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Interpretation of quantum field theories with a minimal length scale
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It has been proposed that the incorporation of an observer independent minimal length scale into the
quantum field theories of the standard model effectively describes phenomenological aspects of quantum
gravity. The aim of this paper is to interpret this description and its implications for scattering processes.
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I. INTRODUCTION

Quantum gravity is probably the most challenging and
fascinating problem of physics in the 21st century. The
most impressive indicator is the number of people working
on it, even though so far there is no experimental evidence
that might guide us from mathematics to physical reality.
During the last years, the priority in the field has undergone
a shift towards the phenomenology and possible predic-
tions [1–12]. The phenomenology of quantum gravity has
been condensed into effective models which incorporate
one of the most important and general features: a minimal
invariant length scale that acts as a regulator in the ultra-
violet. Such a minimal length scale leads to a generalized
uncertainty relation and it requires a deformation of
Lorentz-invariance which becomes important at high boost
parameters.

The construction of a quantum field theory that self-
consistently allows such a minimal length makes it neces-
sary to carefully retrace all steps of the standard quantiza-
tion scheme. So far, there are various approaches how to
construct a quantum field theory that incorporates a mini-
mal length scale and the accompanying deformed special
relativity (DSR), generalized uncertainty principle (GUP)
and modified dispersion relation (MDR). Most notably,
there are approaches which start from the DSR [13–18],
the �-Poincaré Hopf algebra [19–24] and those which start
with the GUP [25–29]. Besides this, there exists the pos-
sibility to examine specific effects like reaction thresholds
or radiation spectra starting from the MDR without aiming
to derive a full quantum theory in the first place [30–32].
Relations between several approaches have been investi-
gated in [33].

In this paper we aim to closely examine the ansatz
starting with the GUP by paying special attention to the
interpretation of the effective theory. Since this starting
point is conceptually different from the DSR-motivated
one, it does not suffer from some of the problems that
have been encountered within the latter, e.g. the conserva-
tion of momentum in particle interactions and the meaning
of a highest energy scale for bound multiparticle states, the
so-called ‘‘soccer-ball-problem’’. As we will show, it is the
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treatment of a single noninteracting particle which distin-
guishes both approaches.

This paper is organized as follows. In the next section we
will investigate a picture of particle scattering with addi-
tional strong gravitational interaction and motivate an ef-
fective model to extend the quantum field theories of the
standard model. In Sec. III, some properties of the model
are investigated. In Sec. IV it is examined in which cases
the model can be applied with special emphasis on the
observer independence. In Sec. V we analyze the relation
to models starting with a deformation of Lorentz trans-
formations at high energies. We conclude in Sec. VI.

Throughout this paper we use the convention c � @ � 1
andG � 1=m2

p. Small Greek indices are spacetime indices;
small Latin indices label particle states.

II. MOTIVATION

A particle with energy close to the Planck mass, mp, is
expected to significantly disturb spacetime on a distance
scale comparable to its own Compton wavelength and
thereby make effects of quantum gravity become impor-
tant. A meaningful way to quantify how nonclassical
gravitational effects are is to examine the ability to de-
scribe spacetime as locally flat. The appropriate quantities
are the entries of the curvature tensor in a locally ortho-
normal basis, or, in case it is nonvanishing, the curvature-
scalar R. Quantum effects should become strong, when
Rm2

p � 1. However, provided that the rest mass of the
particle itself is much smaller than the Planck mass, boost-
ing the particle to high rapidity will not change the curva-
ture, or the strength of quantum gravitational effects, it
causes.1

Instead, to make the above statement precise, on has to
refine its formulation: a concentration of energy high
enough to cause strong curvature will result in significant
quantum effects of gravity. Such a concentration of energy
might most intuitively be seen as an interaction process. In
an interaction process, the relevant energy is that in the
center of mass (com) system, which we will denote with���
s
p

. Note that this is a meaningful concept only for a theory
1From here on we assume that the rest mass of the particle is
always much smaller than the Planck mass.
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FIG. 1. In addition to the SM-interaction under investigation,
strong gravitational effects accompany the processes in the
collision region. These effects are condensed in the effective
QFT model with a modified dispersion relation. Shown is the
example of fermion scattering f�f� ! f�f� (s-channel).

