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1=q2 corrections and gauge/string duality
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We make an estimate of the quadratic correction based on gauge/string duality. Like in QCD, it proves
to be negative and proportional to the string tension.
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I. INTRODUCTION

As is well known, the QCD analysis of the two-current
correlator results in

i
Z
d4xeiq�xhTJ��x�J��0�i � �q�q� � ���q2���q2�; (1)

with

N q2 d�

dq2 � C0 �
1

q2 C2 �
X
n�2

n

q2n C2nhO2ni: (2)

Here ��� is a four-dimensional Minkowski metric, q � x �
q�x�, and N is some normalization factor. We take
��� � diag��1; 1; 1; 1� to connect with standard string
calculations.

According to [1], C0 is a coefficient that can be calcu-
lated perturbatively in �s. So, it is of the form C0 � 1�P
n�1Bn�

n
s �q

2�. The nonperturbative effects are generated
by local gauge invariant operators whose dimensionsD are
larger or equal four. For example, theD � 4 operators built
from the quark and gluon fields are simply OM

4 � �qMq and
OG

4 � �sG2. It is clear that in such an approach the ex-
istence of the quadratic correction 1

q2C2 is puzzling. Later

[2], this issue was intensively discussed in the literature. In
particular, there are estimates of the quadratic correction
based on the data for the e�e� total cross section that
provide the upper bound [3]

jC2j 	 0:14 GeV2: (3)

One of the implications of the anti-de Sitter/conformal
field theory (AdS/CFT) correspondence is that it resumed
interest in finding a string description of strong interac-
tions. For the case of interest, let us briefly mention two
approaches. In the first, usually called AdS/QCD, one
starts from a five-dimensional effective field theory some-
how motivated by string theory and tries to fit it to QCD as
much as possible. Such an approach yields the leading
asymptotic piece C0 [4] and even condensates of the op-
erators withD � 4 [5]. In the second, usually called gauge/
string duality, one tries to keep the underlying string struc-
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ture. As a result, the theory is ten dimensional and its
reductions to five dimensions, in general, contain addi-
tional higher derivative terms (�0 corrections).1 In the
approximation of [6], this approach also yields the leading
asymptotic piece C0 [7].

In this paper, we address the issue of the quadratic
correction within the simplified model of [6,7]. We com-
pute them by following the strategy of first quantized string
theory. To this end, we build the corresponding vertex
operators. Then, we define the correlator of two vector
currents as an expectation value of the vertex operators.
We also adopt the geometric approach to condensates
introduced in [5]. Our aim is to estimate the correction
and compare the result with that of QCD.

Before proceeding to the detailed analysis, let us set the
basic framework. We consider the following background
metric,

ds2 � R2

r2h����dx�dx� � dr2� � gabd!ad!b;

h � e��1=2�cr2
;

(4)

where !a are coordinates of some five-dimensional com-
pact space X. In the region of small r the metric behaves
asymptotically as AdS5 
 X, as expected. We take a con-
stant dilaton and, unfortunately, discard all possible
Ramond-Ramond backgrounds (if any).

As known, full control of superstring theory on curved
backgrounds even like AdS5 is beyond our grasp at present.
We are forced therefore to look for a plausible approxima-
tion. The simplest possible one is that of [6]. The idea is to
discard nonzero modes of sigma model fields r and!a.2 As
a result, the X’s only contribute to the kinetic terms of the
world-sheet action which is of the form

S0 �
1

4��r

Z
�
d2zd2���� �DX�DX�; �r � �0 r

2

R2h�1:

(5)

Here X is a two-dimensional superfield and � is a two-
dimensional Riemann surface.3
These corrections are of order 1= Nc. Thus, they might be
relevant at Nc � 3.

2X, r, and ! are taken to be sigma model fields on a string
world sheet. x, r, and ! are their zero modes, respectively.

