb� �mb� � 4:19� 0:06 GeV.
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Processes involving a b �b quark pair close to threshold
are very sensitive to the bottom quark mass mb and offer a
unique opportunity to accurately determine its value. One
of the cleanest observables where this dependence on mb
shows up is the nonrelativistic sum rule [1]
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where Rb �b�s� � ��e�e� ! b �b�=��e�e� ! �����,
��q2� is the vacuum polarization and eb � �1=3 the
electric charge of the bottom quark. The typical scale is
p� 2mb=

���
n
p

and, provided n is not chosen to be too large,
the left-hand side of Eq. (1) can be reliably computed using
a weak coupling analysis (the right-hand side can be de-
termined from experiment). To describe such processes
theoretically, a standard fixed-order calculation in the
strong coupling �s is insufficient due to the presence of
terms ��s=v�n � 1 at each order in perturbation theory,
where v� 1=

���
n
p
	 1 is the velocity of the heavy quarks.

Such terms appear because there are several scales in-
volved in the problem. There is the hard scale �h �mb,
the soft scale �s �mbv	 �h of the order of the typical
momentum and, finally, the ultrasoft scale �us �mbv

2 	
�s of the order of the typical kinetic energy of the heavy
quarks. Using effective field theories (for a review see [2]),
the perturbative expansion can be systematically reorgan-
ized into an expansion in the two small parameters of the
problem, �s and v, and the b �b cross section can be written
as
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(2)

The coefficients of this series can be computed most effi-
ciently using the threshold expansion [3]. The singular
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terms ��s=v�n can be resummed and result in a well-
defined function for v! 0.

At present, nonrelativistic sum rules have been com-
puted at next-to-next-to-leading order (NNLO) [4,5].
This allowed for a precise determination of the bottom
quark mass using a well-understood perturbative approach.
Unfortunately, in the on-shell scheme, the NNLO correc-
tions turned out to be much larger than anticipated and,
moreover, very strongly scale dependent. The use of
threshold masses [6–8], which account for the cancellation
of the pole mass renormalon in the observable, do not
really solve these problems, specially for the strong scale
dependence. Overall, this produced a very slowly conver-
gent series, being the dominant source of error in the
determination of mb. Nonperturbative corrections are
known in the limit mb=n� �QCD [9]. Even though this
limit does not hold for large enough n, we can take it as an
order of magnitude estimate. Numerically, these correc-
tions are very small and can be neglected in comparison
with other sources of errors.

The situation is very similar in the case of t�t pair
production near threshold. In this case the use of threshold
masses results in a well-behaved perturbative series for the
position of the peak of the t�t cross section and, therefore,
may enable a precise determination of the top quark mass,
once experimental data is available. However, the large
theoretical uncertainty in the normalization of the cross
section remained (even if the series is more convergent
than in the bottom case). This uncertainty is due to poten-
tially large logv terms, which arise due to the presence of
several scales and take the form log�h=�s and log�s=�us.
These logarithms can be resummed [10–13] and have been
shown to be numerically important and substantially im-
prove the scale dependence in the normalization of the
cross section [10,13].

Given the importance of the logv terms for the t�t cross
section, it is natural to ask whether their inclusion also
improves the situation in the b �b case. In our case we have
to replace the expansion of Eq. (2) by
-1 © 2006 The American Physical Society
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As we will see, these logarithms are extremely important
numerically and substantially improve the reliability of the
theoretical evaluation of the moments.

The nth moment, Mn, as defined in Eq. (1) is computed
in the usual way [4,5]. First we match QCD to nonrelativ-
istic QCD (NRQCD) at the hard scale which we set to
�h � m. This theory is then matched to potential NRQCD
(pNRQCD) [14]. Solving the corresponding nonrelativistic
Schrödinger equation perturbatively we obtain
ImG�0; 0; E�, the imaginary part of the Green function at
the origin. Mn can then be written as
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where E �
���
s
p
� 2mb, Nc � 3 and c1 and c2 are the

matching coefficients of the currents, normalized to 1 at
leading order. In a strict nonrelativistic expansion one also
expands
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treating nE�mb. We also remark that the logarithms
involving �s always appear in the combination
log��4mbE=�2

s�. This confirms that the natural scales
are given by E�mb=n and �s � p� 2mb=

���
n
p

. To ensure
the applicability of perturbation theory, we cannot choose
n too large and will restrict ourselves to n � 14.