S. HOSSENFELDER PHYSICAL REVIEW D 73, 105013 (2006)
with more than one particle. However, it can also be used
for a particle propagating in a background field consisting
of many particles (e.g. the CMB). The scale at which
effects of quantum gravity become important is when���
s
p
=mp � 1, for small impact parameters

��
t
p
� 1=b�mp.

Let us consider the propagation of a particle with wave
vector k�, when it comes into a spacetime region in which
its presence will lead to a com energy close to the Planck
scale. The concrete picture we want to draw is that of in-
and outgoing point particles separated far enough and
without noticeable gravitational interaction, that undergo
a strong interaction in an intermediate region which we
want to describe in an effective way.2 We denote the
asymptotically free in(out)-going states with �� (��),
primes are used for the momenta of the outgoing particles.
This is schematically shown in Fig. 1.

In the central collision region, the curvature of space-
time is non-negligible and the scattering process as de-
scribed in the quantum field theories (QFTs) of the
standard model (SM) is accompanied by gravitational
interaction. We aim to find an effective description of
this gravitational interaction, which we expect to modify
the propagator, not of the asymptotically free states, but of
the particles that transmit the interaction. The exchange
2An effective description as opposed to going beyond the
theory of a pointlike particle.
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particle has to propagate through a region with strong
curvature, and the particle’s propagation will dominantly
be modified by the energy the particle carries.

Even on a classical level, the backreaction of a field
propagating in spacetime is involved. For simplicity, let us
consider a massless scalar field �. In principle, the evolu-
tion of spacetime is described by Einstein’s field equations

R�� �
1
2g��R � 8�GT���; (1)

where G � 1=m2
p, and the source term is given by

T��� � r��r���
1
2g��g

��r�r��: (2)

The evolution of the field itself is the wave-equation in
curved space

g��r�r�� � 0 (3)

which can be rewritten into partial derivatives

g��@�@��� g������@�� � 0: (4)

In the limit when the backreaction is small, the dependence
of the metric on the field can be neglected. In this case, one
has g�� � g���x�. This leads to the formulation of a field
theory in a possibly curved background. When spacetime
is asymptotically flat, such that g���x! 1� ! ���, the
equation of motion reduces to the familiar wave-equation
which is solved by a superposition of modes of the form

vp � exp�i���p�x��; (5)

where p fulfils the dispersion relation

���p�p� � 0: (6)

However, in general the metric g�� will not only be a
function of the spacetime coordinates x, but also a function
of the derivativesr��, as dictated by Eqs. (1). The same is
true for the Christoffel symbols. The general structure of
Eq. (3) is then

g���x;r���@�@��� h
��x;r���@�� � 0: (7)

It is therefore natural to expect that in regimes where the
gravitational interaction becomes important, the metric
which the field propagates in will be a function of its
energy (density).

It is most likely not possible to describe strong gravita-
tional effects by using classical general relativity, and the
above motivation is not suitable to derive further details of
the spacetime structure. Instead, inherently new effects due
to the quantum nature of spacetime will influence and
eventually dominate the interaction processes. Such behav-
ior has previously been investigated in various context
using approaches from spacetime foams, loop gravity or
D-brane recoil [34–39]. These investigations indicate that
quantum effects result in a modified dispersion relation for
the propagating particles, which can also be formulated in
terms of an energy-dependent metric [15].
-2



INTERPRETATION OF QUANTUM FIELD THEORIES . . . PHYSICAL REVIEW D 73, 105013 (2006)
The aim of the here discussed approach is to examine the
additional gravitational interaction by means of an effec-
tive model.3 The QFTs considered are modified in such a
way that they capture one of the features that is generally
expected to occur in quantum gravity [40–43]: a minimal
length scale. For this purpose, it is assumed that the ex-
change particles which mediate the SM interactions have
to propagate through a region with a non-negligible quan-
tum gravitational effects.