3We use the superspace notations of [8].
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Finally, a couple of remarks are in order. First, the action
(5) formally looks like that in flat space. So, it is confor-
mally invariant. The point is, however, that the string
parameter is now a variable and, as a consequence, the
theory behaves differently.

Second, even such a simplified approximation contains
�0 corrections and remnants of the compact space X.

II. ESTIMATE OF THE QUADRATIC
CORRECTION

As a warm-up, let us fix the parameter c. A possible way
to do so is to consider meson operators. As usual in first
quantized string theory, we should look for the correspond-
ing vertex operators. According to [7], these are of the form

O ��; p� �
I
@�
dzd�� �DX�p�X; r; !�; (6)

where �� is a polarization vector. @� denotes a world-
sheet boundary. �p is a solution to the linearized ten-
dimensional Yang-Mills equations in the background (4).
We choose the simplest possible solution, that is, �p �

eip�X �r� with  being a solution to the following equa-
tion,4

r2 00 � r�1� 1
2cr

2� 0 �m2r2 � 0; (7)

where m2 � �p � p. A prime denotes a derivative with
respect to r.

It is easy to reduce Eq. (7) to a Laguerre differential
equation whose solutions are given by Laguerre polyno-
mials Lan. For

m2 � cn; (8)

we get

 n�r� � cr2L1
n�1�

1
4cr

2�; with n � 1; 2; . . . : (9)

Since the mass of the nth state is proportional to
���
n
p

, it
seems natural to interpret the vertex operators (6) as those
of ��mn� mesons. If so, then the value of c is of order [9]

c � 0:9 GeV2: (10)

We close the discussion of the meson operators with a
few short comments:
(i) T
4Since
correspo
such an
@��. It

5In fa
he comparison of the mass formula (8) with the
real meson masses shows a better fit for large n.5

Evidently, the parameter c is proportional to the
string tension.
(ii) B
y contrast, the metric used in [5] to reproduce the
operators with D � 4 does not lead to a simple
equation yielding the exact mass formula.
we discard the nonzero modes of r and !, we set the
nding Yang-Mills connections to be zero. Moreover, in
approximation there is gauge invariance, A� ! A� �
is fixed by @ � A � 0.

ct, starting from n � 3 the agreement is better than 10%.
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(iii) I
6We n
(2).

7As
�r�

��G
8The

topologi

-2
t is worth mentioning that the mass formula (8) has
been derived in the AdS5 background with a non-
constant dilaton � [10],

h � 1; ��r� � 1
2cr

2: (11)

This background is indeed equivalent to ours as
long as one deals with quadratic terms like F2 in
five-dimensional effective actions because the
Weyl rescaling of the metric transforms one into
another. In the generic case, the equivalence is
broken by higher order terms in the field strength
or by scalar fields.
Having fixed the value of the parameter c, let us make an
estimate of the quadratic correction. To this end, we com-
pute the two-current correlator.

We start with a vertex operator construction for the
vector currents. In the spirit of [7], we can take the opera-
tors to be

J��q� �
I
@�
dzd�DX��q�X; r; !�; (12)

with the simplest possible form for �q which is eiq�X �r�.
Again,  is a solution to a differential equation. This
equation is given by (7) with m2 � �q2.

Next, we define the correlator as an expectation value of
the vertex operators. In doing so, we choose a unit disk as
the world sheet. Using the result of [7], it is easy to write
down the following expression,6

N q2 d�

dq2 � �2
Z 1

0
dz
Z 1

0
dt h1=2�  0 � gt 2h�1G�z��


 expfgt2h�1G�z�g; (13)

where t � qr, q �
����������
q � q
p

, h � e��1=2�	t2 , 	 � c
q2, and

g � �0

R2. G�z� denotes a restriction of the scalar Green
function on the boundary.7 Note that it excludes the zero
mode contribution.

