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Effective dynamics of the matrix big bang
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We study the leading quantum effects in the recently introduced matrix big bang model. This amounts
to a study of supersymmetric Yang-Mills theory compactified on the Milne orbifold. We find a one-loop
potential that is attractive near the big bang. Surprisingly, the potential decays very rapidly at late times
where it appears to be generated by D-brane effects. Usually, general covariance constrains the form of
any effective action generated by renormalization group flow. However, the form of our one-loop potential
seems to violate these constraints in a manner that suggests a connection between the cosmological
singularity and long wavelength, late time physics.
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I. INTRODUCTION

One of the basic lessons emerging from recent work on
cosmological singularities is the need to understand inter-
acting field theories which are not Lorentz invariant. These
field theories describe physics in cosmological settings via
holography. The breaking of Lorentz invariance is inevi-
table since cosmological space-times distinguish time.
Much of the past work on field theory in curved space-
times focuses on free fields (see, for example, [1]). The
inclusion of interactions turns out to be remarkably non-
trivial. This can be understood intuitively: as time evolves
from the big bang, the wavelength of an excitation red-
shifts. Therefore, the notion of a high- or low-energy
excitation becomes time dependent. Correspondingly, the
use of renormalization group flow to define ‘‘low-energy’’
dynamics becomes subtle.

Our goal in this work is to study the dynamics of the
particular big bang model introduced in [2] based on
matrix theory [3]. For a sampling of recent work on hol-
ography and cosmological singularities, see [4–17]. The
space-time theory is type IIA string theory in flat space
with a nontrivial dilaton,

� � �QX�: (1)

The big bang occurs as X� ! �1 where the theory is
strongly coupled. At late times, perturbative string theory
becomes a good description.

After compactifying X� � X� � R, we are led to a
nonperturbative definition of string theory on this back-
ground given in terms of maximally supersymmetric Yang-
Mills (YM) in two dimensions compactified on the Milne
orbifold. This should be contrasted with studies where the
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Milne orbifold appears as a string theory target space [18–
25]. At early times near the big bang, the model is pertur-
bative Yang-Mills while at late times the model reduces to
perturbative strings on the lightlike linear dilaton
background.

In Sec. II B, we will directly check that the matrix model
fermions are indeed fermions on Milne space. In terms of
the orbifold description of Milne space, these fermions
have unconventional periodicity properties which are de-
scribed in Sec. II C. The upshot of this discussion is that the
breaking of Poincaré invariance on the world sheet is
spontaneous in this model, in the sense that the field theory
action is invariant under diffeomorphisms if the back-
ground metric is transformed as well. We should note
that, in other related matrix models, the breaking of
Poincaré invariance is not spontaneous; see, for example
[15].

The question that we wish to address is how to describe
the effective dynamics in our matrix model. This involves
understanding how to define effective dynamics in a time-
dependent background, and then determining whether a
potential is generated in this model.

We will find that the presence of a big bang is detectable
at late times as an effective potential generated by infrared
physics. This is a little surprising since the big bang is an
ultraviolet phenomena. What is more strange is the form of
the potential. The structure of the late time effective action
appears to violate arguments following from general co-
variance which we will describe in the following section.
We suspect that this will be a quite general phenomenon
suggestively connecting infrared physics to a cosmological
singularity.

The potential we find is attractive near the big bang and
decays very rapidly at late times. This strongly suggests
that the flat directions required in matrix theory for a space-
time interpretation are restored at late times despite the
broken supersymmetry. We seem to avoid the kinds of
problems encountered in [26]. This late time regime is
-1 © 2006 The American Physical Society
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where we expect perturbative string theory to be a good
description so this rapid decay is unexpected good news.
Given the extremely rapid late time decay, it might even be
the case that higher loop corrections to the potential are
suppressed despite the strong matrix model coupling. If so,
we predict the existence of a potential in string theory
between gravitons with separation b in the lightlike linear
dilaton background with leading asymptotic behavior,

Z ���
g
p
Veff�b� �

Z �����
b
gs

s
exp

�
�
Cb
gs

�
; (2)

with constant C. The form suggests that the potential is
generated by D-brane effects in this time-dependent
background.
II. SPONTANEOUS BREAKING OF POINCARÉ
INVARIANCE