The matching coefficients of pNRQCD depend on the
scales �h � mb, �s and �us. In solving the renormaliza-
tion group equations we have set �us � �2

s=m. The ex-
pressions we use are complete at NLL and NNLO. At
NNLL they are also complete (in particular we include
the insertions of the renormalization group improved po-
tentials to G�0; 0; E� up to the desired order in the MS
scheme) except for c1. For c1 we are using the known NLL
[11] expression as well as some partial NNLL contribu-
tions, which include the spin-dependent corrections [15],
the NNLL ultrasoft corrections to the Green function, the
corrections due to the two-loop beta running, and some
contributions coming from the introduction of partial
higher-order terms in the renormalization group improved
potentials that appear in the anomalous dimension of c1.
For details we refer to Refs. [5,16]. In particular we stress
that not all the ultrasoft related logarithms are included in
our analysis. With this caveat in mind, we still refer to our
full result as NNLL.
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We also include QED corrections in our result. Counting
�� �2

s , these corrections enter already at NLO, due to a
single exchange of a potential photon, but they have only a
minor numerical impact. They increase the extracted bot-
tom quark mass by less than 10 MeV.

The threshold masses we consider in this analysis are the
potential subtracted (PS) mass mb;PS��f� [7] and the re-
normalon subtracted (RS) mass mb;RS��f� [8]. The sub-
traction scale �f that is needed for the definition of the PS/
RS mass is set to�f � 2 GeV, to ensure it does not exceed
the characteristic scale �s. Once the PS/RS mass is deter-
mined, we convert it to �mb, the MS mass at the renormal-
ization scale �mb. We use the three-loop conversion [17] of
the pole mass to �mb and for the PS and RS mass a ‘‘large
�0’’ [18] and renormalon-based [8] approximation, respec-
tively, for the four-loop term.

The moments are evaluated by performing the energy
integration in the complex energy plane using a strictly
expanded form as indicated in Eq. (5). The difference
between this evaluation and using Eq. (4) is NNNLO
and, therefore, beyond the accuracy we are aiming at.
However, for small values of n, this difference is sizable.
In fact, for n � 6 the resulting values for mb;PS=RS may
differ by up to 45=60 MeV depending on how we expand
the prefactor Eq. (5), for n � 8 the difference is up to
15=25 MeV, whereas for n  10 the values for mb agree
within 10=15 MeV.

The experimental moments are determined as described
in Ref. [5]. The moment is split into the contribution due to
the six � resonances and the open b �b continuum. The main
uncertainty comes from the rather poor knowledge of the
latter, which we parametrize as Rcont

b �b
� 0:4� 0:2 [19].

Since the continuum contribution is suppressed for larger
values of n, resulting in a smaller experimental error, we
refrain from using n < 6.

The main theoretical uncertainty in previous determina-
tions of the bottom quark mass was due to the huge scale
dependence of the NNLO result, which made it rather
difficult to find a reliable procedure for estimating the
theoretical error. It is the main result of this work to
show that the situation improves considerably if a renor-
malization group improved analysis is performed. To illus-
trate this, in Fig. 1 we show the dependence of the
theoretical value for M10 (evaluated at LO/LL, NLO,
NLL, NNLO and NNLL, respectively) on �s. For the
purpose of illustration we also plot the experimental value
of the moment including its error. We set the strong cou-
pling to �s�MZ� � 0:118 and use three-loop evolution to
determine it at lower scales. For the plot shown in Fig. 1 we
set mb;PS�2 GeV� � 4:515 GeV and mb;RS�2 GeV� �
4:370 GeV and vary the soft scale around its characteristic
value �s � 2mb=