Before continuing our discussion, we pause here to take
a closer look at (13). A natural question to ask is to what
extent this expression can be used as a basis for providing
the C2n’s. First, having restricted ourselves to the disk
topology, we perhaps discard perturbative �s corrections.8

Second, in the approximation under consideration the in-
tegrand of (12) is not a dimension one half operator for
generic q. As follows from (5), its dimension is given by
� � 1

2�O��rq
2�. It is clear that the problem is due to

exclusion of the nonzero modes of r. Thus, it seems
reasonable to restrict ourselves in (13) to a few leading
ormalize the vertex operators (12) in such a way to fit

follows from (5), it is given by hX��z�X��0�i �
�z�.
line of thought that perturbation theory at hand is a
cal expansion was pursued in [7,11].
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terms in g. Finally, G�z� is singular at z � 0. To deal with
this divergence, we regulate the Green function as [12]

G�z� � 2
X1
n�1

e�"n

n
cos2�nz; (14)

where " is some parameter.
Expanding in g and keeping only the constant and linear

terms, we find

N q2 d�

dq2 � �2
Z 1

0
dt h1=2  0: (15)

Note that the linear term vanishes as a consequence ofR
1
0 dzG�z� � 0.
Now the coefficients C2n can be read off from (15). For

the case of interest, we have

C0 � 1; C2 � �
1
3c: (16)

For completeness, we have included a calculation of (16) in
the Appendix.

Finally, we substitute (10) into (16) and obtain the
following estimate,

C2 � �0:3 GeV2: (17)

This is our main result. The sign of C2 is precisely as in
QCD but the absolute value is at least twice as big as the
upper bound (3).
III. CONCLUDING COMMENTS

(i) Having derived the mass formula (8), it seems to be
time to estimate the Regge parameters. As noted above,
this formula is more or less appropriate for n � 3.
Assuming that all the trajectories of interest are parallel
[13], we get for the intercepts

�n�0� � �
c

2�

n; n � 3; 4; . . . ; (18)

where 
 is the string tension.
As noted earlier, the mass formula is in considerable

disagreement with the � trajectory (n � 1). This means
that the background we used is not exactly the desired
string dual to QCD and we should look for a further
refinement of it. From this point of view, the disagreement
between our estimate and QCD is not a big surprise.

(ii) Here we used the model with the slightly deformed
AdS5 metric. It is clear that this is not the only option. For
example, the other line of thought is to deform the dilaton
[10].9 What really fits better to QCD remains to be seen.

(iii) Interestingly enough, it was argued by Zakharov
thatC2 represents the stringy effect [14]. This fact being far
from obvious in QCD is manifest in our framework.
9Perhaps both the models look oversimplified but they might
be useful in gaining some intuition about the problem, while full
control of superstring theory on curved backgrounds is missing.
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APPENDIX

In this appendix we present a calculation of (16).
Having derived the integral representation (15), we can

analyze its expansion in 	 that is nothing but the expansion
(2). For the coefficients of interest, we have

C0 � � 
2
0j
1
t�0;

C2 �
1

4
c�t2 2

0 � 8 0 1�j
1
t�0 �

1

2
c
Z 1

0
dtt 2

0:
(A1)

Here we have expanded  as a series in powers 	 such that
 �

P
n�0 n	

n. Notice that the  n’s obey a set of differ-
ential equations. In particular,  0 and  1 are determined
from

t 000 �  
0
0 � t 0 � 0; t 001 �  

0
1 � t 1 �

1
2t

2 00:

(A2)

We also impose the following boundary conditions,
 �0� � 1 and  �1� � 0, that in one turn provide

 0�0� � 1;  n�0� � 0; for n � 1;

 n�1� � 0; 8 n:
(A3)

Given the boundary conditions, the appropriate solutions to
(A2) are simply given by

 0�t� � tK1�t�;  1�t� �
1
8t

3K1�t�: (A4)

The remaining integral may be found in Ref. [15]. It is
given by

Z 1
0
dtt3K2

1�t� �
2

3
: (A5)

So finally, we get

C0 � 1; C2 � �
1
3c: (A6)
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