A. Some comments on general covariance

Consider a local quantum field theory in a background
space-time with metric g, such that the classical action is
invariant under general coordinate transformations if the
background metric is transformed appropriately. If the
space-time has nontrivial topology, we may need to specify
choices like the spin structure for fermions and perhaps the
topology of the fields. What can we say about the effective
quantum dynamics? If there are no gravitational anoma-
lies, then general coordinate transformations (accompa-
nied by transforming the background metric) and local
Lorentz transformations must be symmetries preserved
under renormalization group flow. If for instance we as-
sume that the field theory can be consistently coupled to
gravity by making the metric dynamical, this must be the
case.

What we conclude is that the low-energy theory can be
described by an expansion of the schematic form,

Seff �
Z ���

~g
p
f@��@��� V�0���� � R�~g�V�1���� � � � �g;

(3)

where � are light fields and R�~g� is the Ricci scalar for a
possibly renormalized metric ~g. All terms in this action,
including omitted terms, must respect diffeomorphism
invariance.

In particular V�0���� is metric independent and so can be
computed using a flat metric. For a theory with extended
supersymmetry, this potential vanishes. On the other hand,
V�1���� can be nonvanishing on space-times with nonvan-
ishing curvature even in supersymmetric theories.

In our particular case, we are interested in maximally
supersymmetric Yang-Mills compactified on the Milne
orbifold. The Milne orbifold is obtained from Minkowski
space,

ds2 � �2d��d��; (4)
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by the boost identification

�� � ��e�2�Q‘s : (5)

In terms of new coordinates �, � defined by

�� �
1���
2
p
Q
eQ�����; (6)

the metric reads

ds2 � e2Q���d�2 � d�2� (7)

and the identification is

�� �� 2�‘s: (8)

We can further introduce light-cone coordinates

x� �
1���
2
p ��� ��; (9)

in terms of which the metric reads

ds2 � e
��
2
p
Q�x��x����2dx�dx��: (10)

Without the periodic identification (8), this space-time is
equivalent to flat space (much like taking the Rindler slice
in four dimensions). All curvatures are therefore vanishing
everywhere except possibly at the fixed point � � �1
which corresponds to the big bang.

This point is rather critical. Just from the structure of the
metric, we see that the presence of the cosmological sin-
gularity is detectable by long wavelength physics at late
times: namely, by detecting the presence of a large circle
varying in time and locally vanishing curvatures. This
same circle identification induces both the cosmological
singularity and also supersymmetry breaking.

What we will find by computation is that a potential is
generated in this model because of infrared effects. One
way to understand this is by viewing the theory as an
orbifold compactification in terms of ���; ���. In this
frame, the circle identification is up to the action of a
boost. This orbifold identification leads to a twisted bound-
ary condition that depends on the spin of the particle.

In particular, this twist leads to a mismatch in boson/
fermion oscillator frequencies on the circle. Without the
usual supersymmetric cancellation, a potential is gener-
ated. However, as we will describe, the mismatch in fre-
quencies is very small at high energies but significant at
low energies. The corresponding potential is not localized
at time � � �1 as one might expect from the general form
of (3). Rather the potential leads to rapidly decaying but
observable effects even at late times.

This amounts to a strange intertwining of long distance/
late time physics (effects from the large circle) and the
cosmological singularity. In orbifold compactifications of
flat space, these kinds of correlations seem unavoidable
since the curvature is vanishing everywhere but the fixed
point set. Unlike static orbifolds, all modes detect these
effects in models with a cosmological singularity. For
example, all modes detect the breaking of supersymmetry.
-2
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There are a few possible explanations that might recon-
cile the form of the potential we find with the structure
expected from covariance. It is possible that the effective
action is ill-defined on cosmological backgrounds. In
Sec. III A we will argue that the Wilsonian effective action
is ill-defined on any space-time where the blueshift can be
arbitrarily large. However, at least in cases like the Milne
orbifold, the 1PI effective action appears to be sensible. It
is also possible that, on spaces with a nontrivial fundamen-
tal group, like the Milne orbifold, there might exist more
diffeomorphism invariants that could be used to construct
the potential.