������
10
p

(indicated by a dashed vertical line).
Note that �s 	 �h � mb. In this region the size of the
NNLL corrections (even if large) is considerably smaller
than the corresponding fixed-order NNLO ones. Moreover,
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FIG. 1 (color online). The moment M10 as a function of �s at
LO/LL, NLO, NLL, NNLO and NNLL for mbPS�2 GeV� �
4:515 GeV in the PS scheme (upper figure), and for
mbRS�2 GeV� � 4:370 GeV in the RS scheme (lower figure).
The experimental moment with its error is also shown (gray
band).
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contrary to earlier analyses, the NNLL result is now more
stable with respect scale variations than the NLL one (for
the range of scales for which the computation is trust-
worthy). This is of course what one would expect and
indicates that the inclusion of the logarithms substantially
improves the reliability of the theoretical prediction. Only
for scales�s < 2 GeV the situation gets out of control, but
for these scales the ultrasoft scale is below 1 GeV and we
can not really rely on our computation. Multiple insertions
of corrections to the Coulomb potential also seem to be
important in this region [20].

The situation is similar for other values of n. As a
general feature, for increasing n, the scale dependence
increases slightly. This is not surprising since larger n
induce smaller scales and at some point the applicability
of perturbation theory is questionable. On the other hand,
as mentioned above, smaller values of n have the disad-
vantage that the nonrelativistic approximation becomes
less reliable.

These findings show that it is possible to improve the
accuracy of previous determinations of the bottom quark
mass from nonrelativistic sum rules if the renormalization
group improvement is applied. In order to determine the
111501
MS mass we first determine the PS/RS mass with its error,
proceeding as follows: we consider Mn for n 2
f6; 8; 10; 12; 14g and obtain our central value by equating
the theoretical and experimental value of the moment at the
standard scale �s � 2mb=

���
n
p

. For the error in the deter-
mination of the threshold masses we consider three
sources: the experimental error, the error due to the uncer-
tainty in the strong coupling and finally the theoretical
error.

The experimental error, �exp, is simply determined by
extracting the value for mb for the two extreme values of
the experimental moment. The error due to the uncertainty
in the strong coupling, ��, is obtained by studying the
effect on the extracted bottom quark mass if we vary
0:115<�s�MZ�< 0:121. Following common practise
one would estimate the theoretical error, �th, by variation
of the scale by a factor of 2. As is obvious from Fig. 1, for
small scales the theoretical result cannot be trusted.
Therefore, in previous analyses, the scale variation was
limited to scale choices above a certain cutoff, typically set
to a value around 2 GeV. In the current analysis we refrain
from using such an estimate. There are several reasons.
First, such an error estimate depends crucially on the
somewhat arbitrary lower cutoff of the scale variation.
Second, it does not take into account the fact that the
higher-order corrections are sizable. Given that the scale
dependence is very modest (for reasonably large scales)
compared to the size of the NNLL corrections, we think
that such an error analysis would considerably underesti-
mate the theoretical error in the present case. Finally, the
scale variation as depicted in Fig. 1 does not take into
account the independent variation of the ultrasoft scale,
since in our analysis the latter is determined by the soft
scale. It would be preferable to be able to vary all scales
independently to obtain a better estimate of the uncertainty,
in particular, since some ultrasoft logarithms are missing in
our result. We have verified that a naive variation of �us
results in a rather large uncertainty which, however, is
consistent with the final error estimate we propose.
Therefore, we prefer to determine the theoretical error by
taking half the size of the highest-order correction that is
included in our result. More precisely, we determine two
values for mb by equating the experimental and theoretical
value (at the scale for which it reaches its maximum) of the
moment at NNLL and NLL, respectively. The error is
determined as half the difference between these two values.
This procedure assumes a perturbative series where suc-
cessive terms become less and less important. For this to
hold we have to use a threshold mass, since for the pole
mass the NNLL corrections are much larger than the NLL
ones. In this respect, moments with low values of n and/or
threshold mass definitions with values close to the MS
mass are better behaved. On the other hand, the actual
size of the correction, and therefore the assigned error,
increases for such mass definitions.
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TABLE I. Extraction of mb;PS=RS �2 GeV� with errors for vari-
ous n. All values are given in MeV and rounded to 5 MeV. The
total error has been obtained by adding the partial errors in
quadrature. The corresponding value for the MS mass with its
error is given in the last column