As motivated above and in [15] the assumption is that
the quantum gravitational effects can be captured by the
following description

1a I
3W
gra
n a region of strong gravitational effects, the metric is
dominated by the energy-dependence and one has
g�� � g���r��� in ��d; d�. The coordinates are those
of the asymptotically flat coordinate system with the
interaction box in rest.
2a T
he wave vector k� in the interaction region has an
upper bound 1=Lmin. This is the fundamental assump-
tion of a finite possible resolution.
In a complete description, one would also expect the
metric to be a function of coordinates: this behavior is
simulated in the usual way by switching the interaction
on and off in the central region, which allows us to remain
in the momentum-space description. In this case, the met-
ric in the interaction region is not a function of the coor-
dinates. Since the Christoffel symbols are partial
derivatives of the metric, covariant derivatives reduce to
partial derivatives and the wave-equation takes the form

g���@���@�@�� � 0; (8)

which is solved by a superposition of modes of the form

uk � exp�i�k�x���; (9)

where k fulfils the dispersion relation

g���ik��k�k� � 0: (10)

Note that k� does not have a bound and that indeed both k�
and k� are still completely normal vectors. However, it is
immediately apparent that under a transformation on k�,
the quantity k� � g���k�k� will transform nonlinearly in k,
see also [15]. To preserve parity, g�� should be an even
function of k�, which also assures that no i’s appear in the
dispersion relation.

We will in the following refer to the dispersion relation
as being a modified dispersion relation (MDR) if

���k�k� � 0: (11)

Note, that this need not necessarily be the case for all
equations of the form (10). E.g. when the energy-
dependent metric is of the form g�� � f�k���� with
e do not consider explicit production of real or virtual
vitons, or black hole formation.
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some scaling function f, then the dispersion relation (10)
implies the standard dispersion relation.
III. EFFECTIVE DESCRIPTION

Instead of dealing with an energy-dependent metric as in
Eq. (10) the essence of the ansatz can also be captured by
starting with the nontrivial relation between the globally
conserved and the local quantities p � f�k�. This descrip-
tion has been widely used in the DSR literature, and in the
following possible interpretations of this approach are
examined.

The functional form of the unknown relation f�k� is
where knowledge from an underlying theory has to enter.
So far, the precise form of the function can not be derived.
However, the above mentioned general expectations allow
us to constrain the form of the function. Such is that the
Planck length acts as a minimal length Lmin � 1=mp in the
sense that structures can not be resolved to smaller dis-
tances. Note again, that this statement is reasonable only
for interaction processes since otherwise ’resolution’ is not
a meaningful concept.

It is nevertheless possible to construct a theory building
up on single particles when one carefully keeps track of its
meaning. E.g. the modified equation of motion Eq. (19)
effectively describes the gravitational interaction that the
particle would undergo when it comes close to a high com
energy. The single particle meaning therefore is a descrip-
tion of what property a single particle would need to have
in order to simulate the behavior of quantum gravitational
effects in the interactions. To make this really clear: The
right way to describe the strong gravitational effects would
be to include the appropriate quantized gravitational inter-
action, which is desirable but so far an unsolved problem.
Instead, we equip the point particle with an additional
property (k no longer linear to p) that in interactions
simulates effects that we expect from quantum gravity.

According to the above, this relation between momen-
tum p and wave vector k to be such that no matter how high
the energy of the particle gets, its wavelength can never
become smaller than the minimal length. As a translation
of 1a and 1b, The function p � f�k� therefore has to fulfill
the requirements:

1b F
-3
or energies much smaller than 1=Lmin the usual linear
relation is found.
2b F
or large energies, k asymptotically reaches 1=Lmin.
And for a well-defined relation we require
3 T
he function is invertible, i.e. it is monotonically
increasing.
Theories of this type have been examined in various
context as to their analytical structure and phenomenologi-
cal consequences [44–47]. The Lorentz transformations
acting on the wave vector in the collision region have to
respect the above three points. This means that for the
quantity k a deformed transformation is required which
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has an invariant minimal length Lmin or an invariant maxi-
mal energy scale mp, respectively.

We write the relation between momentum and wave
vector in the form p� � f��k�, which can be expanded in
a power series

f��k� � ���
�
k� �

X1
l�1

A�2l�1�
�
�1�2:::�2l�1

m2l
p

k�1
k�2

. . . k�2l�1

�

where it is taken into account that p is odd in k. A is a
rank-2l� 1-tensor with dimensionless coefficients that, in
accordance with the above point 2a, are constant with
respect to spacetime coordinates. Here, mp sets the scale
for the higher order terms. Theories of this type have
recently been investigated in [48].

The wave vectors k coincide with the momenta of the in-
or outgoing particles far away from the interaction region,
where spacetime is approximately flat g� �. We will
denote these asymptotic momenta by pi. Putting the inter-
action into a box and forgetting about it,

P
ipi is a con-

served quantity.4 The unitary operators of the Poincaré
group act as usual on the asymptotically free states. In
particular, the whole box is invariant under translations a�
and the translation operator has the form exp��ia�p��
when applied to �	.