B. Fermions in the matrix model

Our first task is to show that the fermions appearing in
the matrix big bang model are actually fermions on Milne
space. This is important for two reasons: first, to demon-
strate that Lorentz invariance is spontaneously rather than
explicitly broken; second, to determine the choice of spin
structure on the world-volume circle.

Fermion couplings at the level of the Dirac-Born-Infeld
action have been analyzed in [27–29]. We need to study
the type IIB background related by U-duality to the type
IIA string with a lightlike linear dilaton and a compact
direction X� � X� � R. Let us consider the case of a
single D-string wrapped on x1 in this type IIB background

ds2 � re�Qx
�

�
�2dx�dx� �

X8

i�1

�dxi�2
�
; (11)

� � �Qx� � logr; (12)

with the identification

x1 � x1 �
2�‘s
r

: (13)

The parameter r is defined to be

r 	
�R

2�‘s
(14)

and we identify the world-volume coordinates ��; �� with
space-time coordinates as follows:

x1 �
1

r
�; x� �

1

r
����
2
p : (15)

After fixing the �-symmetry and setting the gauge-field
strength to zero, the fermion couplings can be expressed in
the form

SF �
1

2�‘2
s

Z
d�d�e��

�����������������
det��g�

q
� D6  : (16)

The metric g appearing in (16) is the pullback to the world-
volume of the space-time metric (11),

ds2 �
1

r
e��Q��=�

��
2
p
r�f�d�2 � d�2g: (17)
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The same is true for the Dirac operator. It is notable that a
coupling to the gradient of the dilaton could have been
present but vanishes by symmetry considerations [29].

The prefactor multiplying the fermion bilinear in (16)
can be read from [2]

e��
�����������������
det��g�

q
�

1

r2 : (18)

We also need to compute the pullback of the spin connec-
tion. To determine the spin connection, we make a choice
of frame bundle

ei �
���
r
p
e�Qx

�=2dxi: (19)

With this choice, the spin connection pulled back to the
brane has nonvanishing components

!1� � �
�Q
2r
d�; !�� �

�Q

2
���
2
p
r
d�: (20)

It is easiest to view the fermion appearing in (16) as a
Majorana-Weyl fermion in 9� 1-dimensions. Under re-
duction to the world volume of the D-string, the fermion
decomposes into representations

1� 
 8c � 1� 
 8s (21)

under the Spin�1; 1� � Spin�8�R symmetry group in 1�
1-dimensions. However, one can readily check that the spin
connection (20) drops out of (16).

In terms of flat space gamma matrices, the fermion
kinetic term is then given by

e��
�����������������
det��g�

q
� D6  �

1

r3=2
e���Q�=2

��
2
p
r� � �	0@� � 	

1@�� :

(22)

Note we can always field redefine the fermions to remove
the time dependence in (22) without introducing any new
couplings. So from this Abelian expression, we cannot
determine whether the fermions really see the Milne orbi-
fold because they are completely decoupled from the bo-
son sector of the theory.

What we require is the non-Abelian generalization of
(22). Fortunately, this can be determined in the following
way. The fermion kinetic term is obtained by starting with
non-Abelian 9� 1-dimensional Yang-Mills coupled to the
background metric. This amounts to including a 9�
1-dimensional gauge field in D6 and taking a trace. This
covariant derivative is then pulled back to the world vol-
ume of the brane to give both the fermion kinetic terms and
the Yukawa couplings.

On performing this procedure, we find the following
quadratic fermion couplings:

1

r3=2
trfe����Q��=�2

��
2
p
r� � �	0D� � 	1D�� 

� e��Q��=�2
��
2
p
r� � 	i�Xi;  g; (23)
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where the 	i are standard gamma matrices for Spin�8�. The
scalar Xi is in the adjoint representation of the U�N� gauge
group. We are now free to rescale  so the fermion kinetic
terms are canonical:

tr f � �	0D� � 	1D�� � e��Q��=�
��
2
p
r� � 	i�Xi;  g: (24)

Note that all the � factors cancel as we might expect. By
comparison with [2], it is easy to see that this is precisely
the right coupling needed for fermions on the Milne orbi-
fold. We also note that the choice of spin structure is also
determined in this frame by the duality chain. Namely, the
fermions are periodic in the � direction.

