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Super-Higgs mechanism in string theory
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We exhibit the super-Higgs effect in heterotic string theory by turning on a background antisymmetric
tensor B field and deforming the Becchi-Rouet-Stora-Tyutin operator consistent with superconformal
invariance. The B field spontaneously breaks spacetime supersymmetry. We show how the gravitini and
the physical dilatini gain mass by eating the would-be Goldstone fermions.
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I. INTRODUCTION

String theory is the most ambitious and most promising
attempt to incorporate gravity into quantum mechanics.
The theory possesses a large number of symmetries, in-
cluding supersymmetry, gauge symmetry, and coordinate
invariance. At low energies, many of the symmetries are
broken by the vacuum. At ultrahigh energies, beyond the
Planck scale, the results of [1] suggest that the full sym-
metry group is infinite dimensional.

How can we investigate the symmetry structure of the
theory? Evans and Ovrut developed an elegant approach in
which string symmetries are generated by inner automor-
phisms of the superconformal operator algebra [2]. The
method treats unbroken and spontaneously broken symme-
tries on exactly the same footing. In recent work, we used
this formalism to illustrate the Higgs mechanism in string
theory [3].

In this paper we extend these results to the case of
spontaneously broken supersymmetry. For concreteness,
we focus on heterotic string theory, but our general results
apply to type II string theory as well. In Secs. II and III we
consider heterotic string propagation in flat Minkowski
space, in the presence of a nontrivial but infinitesimal
antisymmetric tensor B field background. We assume that
the B field satisfies the string-theory equations of motion,
and derive the string-theory equations of motion for the
gravitino and the dilatino fields. We also find the spacetime
supersymmetry generator in this background. We then use
the supersymmetry generator to derive the spacetime su-
persymmetry transformations of the gravitino and the di-
latino fields.

In Sec. IV we use these results to illustrate the super-
Higgs mechanism in string theory. We study a simple
model in which spacetime is compactified on M7 � T3,
with a constant H � dB flux in the compact dimensions.
For zero flux, the seven-dimensional theory has N � 2
spacetime supersymmetry, with two massless gravitini
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and eight massless dilatini. The nonzero H spontaneously
breaks the supersymmetry. The gravitini and the dilatini
obey coupled equations of motion. We show that the
would-be Goldstone fermions can be eliminated by a su-
persymmetry transformation, and that in the unitary gauge,
the gravitini and the remaining six dilatini obey massive
equations of motion. Aspects of supersymmetry breaking
in string theory were discussed previously in [4].
II. NILPOTENT DEFORMATIONS AND
EQUATIONS OF MOTION

A. Heterotic string in Minkowski space

To fix notation, we first describe the heterotic string in
flat Minkowski space. We start with the left- and right-
moving Becchi-Rouet-Stora-Tyutin (BRST) operators Q
and Q, which are given by

Q �
Z
d�

�
c�T � @cb� �

1

2
�TF �

1

4
b�2

�
;

Q �
Z
d�c�T � @ c b�;

(1)

where the world sheet stress-energy tensor is

T �
1

2
���@X

�@X� �
1

2
��� 

�@ � �
3

2
@���

1

2
�@�;

T �
1

2
���@X�@X�; (2)

the world sheet supercurrent is

TF �
1

2
��� 

�@X�; (3)

and b; c and �;� are the world sheet ghosts (together with
their conjugates). The bosonic ghosts � and � can be
bosonized as follows:

� � e��@�; � � e��; (4)

where � and � are conjugate fermions of dimension 0 and
1, and � is a chiral boson.
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An infinitesimal gravitino excitation deforms the BRST
operators as follows:

Q! Q� 	Q; Q! Q� 	Q; (5)

where

	Q �
Z
d�c��


�S
e���=2�@X��;

	Q �
Z
d�c��


�S
e���=2�@X��;
(6)

and S
 is a world sheet spin field. Nilpotency requires

fQ;	Qg � fQ;	Qg � fQ;	Qg � fQ;	Qg � 0; (7)

which in turn imposes the following restrictions on the
field �


�,

����
�@���
� � 0; @��


� � 0: (8)

The relations (8) contain an equation of motion and a
gauge condition. However, the gauge condition does not
separate the physical degrees of freedom. As written, �


�

contains a spin- 3
2 gravitino and a spin- 1

2 dilatino. To sepa-
rate the fields, we write �


� � �
� � ����
���, where
����
��

�
� � 0. Equations (8) then become

����
�@��
�
� � 2@��
; ����
��

�
� � 0;

@��
� � 0; ����
�@��
� � 0:

(9)

These are coupled equations of motion for a massless
spin- 3

2 gravitino and a massless spin- 1
2 dilatino, in a gen-

eralized Lorentz gauge.
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B. Heterotic string in a B field background

To study supersymmetry breaking, we will work in a
background with an infinitesimal gauge field B�� [5]. This
deforms the BRST operators as follows:

Q! Q� 	Q0; Q! Q� 	Q0; (10)

where

	Q0 �
Z
d�

�
c�B��@X

�@X� � @B�� 
 �@X��

�
1

2
�B�� �@X�

�
;

	Q0 �
Z
d�c�B��@X�@X� � @B��  �@X��:

(11)

Nilpotency requires

fQ;	Q0g � fQ;	Q0g � fQ;	Q0g � fQ;	Q0g � 0; (12)

which imposes an equation of motion and a gauge condi-
tion for the B�� field,

�B�� � 0; @�B�� � 0: (13)

As in flat space, a gravitino excitation also deforms the
BRST operators,

Q! Q� 	Q0 � 	Q00; Q! Q� 	Q0 � 	Q00;

(14)

where
	Q00 �
Z
d�c�
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�
;

(15)
and we work to first order in B�� and �

�. Nilpotency

imposes an additional equation of motion

����
�@���
� � ����
�H

����


�
1

6
�����
�H����

� � 0; (16)

and gauge condition,

@��
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�H

����
� � 0; (17)

where H�� �
1
2 �@�B� � @�B� � @B���. Writing �


�
in terms of its trace and traceless part, and substituting into
(16) and (17), we find equations of motion for the gravitino
�
�,
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(18)

the dilatino �
,
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����
�@��� �
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�����
�H����

� �
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D
����
�H�

���� �
2

D
������
�H�

���; (19)

together with the gauge condition

@��
� �
4�D

2D
����
�H

�
��

�
� �

6�D
3D

������
�H����; (20)

where D is the dimension of spacetime. These are the
generalizations of (9) in the B�� background.
III. SPACETIME SUPERSYMMETRY

In string theory, spacetime symmetries correspond to
inner automorphisms of the operator algebra. They are
generated by infinitesimal operators h,

i�h;O� � 	O; (21)

where O is any operator in the theory. When O is Q or Q,
the deformed BRST charges 	Q and 	Q automatically
satisfy the deformation Eqs. (7) because of the Bianchi
identity.

Following Evans and Ovrut [2], we define a canonical
deformation to be generated by an infinitesimal operator h
that is the sum of zero modes of �1; 0� and �0; 1� primary
fields. Such a deformation preserves the gauge of the
spacetime fields. For the heterotic string, the operator
that generates a supersymmetry transformation about flat
spacetime is [6]

h �
Z
d��
S
e���=2�: (22)

The integrand is of dimension �1; 0� provided the trans-
formation parameter �
 satisfies

����
�@��� � 0: (23)

In this case, h generates a canonical deformation.
The supersymmetry transformation of the gravitino can

be found by commuting h with the BRST operator Q. For
the case at hand, we find

i�h;Q� � 	Q �
Z
d�c�@��


S
e
���=2�@X��; (24)

and likewise for 	Q. Comparing with (6), we see that the
commutator (24) describes a deformation of the �


� field.
In this way Q and Q generate a flat-space supersymmetry
transformation, 	�


� � @��

.

The supersymmetry generator h deforms in the B��
background,
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h! h� 	h �
Z
d��


�
S
e

���=2�

�
1

4
������
B��S�e���=2�

�
: (25)

The corresponding deformation is canonical if �
 satisfies
the following constraint,

����
�@��

 �

1

6
�����
�H���


 � 0: (26)

This is the Dirac equation for �
 in the B�� background.
To find the gravitino transformation in this background,

we compute the commutator of h� 	h with Q� 	Q0.
This gives

i�h� 	h;Q� 	Q0� �
Z
d�c

�
@��
 �

1

2
�����
�H�����

�

�

�
S
e���=2�@X�

�
1

4
�����
B�S�e

���=2�@X�

�
1

2
B�S
e���=2��@X � @X�

�
1

2
@�B�S
e

���=2� � 

�
: (27)

Comparing with (15), we can read off the �

� transforma-

tion in the B�� background,

	�

� � @��


 �
1

2
����
�H���

�: (28)

Decomposing �

� � �
� � ����
���, we find the trans-

formation properties of the gravitino and the dilatino,

	�
� � @��

 �

1

2
����
�H���

�

�
2

3D
�������
�H����;

	�
 �
2

3D
�����
�H����:

(29)

There are precisely the transformations of ten-dimensional
supergravity, derived directly from string theory.
IV. THE SUPER-HIGGS MECHANISM

In the previous sections we studied string theory in the
presence of a B�� field that pervades all of spacetime. In
this section we focus on string propagation on M7 � T3,
where the B�� field is restricted to T3. We will see that the
B�� field spontaneously breaks the supersymmetry on M7.

We start by fixing the notation. We take the spacetime
coordinates to be fX�; Xig, where � � 0; 	 	 	 6 and i �
7; 8; 9. We decompose the ten-dimensional gamma matri-
ces in direct product fashion,
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�� �
i���
2
p ��� 
 1 
 �1�; �i �

i���
2
p �1 
 �i 
 �2�;

(30)

where the �� satisfy the Clifford algebra in seven dimen-
sions and the �i are ordinary Pauli matrices. With these
conventions, the ten-dimensional gravitino splits into two
seven-dimensional gravitini and two seven-dimensional
dilatini, �
a

� � �
a� � ����

��a�, together with six addi-

tional seven-dimensional dilatini, �
a
i � �i�


a
i , where


 � 1; 	 	 	 8 and a � 1; 2.
Let us focus on the background in which Hijk � 2m�ijk.