In contrast to the asymptotic momenta p, the wave
vector k of the particle in the interaction region will behave
nontrivially because strong gravitational effects disturb the
propagation of the wave. In particular, it will not transform
as a standard (flat space) Lorentz-vector, and obey the
modified dispersion relation like Eq. (10). The action of
the Lorentz-group on states inside the interaction region
will be modified and has been examined e.g. in [13,14].
Though it is an important question to understand in which
way the local gravitational interaction modifies operators
of flat space QFT, it is for our further investigation not
necessary to deal with this issue.5

Under quantization, the local quantity k will be trans-
lated into a partial derivate. One now wants to proceed
from the single-k mode (9) to a field and to the operator
k̂� � �i@�. The corresponding momentum-operator p̂
should have the property

p̂ �vk � p�vk � f��k�vk; (12)

which is fulfilled by

p̂ � � f���i@�; (13)

since every derivation results in just another k. It is there-
fore convenient to define the higher order operator
4We assume that no additional explicit losses, e.g. in gravitons
occur.

5Note that an operator of the form exp��i~a�k��, where k is not
a Lorentz-vector leads to the conclusion that ~a is not a Lorentz-
vector either, and therefore requires some thought [15].
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	� � if���i@�: (14)

Since f is even in k, this operator’s expansion has only real
coefficients that are up to signs those of f�. Note that 	�

commutes with @�.
From this one can further define the operator ~� which

generates the wave-function Eq. (8)

~� � g���@��@�@� � 	�@�: (15)

This modified D’Alembert operator plays the role of the
propagator in the quantized theory. It captures the distor-
tion of the exchange-particles in the strongly disturbed
background.

It is convenient to use the higher order operator 	� in the
setup of a field theory, instead if having to deal with an
explicit infinite sum. Note, that this sum actually has to be
infinite when the relation p� � f��k� has an asymptotic
limit as one would expect for an UV-regulator. Such an
asymptotic behavior could never be achieved with a finite
power-series.

The higher order operator 	� fulfills the property (see
Appendix B)

���	� � � ��	���� � total divergence: (16)

This relation is essential for the usefulness of the operator
as it allows to shift derivatives in the derivation of the
equations of motion from a variational principle. In par-
ticular, the action for a scalar field6 takes the form

S �
Z

d4x
���
g
p

L; (17)

with

L � 	��@��: (18)

Using Eq. (16), one then derives the equations from the
usual variational principle to

	�@�� � 0: (19)

The stress-energy tensor is calculated in a similar way

T�� � @��@���
1

2
g��L: (20)

This quantity is conserved with respect to 	�, i.e.

	�T�� � 0: (21)

Note that it is not conserved with respect to @� � ���@�,
since one uses the equation of motion Eq. (19) for the
conservation law. This becomes clear when one inserts a
plane wave. Since is was assumed that the dispersion
relation is truly modified, it is ���k�k� � 0. Instead, the
relation needed for the stress-energy conservation is
g��k�k� � 0. On the other hand, the quantity T�� is
6For a discussion of the Dirac-equation, gauge fields, and
applications see e.g. [25,26].
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conserved with respect to @�, but it will involve the energy-
dependent metric from raising the indices in Eq. (20).

The calculus with the higher order operator 	� effec-
tively summarizes the explicit dealing with the infinite
series, as examined in [48].

Normalized solutions to the wave-equation Eq. (19) can
be found in the set of modes

vp�x� �
1������������������

�2��32E
p exp�ik�x

��; (22)

where �E; p� � f�k0; k�. These modes solve the equation
of motion when p fulfills the usual dispersion relation, or k
fulfills the MDR, respectively. Therefore, the interpretation
of k in a geometrical meaning as a wave vector is justified.
When imposing boundary conditions, one sees that the
relevant quantity is k and not p which makes it clear that
modifications will arise whenever one attempts to confine
the particle in a region of size comparable to the Planck
length. This, e.g. has consequences for the Casimir effect
[49,50] and for the evaporation of Planck-size black holes
[30,31].