C. Wave functions on the Milne orbifold

Although the frame in which the fermions are periodic
on the Milne circle is natural from the perspective of the
metric (7), it is not natural for the orbifold description with
metric (4). To understand the different approaches, let us
turn to a discussion of wave functions on Milne space from
the perspective of the orbifold construction and associated
equivariant bundles.

The action of the boost (5) on a wave function depends
on the spin s. Boost invariant wave functions satisfy [24]

�s�e
2�Q‘s��; e�2�Q‘s��� � e2�Q‘ss�s��

�; ���: (25)

Solutions of the wave equation satisfying this condition are
given by [24]

�j;s���; ��� �
Z 1
�1

dv exp�i�p���e�v � p���ev�

� ivj� vs (26)

with Q‘sj 2 Z. From the expression (26), it follows that
the momentum in the � direction is j� is. In particular,
the solutions are not periodic for any nonzero spin.

To gain some intuition for this phenomenon, let us
consider the case of a gauge field, which has spin compo-
nents s � �1. The gauge field can be written as

A � A�d�
� � A�d�

�: (27)

According to (5), A will only be boost invariant if

A��e
2�Q‘s��; e�2�Q‘s��� � e�2�Q‘sA���

�; ���: (28)

Therefore, the components A� satisfy (25) with s � �1.
The reason that the components A� do not have integer
�-momenta is that they are components in a basis
�d��; d��� that is not invariant under (5).

From this discussion, it is clear what we should do if we
want to work with periodic gauge potentials: expand A in a
basis of invariant differential forms. For instance, we can
write

A � ~A�dx� � ~A�dx�: (29)

Indeed, one immediately checks that
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~A� �
@��

@x�
A� �

���
2
p
Q��A� (30)

satisfies

~A��e2�Q‘s��; e�2�Q‘s��� � ~A����; ���: (31)

The components A� are those of a gauge field in
Minkowski space (4). In the gauge @�A� � 0, they satisfy
the wave equation

@2

@��@��
A� � 0; (32)

which is indeed solved by (26) with p�p� � 0. From (30),
we find that ~A� satisfy a different wave equation, namely

@2

@x�@x�
~A� �

���
2
p
Q

@
@x�

~A� � 0: (33)

In order to discuss fermions, we introduce a vielbein ea�,
such that 
abea�eb� � g��, where � label coordinates X�.
A choice of vielbein corresponds to a choice of basis of
one-forms

ea � ea�dX
�: (34)

The kinetic term of a Dirac fermion is given by

S �
Z
d2X

���
g
p
�i � �	��D� ; (35)

where

	�� � e��	a�: (36)

In two-dimensional Minkowski space (4), a natural choice
of vielbein is

e� � d��: (37)

The identification (5) acts on this basis as a nontrivial
Lorentz transformation:

e� � e�2�Q‘se�: (38)

This Lorentz transformation also acts on the gamma ma-
trices and thus on the spinor indices �,  of the fermions:

 � exp��Q‘s	01� ; (39)

where we can choose a representation where 	01 �
diag�1;�1�. This implies that the fermions are not periodic
in the � coordinate. The frame defined by (4) and (37) has
the advantage that the determinant of the metric is constant
and that the spin connection (hidden in D�) vanishes, so
that the fermions satisfy a standard wave equation,

@2

@��@��
 � 0; (40)

which is solved by (26) with p�p� � 0.
Alternatively, we can work with the x� coordinates, in

terms of which the metric is given by (10), and choose the
vielbein given by
-4
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~e� � eQ�x
��x��=

��
2
p

dx�; (41)

which is invariant under the identification. If we define
spinor indices using the Lorentz frame determined by this
vielbein, the corresponding spinors will be periodic in �.

Indeed, in terms of the coordinates x�, the vielbein (37)
reads

e� � e
��
2
p
Qx�dx�; (42)

from which one obtains the new vielbein (41) by a Lorentz
transformation that multiplies e� by exp��Q��.
Therefore, the new fermions ~ are obtained from the old
ones  by the same Lorentz transformation:

~ � exp
�
�
Q�	01

2

�
 : (43)

From (39), we see indeed that the new fermions ~ are
periodic in �.