Nilpotency of the BRST operators implies that the dilatini
�
ai obey the following equations of motion,

����
�@��
�a
i � 2im�ij

k��j�ab�b
k �m�
a

i � 0: (31)

It also imposes equations of motion

����
�@���a
� �m�a


� � 0; (32)
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and gauge conditions

@��
a
� � im��

i�ab�
b
i � 0 (33)

on the �
a
� . In terms of gravitini and dilatini parts,

Eqs. (32) and (33) can be written as follows,

����
�@��
�a
� �m�a
���2@��

a
��

2m
7
����
���

i�ab��bi ;

����
�@���a�m�a
�
2m
7
��i�ab�b
i;

@��
a� �m�

a�

5m
7
��i�ab�
bi :

(34)

The gravitini and dilatini obey coupled equations of
motion. Multiplying Eq. (31) by �i and using Eqs. (34),
we find
����
�@�

�
��a� �

1

7
����

����i�ab�b�i

�
�m

�
�
a� �

1

7
����


���i�ab�b�i

�
� �2@�

�
�a
 �

1

7
��i�ab�b
i

�
;

����
�@�

�
��a �

1

7
��i�ab��bi

�
�m

�
�a
 �

1

7
��i�ab�b
i

�
� 0;

@�
�
�
a� �

1

7
����


���i�ab�b�i

�
�m

�
�
a �

1

7
��i�ab�
bi

�
�m��i�ab�
bi � 0:

(35)
The form of these equations suggests the following change
of variables:

�0
a� � �
a� �
1

7
����
���i�ab�b�i;

�0
ai � �
ai �
1

3
��i�ab��j�bc�
cj ;

�0a1
 � �a
 �
1

7
��i�ab�b
i;

�0a2
 � �a
 �
1

21
��i�ab�b
i:

(36)

In terms of the primed variables, the equations and gauge
conditions become

����
�@��
0�a
� �m�0
a� � �2@��

0a
1
;

@��0
a� �m�0
a1 �m����
��0a�� � 0;

����
�@��
0�a
i � 3m�0a
i � 0;

����
�@��
0�a
1 �m�0a1
 � 0;

����
�@��
0�a
2 � 3m�0a2
 � 2m�0a1
 � 0:

(37)

To properly interpret these relations, we need to find the
supersymmetry transformations in this background. The
supersymmetry generator is
h �
Z
d��
a

�
Sa
e���=2� �

1

4
��ij�abBijSb
e���=2�

�
;

(38)

where the transformation parameters �
a obey the follow-
ing conditions,

����
�@��
�a �m�a
 � 0; ��a
 � 0: (39)

Following the arguments of Sec. III, we can derive the
supersymmetry transformations of the gravitini and dila-
tini,

	�
a� � @��

a �

m
7
����


��a�; 	�
a �
m
7
�
a;

	�
ai � m��i�
ab�
b: (40)

The dilatini transform nonlinearly under supersymmetry
transformations.

We now have what we need to interpret Eqs. (37). We
first note that �0
a1 shifts under supersymmetry, while �0
a2
and �0
ai do not. Therefore �0
1

1 and �0
2
1 are the would-be

Goldstone fermions that arise from the supersymmetry
breaking. In unitary gauge, these fields vanish, and
Eqs. (37) become
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����
�@��
0�a
� �m�0
a� � 0;

@��0
a� �m����
��0a�� � 0;

����
�@��
0�a
i � 3m�0a
i � 0;

����
�@��
0�a
2 � 3m�0a2
 � 0:

(41)

These are nothing but the equations of motion for two
massive gravitini and six massive dilitini. The two gravitini
have eaten the two would-be Goldstone fermions, as re-
quired by the super-Higgs effect.

V. CONCLUSIONS

In this paper we illustrated the super-Higgs effect in
heterotic string theory. We first turned on a background
tensor field B�� and deformed the BRST operator consis-
tent with superconformal invariance. We then derived the
string-theory equations of motion for the background, as
well as for the gravitino and the dilatino fields. We found
the spacetime supersymmetry generator and used it to
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derive the supersymmetry transformations of the spacetime
fields.

We then studied a model in which spacetime is compac-
tified on M7 � T3, with a constant flux in the compact
dimensions. We showed that the nonzero B�� field sponta-
neously breaks supersymmetry. We demonstrated that the
would-be Goldstone fermions can be eliminated by a su-
persymmetry transformation and that in the unitary gauge,
the gravitini and the remaining six dilatini obey massive
equations of motion. In this way we illustrated the super-
Higgs effect in the full string theory, and not just in the
effective field theory that arises at low energy.
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