According to the above discussion of the interaction
region, we can now examine the properties of the
S-matrix. The quantity we measure for ingoing and out-
going states of a collision is typically not the wavelength of
the particle but its ability to react with other particles. For
scattering processes, the quantity k therefore is a mere
dummy-variable that justifies its existence as a useful
interpretational device in intermediate steps, where it en-
ters through the propagator defined in Eq. (10). It is in
principle possible to calculate in k-space, however, even-
tually k can be completely replaced by the physical mo-
mentum p. It is important to note that from the
construction of the model, k-space has finite boundaries,
whereas the momentum space is infinite with a squeezed
measure at high energies that regulates the usually diver-
gent integration (see e.g. [26]).

In particular, the S-matrix is invariant under the standard
Lorentz transformation and conserves the sum of in- and
outgoing momenta. To see this, note that the unitary op-
erator of the Poincaré group that belongs to a Lorentz boost
� and a translation a acts on in- and outgoing states in
momentum space in the usual way

U��; a��	�p� � exp��a���p����	��p�: (23)

Therefore, the scattering matrix S � h��j��i transforms
according to7

Sp1;...;pn;p01;...;p
0
n
� S�p1;...;�pn;�p01;...;�p

0
n

exp��ia����p1��

� . . .� ��pn���� exp��ia����p01�� � . . .� ��p0n����:

(24)
7Further factors depend on the spin etc. and are not affected by
a, see e.g. [51].
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Since the left side is independent of a, so is the right side,
which is possible only if

�p1�� � . . .� �pn�� � �p
0
1�� � . . .� �p0n�� � 0; (25)

which remains a true statement under Lorentz boosts. The
total momentum of the in- and outgoing states therefore is
conserved in the standard way because these particles do
not experience strong gravitational effects in the asymp-
totic regions.

IV. OBSERVER INDEPENDENCE OF THE
MINIMAL LENGTH

The notion of a minimal length scale should be observer
independent. At first sight, this seems to be in conflict with
the standard Lorentz transformation since a boost would be
able to contract a minimal length further. However, one has
carefully to ask the right question. Consider two observers
related by a standard boost, each having a ruler of minimal
length in his rest frame. This is no contradiction as long as
both do not compare any quantity. The observer in the one
system can not actually ’see’ the length of the object in the
other system without probing it, which already involves an
interaction process.

Instead, one would ask both observers to perform the
same experiment and measure which results arise from
initial conditions they have both agreed on. Such might
be the ability to resolve smaller distances with larger
energy, the impossibility of which indicates the closeness
of Planck-scale fuzziness and should be equally impossible
for all observers. Observer independence states that the
outcome of such experiments has to be the same in all rest
frames. This reasonable expectation makes immediately
clear what consequences a model like the here discussed
can have and can not have.

Consider a reaction made by one observer which results
in a cross section 
 (Lorentz scalar) as a function of
varying com energy

���
s
p

(Lorentz scalar). Increasing
���
s
p

,
at com energy close to the Planck scale, the reaction will
stop probing smaller distances and the amplitude of the
process will become (asymptotically) constant. In case the
SM prediction was an increasing function, the modified
amplitude will be lowered in comparison, in case the SM
prediction was a decreasing function, the modified ampli-
tude will be raised in comparison. One might say in gen-
eral, the amplitude stagnates. Since the cross section
�

���
s
p
�

takes into account the phase space of the outgoing parti-
cles, it is exponentially suppressed at energies above the
Planck scale [25]. One can expect collider signatures to be
dominantly visible in the s-channel at large momentum
transfer t.

However, if such a cross section has a typical com
energy

�����
s0
p

at which it has a sudden increase (crossing of
reaction threshold), this threshold—being a Lorentz sca-
lar—is the same for both observers. In particular, a reac-
tion threshold that has been observed in a laboratory on
-5
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earth to occur at a certain com energy, will in every inertial
frame take place at the same com energy unless observer
independence is explicitly violated.

Within the here discussed model, one expects a devia-
tion of the cross section relative to the SM result, when the
com energy for the reaction gets close to the Planck scale
(or a new lowered fundamental scale). This however, is
certainly not the case, e.g. for the recently examined photo-
pion production with a threshold of �1 GeV that has been
examined in earth’s laboratories for decades. A modifica-
tion of the threshold for photopion production, which has
been proposed to explain the nonobservation of the GZK-
cutoff [2], therefore is only possible when observer inde-
pendence is violated. Indeed, one could use exactly this
threshold to distinguish observers.8 In the here presented
approach, the threshold occurs at the same com energy in
all reference frames, and thus the GZK-cutoff remains
unmodified. This is due to the invariance of the cross
section under a boost from the com frame of the earth
experiment to that of the cosmic ray interaction for the
same