Using the vielbein (37), the spin connection is zero. The
new vielbein (41) does have a nontrivial spin connection,

!�� �
Q���
2
p �dx� � dx�� � Qd�; (44)

which will appear in the Dirac equation for ~ . This Dirac
equation can also be derived from the standard Dirac
equation for  by substituting (43).
III. THE LEADING QUANTUM MECHANICAL
EFFECTS

A. Some comments on effective actions

Matrix string theory [30–32] compactified on Milne
space is described by the action [2]

S �
1

2�‘2
s

Z
tr
�
1

2
�D�Xi�2 � � D6  � g2

s‘4
s�2F2

��

�
1

4�2g2
s‘

4
s
�Xi; Xj2 �

1

2�gs‘
2
s

� 	i�Xi;  
�
; (45)

where gs � e�Q� and the coordinate � takes values 0 �
� � 2�‘s. We are using the simpler relation gs � e�Q�

rather than the exact relation with the space-time parame-
ters, gs � e���

��
2
p
�‘sQ��=R, found in [2]. This amounts to a

redefinition of Q which helps reduce notational clutter.
However, if one is interested in the large N limit or the R
dependence of the potential, then the following replace-
ment,

Q!

���
2
p
�‘sQ
R

; (46)

should be made in all subsequent formulas.
Because of the explicit time dependence, world-sheet

energy is not conserved. In particular, an excitation with
fixed energy E is weakly coupled at early times (�! �1)
since the dimensionful Yang-Mills coupling
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gYM �
1

gs‘s
(47)

is becoming small. At late times, the theory is strongly
coupled and we expect the Yang-Mills theory to flow to
type IIA light-cone string field theory in the lightlike linear
dilaton background.

In this very late time regime, we have no perturbative
control over the theory. However, at early times, we can
employ perturbation theory to describe the leading quan-
tum mechanical effects. First we note that a vacuum solu-
tion is still described by choosing a constant matrix
configuration in the Cartan of the gauge group. To deter-
mine whether there is a potential at 1-loop, we consider
quadratic fluctuations around this vacuum solution.

Before turning to this computation, it is worth pointing
out some subtleties with effective actions in time-
dependent backgrounds. The usual procedure involves in-
tegrating out massive degrees of freedom. This results in
either a 1PI or Wilsonian effective action for the residual
light degrees of freedom, depending on the integration
technique. However, in a time-dependent background like
the Milne orbifold, the Wilsonian procedure always breaks
down at sufficiently early times.

To see this, note from (45) that the mass of theW-bosons
is time dependent: in terms of the SO(8)-invariant distance
b between two eigenvalues of Xi,

m2
W � e

2Q�b2: (48)

The mass thus vanishes as �! �1. Therefore the
Wilsonian procedure of integrating out modes with ener-
gies above a fixed cutoff � results in an Abelian effective
action only for times such that mW >�. The characteristic
breakdown time is given by

�non-Abelian �
1

Q
ln��=b�: (49)

For times earlier than �non-Abelian, the complete non-
Abelian action should be employed.

There is a second characteristic time in this system.
Namely, the time at which Yang-Mills perturbation theory
breaks down. This occurs roughly when gYM=b� 1 where
loops of W-bosons become strongly coupled. This gives a
characteristic time

�string �
1

Q
ln�‘sb�: (50)

At this time, we transition from a Yang-Mills description to
a perturbative string description. The perturbative string
theory should correspond to the light-cone quantized type
IIA string in the lightlike linear dilaton background. This
string theory becomes more weakly coupled as �! 1.

B. The effective action in a loop expansion

Because of the difficulty in defining a Wilsonian effec-
tive action, we will consider the 1PI effective action in a
-5
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loop expansion. To clarify the expansion parameters, let us
rescale the fields in (45) as follows:

Xi ! ‘2
sXi;  ! ‘2

s ; A� ! A�: (51)

After this rescaling, the scalars have mass dimension
�Xi � 1 along with the gauge fields, while the fermions
have mass dimension �  � 3=2.

The rescaled action is given by

S �
‘2
s

2�

Z
tr
�
1

2
�D�X

i�2 � � D6  � e�2Q��2F2
��

�
1

4�2 e
2Q��Xi; Xj2 �

1

2�
eQ� � 	i�Xi;  

�
: (52)

There are only two dimensionful parameters in this theory.
We identify @ with 1=‘2

s . This parameter controls the
strength of quantum corrections and defines our loop ex-
pansion. The second parameter isQ. The value ofQ has no
invariant physical meaning [2]: either Q is zero or it is
nonzero. If Q is zero, we are back to conventional matrix
string theory on a cylinder with a conventional effective
action.