n mb;PS�2 GeV� �th �exp �� �tot �mb

6 4460 40 50 35 70 4135� 65
8 4505 45 25 30 60 4170� 55
10 4515 45 15 25 55 4185� 50
12 4520 45 10 20 50 4185� 45
14 4520 40 10 15 45 4185� 40

n mb;RS�2 GeV� �th �exp �� �tot �mb

6 4315 55 50 25 80 4140� 70
8 4360 65 30 20 75 4180� 65
10 4370 65 20 10 70 4190� 60
12 4370 65 15 5 65 4190� 60
14 4370 65 10 5 65 4185� 55
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We summarize our results in Table I, where we also
show the combined error �tot, which is obtained by adding
the various errors in quadrature. As expected, the experi-
mental error decreases with increasing n. The results are all
consistent with each other, in particular, if we take into
account the additional uncertainty mentioned above forMn
with n � 8, due to the nonrelativistic expansion in the
energy integration. Related to this, we note that in comput-
ing the moments we do not use the exact fixed-order
coefficient at O��2

s �, since we drop terms of
O��2

s=�
���
n
p
�k� with k  1. Again, this neglect is potentially

more of a problem for smaller moments. Let us also
reiterate that for too large values of n the applicability of
weak coupling perturbation theory is questionable. We thus
combine the results of Table I by simply taking the value
obtained by the tenth moment

mb;PS�2 GeV� � 4:52� 0:06 GeV; (6)

mb;RS�2 GeV� � 4:37� 0:07 GeV: (7)

Note that the PS value is consistent with the result of
Ref. [5], but prefers smaller values for mb and has a
reduced error.
111501
Converting the PS and RS mass to the MS-mass we
obtain �mb � 4:19 GeV with an error of 55 MeV and
60 MeV, respectively. However, we also have to take into
account the error in the conversion itself. We consider two
sources, the dependence of �mb on the threshold mass used
in the analysis and second, the error due to missing higher-
order corrections in the conversion formula itself. To de-
termine the first error, we start by noting that the �mb values
obtained with the PS and RS scheme are very similar. We
also extract the central value of mb;PS=RS�1 GeV� for the
moments and convert these results to �mb. These values of
�mb differ at most by around 20=15 MeV from the corre-

sponding results obtained via mb;PS=RS�2 GeV�. To obtain
an estimate for the error due to missing higher-order cor-
rections in the conversion formula we drop the fourth order
terms in the conversion and take as error the difference in
the value of �mb thus obtained. This error is about
10=5 MeV. We thus associate a total error of
20=15 MeV to the conversion. If added in quadrature to
the 55=60 MeV error, we obtain a total error for �mb of
around 60 MeV in both cases.

In conclusion, we have studied the effect of resumming
logarithms for nonrelativistic sum rules. The logarithms
turn out to be numerically very important and improve the
reliability of the theoretical computation. This manifests
itself in a reduced scale dependence and an improvement
of the convergence of the perturbative series. It allows us to
obtain an accurate value for the MS bottom quark mass
using a credible error estimate

�mb� �mb� � 4:19� 0:06 GeV: (8)

At this stage, the main problem appears to be the large size
of the perturbative corrections and to understand its origin.
Further improvements require the full NNLL computation
of the sum rule, especially the potentially large ultrasoft
effects. Obviously, the inclusion of all NNNLO effects will
also be important and might lead to a better control of the
strong scale dependence for small values of �s and the
large size of the perturbative corrections.
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