���
s
p

(see also Appendix).
Nevertheless, it is possible to find modifications from

phenomenological quantum gravity in processes where
there is a natural candidate for a special reference frame.
E.g. a long-distance propagation of particles through the
CMB might reflect in a modified dispersion relation. In
such a case, the particle constantly propagates through an
interaction region and therefore the MDR applies. Even
though the modification of the particle’s propagation are
tiny, they can add up over a long travel distance. An
observable that has recently been investigated in this con-
text as to its possibility to reveal such quantum gravita-
tional effects is the time of flight or HBT [32] for �-rays
from far away sources. In case the MDR predicts a varying
speed of light, the time of flight can depend on the energy
of the photon which could become detectable with GLAST
[52].

Also, the meaning of quantum mechanics within the
above introduced framework becomes accessible using
this interpretation. From a nonlinear relation k�p�, it fol-
lows that the uncertainty principle is generalized to

�x̂; p̂� � �i
@p
@k
) �p�x 


1

2

��������
�
@p
@k

���������: (26)

In quantum mechanics, the interaction is not quantized but
we describe a particle in a potential or with boundary
conditions, respectively. Here, the potential plays the role
of a background field and sets the scale for the effects to
become important. In such a scenario, the energy levels of
the hydrogen atom and the spectrum of the harmonic
8One could achieve such a scenario by allowing a ’scalar’ to
depend on the boost-parameter. By this, it becomes possible to
shift reaction thresholds. However, by doing so one has intro-
duced a label to distinguish between observers through the value
of that scalar.
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oscillator have been investigated [25,53–55], and also
the gyromagnetic moment (precision in a strong magnetic
background field) of the muon [56] receives corrections
already at the quantum mechanical level.

Based on this, it is now possible to understand multi-
particle bound states. Such a bound state of several parti-
cles with small rest masses can eventually have a total mass
higher than the Planck mass. Assuming that the gravita-
tional interaction of the bound particles is weak, quantum
gravitational effects are negligible and the system can be
described within the standard QFT. Most importantly, it
will be boosted according to the standard Lorentz trans-
formation like the free single particle (free from gravita-
tional as well as SM interactions). There is no region of
gravitationally strong interacting particles that would re-
quire modifications. One might however probe such a
bound system by using a high energetic beam in a
Rutherford-like experiment. One would then again find a
limit to the resolution of the internal structure of the bound
system.
V. DEFORMED SPECIAL RELATIVITY

From the above discussion it is now apparent that there
are two conceptually different ways to include a minimal
length scale into the QFTs of the SM and to obtain an
effective model. The model discussed here leaves the trans-
formation of the free single particle unmodified since for
such a particle there is no natural scale which could be
responsible for quantum gravitational effects to become
important.

Starting from an effective description in terms of a
modified dispersion relation in the interaction region, we
have shown in how far this model is a reasonable candidate
to describe strong gravitational effects in interactions. It
has a clear interpretation for energy and momentum of the
participating particles, and it does not suffer from the
soccer-ball problem. As has been shown previously, the
model has an ultraviolet regulator and modified Feynman
rules can be derived [26]. This becomes possible by care-
fully asking what observables we investigate. Interestingly,
it has also been previously mentioned that the arising
problems in DSR might be resolved by reconsidering the
measurement process [57].

It is however also possible to start with a modification of
the Lorentz transformation for a free single particle and
construct a QFT based on this. For this, one assumes that
the free particle itself experiences the Planck mass as an
upper bound on the energy scale.9

Such a DSR is a nonlinear representation of the Lorentz-
group [13,24,58], which can be cast in a form similar to the
9Since we have assumed that the rest mass of the particle is
much smaller than the Planck mass, this can not be the particle’s
own energy and leads back to the question of the measurement
process.
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above used by introducing variables that transform under
the usual representation of the Lorentz-group, P � ��;��,
and a general map F to the variables that then obey the new
deformed transformation law P � F�P �. However, due to
the different interpretation of the free particle’s quantities,
the ’pseudovariable’ P is not the one identified with the
physical four momentum. Instead, energy and momentum
of the in- and outgoing particles are identified with those
that have the deformed transformation behavior.