Around the vacuum discussed in the previous subsec-
tion, we have a collection of massless particles correspond-
ing to excitations along the Cartan directions and a
collection of particles with time-dependent masses. We
would like to integrate out these ‘‘massive’’ particles to
obtain effective dynamics for the massless degrees of free-
dom. This is potentially problematic because the time-
dependent masses vanish as �! �1. Usually, integrating
out a massless particle results in a nonlocal 1PI effective
action. This basically comes about because the wave equa-
tion for a massless particle is gapless so the corresponding
propagator has no analytic expansion in powers of the
momentum. To construct the effective action, we usually
make use of the expansion

1

m2 � �
�

1

m2

�
1�

�

m2 � � � �

�
(53)

to obtain a local action. We need to first check whether our
particles with time-dependent masses will give rise to the
same problems as conventional massless particles.

The off-diagonal scalar fields have action

S �
‘2
s

2�

Z
d�d�� _X2 � X02 � b2e2Q�X2�: (54)

The equation of motion is that of a free scalar with time-
dependent mass. The � momentum is quantized in units of
1=‘s. For modes with nonzero � momentum, we have a
conventional mass term and no problem in defining the
effective action. So let us consider the case with zero �
momentum. We want to study the Green’s function for a
particle satisfying

�@2
� � b2e2Q��G��; �0� � ���� �0�: (55)
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Note that we are not analytically continuing to Euclidean
world-sheet time. The exact propagator for (55) can be
constructed by patching together linear combinations of
the two homogeneous solutions to the equation. These two
solutions are given by the Bessel functions J0�y� and Y0�y�
where

y �
b
Q
eQ�: (56)

For large y or late times, these solutions have good asymp-
totic behavior

J0�y� �

�������
2

�y

s
cos

�
y�

�
4

�
; Y0�y� �

�������
2

�y

s
sin
�
y�

�
4

�
:

(57)

This is the behavior we expect for a very massive particle
with mass increasing exponentially with time.

The regime which might be problematic for constructing
the 1PI effective action is when b is small, or equivalently,
at early times. In this regime, it is easy to construct the
propagator in a perturbative expansion around small b,

�@2
� � b

2e2Q���1 �
Z
d!

ei!����
0�

�!2 � b2e2Q� f1�O�b�g;

� ��1ei����
0�beQ� � �2e�i����

0�beQ��

� f1�O�b�g: (58)

The choice of ��1; �2� depends on the specific i� prescrip-
tion, or equivalently, the specific choice of boundary con-
ditions. The key point is that there appears to be no
apparent problem with this propagator. At early times,
we can still construct an analytic expansion in !.
Therefore, we should still be able to construct a 1PI effec-
tive action by integrating out particles satisfying (55).

The final method of studying quantum corrections
makes this conclusion more transparent. Let us switch to
���; ��� coordinates defined in (6). These coordinates are
natural for the orbifold description as discussed in
Sec. II C. In this frame, there is no explicit time depen-
dence in the action. Instead of studying (55), we end up
considering the standard wave equation for a free massive
particle but with an added invariance condition under the
orbifold action. In this approach, the difference with flat
space matrix theory computations becomes clearer. All the
nontrivial quantum effects come about because of spin-
dependent modifications of the � momentum quantization
condition.

For example, for a scalar particle in this frame, we
consider the wave equation�

2
@2

@��@��
� b2

�
X � 0 (59)

with the invariance condition given in (25). In this frame,
there is clearly no problem integrating out X.
-6
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C. The effective potential

In this section, we compute the effective potential for the
light field b, corresponding to the difference between two
eigenvalues. Path integrating over a massive bosonic field
X satisfying (59) with constant b gives a determinant

det ��1=2��H� � det��1=2�

�
2

@2

@��@��
� b2

�
: (60)

In Feynman diagram language, the determinant (60) is the
sum of all vacuum diagrams, connected or disconnected.
The potential term in the effective action is instead the sum
of all one-particle-irreducible diagrams in the constant
light-field background. At one-loop order, this corresponds
to the logarithm

�i
Z
Veff � logdet�1=2�H� � �

1

2
tr log�H�: (61)

Let us denote the propagator for (59) by G��; �0; b2�. We
can construct the heat kernel for this wave operator as
follows:

etH��; �0� � �
I dz

2�i
etzG��; �0; b2 � z�; (62)

where the contour integral over z encloses the spectrum of
H. We can then express the determinant in the form

det ��1=2��H� � exp
�
1

2

Z
d2�

Z
dt
e�it�H�i��

t
��; ��

�
;

(63)

where an i� is inserted to ensure convergence at the large t
end of the integral.
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In the usual flat space maximally supersymmetric the-
ory, a potential is forbidden by a nonrenormalization theo-
rem [33]. At the 1-loop level, this can be seen explicitly
from a cancellation between boson and fermion contribu-
tions (see, for example, [34], for the quantum mechanics
case). The count goes as follows: take gauge group SU�N�
broken to U�1��N�1�. There are 8�N2 � N�massive scalars,
8�N2 � N� massive complex fermions. There are also
(N2 � N) massive W-bosons and a corresponding (N2 �
N) complex scalar ghost field. In standard matrix theory on
a cylinder, the contributions to the potential from these
particles cancel.

To see what happens in this case, let us compute the
contribution from a massive spin-s particle. The fermion
satisfies the usual massive wave equation (59) except mo-
menta in the � direction are given by

j� si; Q‘sj 2 Z (64)

for spin-s particles.
To complete the computation, we require the Green’s

functions for these different particles. This requires a
choice of vacuum state. There are two natural choices
labeled the adiabatic vacuum and the conformal vacuum
[1]. The adiabatic vacuum descends from the ambient 1�
1-dimensional Minkowski space under the orbifold identi-
fication. We will construct our Green’s functions using this
choice of vacuum.

The Green’s function for a spin-s particle is obtained by
summing over images under the orbifold identification. It
takes the form [24]
Gs��; �0; b2� �
X
n

Z dp�dp�

�2��2
exp��ip���� � e2�Q‘sn��

0
� � ip���� � e�2�Q‘sn��

0
� � 2�Q‘sns�

�2p�p� � b2 : (65)

This gives a kernel

e�itHs��; �� �
X
n

Z dp�dp�

�2��2
exp��it�b2 � 2p�p� � ��ip����1� e2�Q‘sn� � ip����1� e�2�Q‘sn� � 2�Q‘sns�

�
X
n

1

�2��2t
exp

�
�itb2 � i

����

2t
�1� e2�Q‘sn��1� e�2�Q‘sn� � 2�Q‘sns

�

�
X
n

1

�2��2t
exp

�
�itb2 � 2i

����

t
sinh2��Q‘sn� � 2�Q‘sns

�
(66)
with some noteworthy features. If we restrict to n � 0, this
kernel collapses to the usual one for a massive free-particle
propagating along a closed loop over time t. This would
give rise to the usual Coleman-Weinberg potential. The
modification from the free-particle form comes strictly
from the orbifold projection in (65) which introduces
space-time dependence into the kernel.

This space-time dependence has a nice interpreta-
tion. The potential (63) based on the kernel (66) is essen-
tially the Feynman propagator for a particle in 4 dimen-
sions. In the absence of the ���� term, the usual UV
divergences come about from the small t contribution
to the integral. The presence of the ���� term regularizes
the small t contribution. The interpretation is now in terms
of a particle trying to propagate in a small time t a distance
squared ���� which is exponentially large in �. Such
an amplitude is enormously suppressed as � becomes
large. On the other hand, the large t contribution to the
-7
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integral is also suppressed by the mass term proportional to
b2.