As it has turned out over the last years, such attempts
result in serious conceptual problems, the most important
being the question of which quantities are conserved in
interactions and the soccer-ball problem. Recently, impor-
tant progress has been made as to how these models can be
put on a solid base [48,59,60] though the situation is not yet
completely satisfactory and open questions remain
[11,57,61].

From the present day status, it is not possible to decide
which is the right description of nature. One might how-
ever lean on results from promising theories of quantum
gravity and examine e.g. the question in how far loop
gravity [38,39] or string theory have a minimal length.
Though the appearance of a finite resolution in string-
scattering has been examined [62–65], it remains to inves-
tigate in how far this is compatible with the DSR-
description of the point-particle limit of interaction pro-
cesses, or whether a DSR can be accommodated in string
theory [66].

One should also keep in mind that these two mentioned
approaches with a DSR might not be the only possibilities
to include a minimal length into QFT. Another option
might be to start with a modification of the interaction at
smallest distances itself, and it is not a priori clear whether
this can always be described in terms of the here discussed
model10 or whether a more general approach is necessary.
VI. CONCLUSIONS

We have investigated an effective description of particle
interactions in the presence of strong gravitational effects.
As a phenomenological description of quantum gravity, we
have motivated the use of a modified dispersion relation,
and we have interpreted the arising picture of the interac-
tion process. Further, we have argued that a fundamental
minimal resolution is an observer independent statement
even though a free particle might still transform under
standard Lorentz transformations. We have shown that in
this case, the model has a clear interpretation for the
conserved quantities and for the behavior of multiparticle
states. Based on this, we distinguished two conceptually
different approaches towards a quantum field theory with a
minimal length, depending on the treatment of the non-
interacting single particle.
10I thank Steve Giddings for bringing this into my attention.
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APPENDIX A

The threshold for a proton with four momentum p �
�E; ~p� and a photon with four momentum p� � ���; ~p�� to
produce a pion is given by the requirement that the total
energy s � �p� p��2 has at least to yield the rest masses
of a produced pion m� and of the outgoing proton mProt:

s 
 �m� �mProt�
2: (A1)

A map like the above introduced f orF from quantities that
transform under the usual Lorentz transformation to those
that obey the deformed transformation law, leaves a
Lorentz scalar a Lorentz scalar (though these can differ
by a factor which then necessarily is a constant, see also
[59]). Applying such a map to Eq. (A1) will therefore leave
the inequality valid for all inertial systems.

However, within the DSR-approach, the nonlinear trans-
formation law for the ’physical’ momenta spoils the
Lorentz-invariance of this equation. Assuming that the
single particle momenta transform according to the new
transformation, the additive quantity s does not remain a
Lorentz-scalar, which should be really carefully investi-
gated as to whether it actually still allows observer
independence.

APPENDIX B

Let us start with examining an nth-order differential
operator D�n� of the form

D �n� � b�1b�2 . . . b�n@�1
@�2

. . . @�n (B1)

Then one finds for some functions g and h

�D�n�h�g � b�1b�2 . . . b�n�@�1
@�2

. . .@�nh�g

� @�1
�b�1b�2 . . . b�n�@�2

. . . @�nh�g�

� �b�2 . . . b�n@�2
. . .@�nh��b

�1@�1
g�

� t:d:� �b�2 . . . b�n@�2
. . .@�nh��b

�1@�1
g�;

where ’t.d.’ means ‘‘total divergence’’ and is of the form
���@�A�. Repeat this step n� 1 times to obtain

�D�n�h�g � ��1�nh�D�n�g� � t:d:: (B2)

The operator 	� is of the form

	� � ���
�
@� �

X1
l�1

��2l�1�
�

M2l D�2l�1�

�
; (B3)
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where the higher order contributions start with order 3 in
agreement with the above observation that the series has
only odd contributions. It is understood that the dimen-
sionless coefficients b in Eq. (B1) of the D�2l�1�-operators
can depend on l and can be translated in the a coefficients
of Eq. (14). Inserting into Eq. (16) gives

���	
� � � ������@� �

� ���
X1
l�1

��2l�1�
�

M2l ���D
�2l�1� �:
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The first part is the usual part, the second part can be
rewritten with Eq. (B2) to

���	
� � � �����@���� �

X1
l�1

��2l�1�
�

M2l �D
�2l�1���� 

� t:d: (B4)

and rearranging finally results in Eq. (16). It is worth noting
that this does only work when only even powers of the
operators D�n� appear.
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