The kernel (66) leads to the following potential term in
the action:

Z
Veff�b� � i

Z
d2�

Z dt
2t

X
helicities

e�it�Hs�i"���; ��: (67)

Since ghosts cancel the contributions of two scalars, each
supersymmetry multiplet effectively contributes one s �
1, four s � 1=2, six s � 0, four s � �1=2, and one s �
�1 states. Therefore,X

helicities

��1�2se2�Q‘ss � �e�Q‘sn=2 � e��Q‘sn=2�4

� 16sinh4��Q‘sn=2�: (68)

The potential term (67) thus reads

Z
d2�

X1
n��1

�
2i
�

�
sinh4��Q‘sn=2�

Z 1
0

dt

t2
exp

�
�itb2

�
i
t
2sinh2��Q‘sn�����

�
: (69)

Analytically continuing the Schwinger parameter, t �
�it0, this becomes

�
Z
d2�

X1
n��1

2

�
sinh4��Q‘sn=2�

Z 1
0

dt0

�t0�2

� exp
�
�t0b2 �

1

t0
2sinh2��Q‘sn��

���
�

(70)

� �
Z
d2�

X1
n��1

2

�
bsinh4��Q‘sn=2�

�2sinh2��Q‘sn�����1=2

� K1�
������������������������������������������������
8b2sinh2��Q‘sn�����

q
�; (71)

where K1 is a modified Bessel function, with asymptotic
behavior

K1�z� �
1���
z
p e�z �z� 1�; (72)

K1�z� �
1

z
�z� 1�: (73)
D. The late time potential

For very large times of order �string defined in (50), our
perturbative approximation breaks down. However, we can
still ask how our 1-loop potential behaves in this late time
regime. To obtain the very late time behavior, we will use
the asymptotic behavior (72) to write (71) as
106005
Z
Veff � �

Z
d2�

23=4b1=2sinh4��Q‘s=2�

�������3=4sinh3=2j�Q‘sj

� exp��
����������������������������������������������
8b2sinh2��Q‘s�����

q
�; (74)

the dominant contribution coming from n � �1. This is
hugely suppressed at late times. There is an intuitive way to
understand this phenomenon. The extent to which super-
symmetry is broken is controlled by the size of the� circle.
At �! 1, the circle becomes large and supersymmetry is
effectively restored.

While there was no a priori reason for us to see the
potential vanish at late times at just 1-loop, it is a result in
perfect agreement with the claim that, at late times, this
theory flows to string field theory in the lightlike linear
dilaton background [2]. In such a theory, there is no per-
turbative potential. However, if we express (74) in terms of
the perturbative string coupling gs � e�Q�,

Z ���
g
p
Veff�b� �

Z
d�d�

�����
b
gs

s
exp

�
�
Cb
gs

�
; (75)

with constant C, we see that there is a nonperturbative
potential that appears to be generated by D-branes. If
higher loop corrections to the potential are more sup-
pressed then we might hope to compute this potential
directly in string theory.

E. The early time potential

We have seen that the summand in (71) decreases
quickly as a function of n when the argument of the
modified Bessel function is larger than one. However, at
early times, b2���� � 1, the argument is smaller than
one for a range of values of n, so we should use the
asymptotic behavior (73). We findZ

Veff � �
Z
d2�

X
n

2

�
bsinh4��Q‘sn=2�

�2sinh2��Q‘sn��
���1=2

�
1������������������������������������������������

8b2sinh2��Q‘sn�����
p

� �
Z
d2�

1

8�����
X
n

tanh2��Q‘sn=2�

�
Z
d2�

1

8�2Q‘s�
���

log�2b2�����; (76)

where the sum was taken over those values of n for which
the argument of the modified Bessel function is smaller
than 1. At early times, we thus find an attractive one-loop
potential between two eigenvalues.

Finally, it would be interesting to extend this computa-
tion in at least three directions. The first is to extend the
computation to higher loops along the lines of [34]. This is
important in order to understand whether higher loop
effects are more suppressed at late times despite the strong
coupling. The form of the potential (75) suggests that this
-8
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might be the case with higher loops corresponding to
multi-D-brane contributions.

The second is to go beyond the static potential to moving
configurations à la [35]. If this static potential is any guide,
the structure of the velocity expansion even at order v2

should be quite fascinating, and will perhaps shed more
light on the gluon phase that replaces the cosmological
singularity.

The third natural direction is to consider the lightlike
linear dilaton in type IIB string theory using type IIB
matrix theory [32,36]. The potential in this case is likely
to have a very different interpretation because of S-duality
in space-time. The computation will also be quite different
because of possible gauge theory instanton corrections. We
might hope that techniques like those used in [37] could be
generalized to obtain an exact answer.
106005
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