
PHYSICAL REVIEW D 73, 105012 (2006)
Composite non-Abelian flux tubes inN � 2 SQCD
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Composite non-Abelian vortices in N � 2 supersymmetric U�2� SQCD are investigated. The internal
moduli space of an elementary non-Abelian vortex is CP1. In this paper we find a composite state of two
coincident non-Abelian vortices explicitly solving the first-order Bogomolny, Prasad and Sommerfield
equations. Topology of the internal moduli space T is determined in terms of a discrete quotient CP2=Z2.
The spectrum of physical strings and confined monopoles is discussed. This gives indirect information
about the sigma model with target space T .
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I. INTRODUCTION

The Abrikosov vortex, also often referred to as the
Abrikosov-Nielsen-Olesen (ANO) flux tube or the ANO
string, was one of the first important topological defects
discovered in field theory [1]. It was also one of the first
Bogomolny completion examples [2] which was later re-
interpreted in a supersymmetric setting as a Bogomolny,
Prasad and Sommerfield (BPS) soliton [3]. BPS saturation
of the flux-tube-type solitons, such as the ANO string, is
due to the �12 ;

1
2� central charge [4] in the underlying

superalgebra.
The ANO string has two translational moduli character-

izing the position of the string center in the perpendicular
plane. In the supersymmetric case they are accompanied by
two supertranslational moduli. The effective low-energy
theory on the world sheet of the ANO string is trivial; it is a
free field theory of two bosonic moduli.

In recent years it was realized that N � 2 U�N� super-
symmetric quantum chromodynamics (SQCD) with the
Fayet-Iliopoulos (FI) term supports a rich spectrum of
BPS solitons such as domain walls, ZN and non-Abelian
strings, monopoles, and their junctions, including boojums
(for recent reviews see [5,6]). In particular, the issue of
BPS ZN strings was thoroughly discussed and non-Abelian
strings discovered and analyzed [7–17]. (Abelian ZN
strings were studied previously in [18].)

In the theory with the U�N� gauge group and Nf � N
flavors the solution for the elementary vortex displays, in
turn, a rich structure: there are color-flavor locked zero
modes for the soliton solution, and the resulting reduced
moduli space is

M � CPN�1:

As discussed in Refs. [10,11] this property allows one to
directly connect the vortex solitons in the four-dimensional
U�N� gauge theory with the CPN�1 sigma model in two
dimensions. Moreover, the kink of the �1� 1�-dimensional
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theory is interpreted as a BPS confined monopole located
at the junction of two magnetic strings [9–11].

In the U�N� SQCD the ANO string is not minimal. The
tension of a ‘‘minimal’’ string is 1=N-th of that of the
Abrikosov string. In particular, in the U�2� model, on
which we will focus below, the minimal string tension is
2�� while the ANO string tension is 4�� where � is a
Fayet-Iliopoulos parameter (assumed to be positive). Then
it is natural to think of the ANO string as of composite
object built of two minimal strings. The question we will
address in this paper is the construction of BPS composite
flux tubes. We will limit ourselves to 2-strings, introduce
an appropriate ansatz, and obtain, by a direct calculation, a
six-parametric family of solutions.

The Abrikosov string has only trivial translational mod-
uli. At the same time, if we consider two parallel minimal
(non-Abelian) strings at a distance R from each other, they
are noninteracting because of their BPS nature, and, if R is
large, we are certain that the configuration is characterized
by four internal moduli, in addition to two moduli which
have the meaning of the relative distance between the
minimal strings. Thus, the reduced moduli space is six
dimensional. How can one recover the Abrikosov string?

A constructive answer to this question will be given
below. The Abrikosov string will be shown to be repre-
sented by a singular point on the moduli space of the 2-
string.

In the general case, the dimension of the k-string moduli
space was calculated [7] through the index theorem, � �
2kN. This result has a clear-cut interpretation: if the ele-
mentary vortices are taken at large separations, the moduli
space factorizes into k copies of CPN�1 plus the positions
of the elementary strings in the perpendicular plane; each
elementary string has two coordinates parametrizing its
center. Once the number of the collective coordinates is
established at large separations, it stays the same at arbi-
trary separations. No potential can be generated on the
moduli space because of ‘‘BPS-ness.’’ In this respect the
situation is similar to the BPS nonminimal ANO strings:
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the force due to the gauge boson exchange is canceled by
the force due to the scalar Higgs fields, as can be checked
by a direct calculation.

A general analysis of the geometry of the six-
dimensional moduli space of the 2-string, from a brane
perspective, was carried out in [7,19]. It will be briefly
reviewed in Sec. VI B.1

Our task is different: explicit construction of a family of
the 2-string solutions parametrized by a number of collec-
tive coordinates. Unfortunately, we could not find a generic
solution with eight collective coordinates. In this paper we
present a six-parametric BPS solution for the 2-string
corresponding to the vanishing distance R between the
elementary strings. Besides trivial translations, four other
collective coordinates present in our solution have the
meaning of orientation in the SU�2� group space. They
will be referred to as internal moduli, the corresponding
moduli space being denoted by T . Thus, we construct a
four-dimensional cross section of the six-dimensional re-
duced moduli space (the reduced moduli space is obtained
from the full moduli space by factoring out overall
translations.)

We find that the moduli space T is given by a quotient

T � CP2=Z2: (1)

This result has a subtle distinction compared to the analysis
of Ref. [19], where the moduli space of two coincident
strings was found to be CP2. Our arguments supporting (1)
are collected in a systematic manner at the end of
Sec. VI B.

While the metric of the 1-string sigma model is fixed by
symmetry arguments (it is the homogeneous metric in CP1

due to the SU�2�C�F group; see below), the metric on the 2-
string moduli space is a much more complex object. In this
issue we limit ourselves to a general remark (Sec. VI),
leaving this problem essentially open.

On the other hand, the spectrum of confined monopoles
can be found in the Abelian limit �m� �. If we assume
that the spectrum of confined monopoles does not change
with �, as was the case for 1-strings [10], we get an indirect
information on the sigma model with the target space T .

The paper is organized as follows. In Sec. II we briefly
review our basic bulk theory, with the gauge group U�2�,
two flavors, and the Fayet-Iliopoulos term. Versions of this
theory were consistently used as a laboratory for various
BPS solitons in the last few years. In Sec. III we summarize
aspects of the Abelian strings supported by the bulk theory
under consideration. Section IV is devoted to non-Abelian
elementary 1-strings. In Sec. V we thoroughly discuss the
2-string solution. Our basic ansatz is introduced in
Sec. V B. We assemble BPS equations in Sec. V C. The
1More precisely, in Ref. [19] the composite 2-string was
studied through modeling the system in terms of string-theoretic
D-branes in the Hanany-Witten approach [20]. The emphasis of
[19] was on scattering. See also Note added.
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numerical solution for the profile functions is presented in
Sec. V E, while the physical interpretation of the solution
obtained is discussed in Sec. V F. We turn to the discussion
of geometry of T in Sec. VI. The issue of confined
monopoles is addressed in Sec. VII. We summarize con-
clusions in brief in Sec. VIII. Appendixes A and B deal
with the zero modes of the (1,1) and (2,0) strings,
respectively.

II. THE BASIC SETUP AND THE LAGRANGIAN

The bulk theory we work with is a U�2� gauge theory
with N � 2 supersymmetry and with Nf � 2 matter hy-
permultiplets and a Fayet-Iliopolous term � for the U�1�
factor. The following conventions are used:

r� � @� � i
�a

2
Aa� �

i
2
A0
�; A� �

�a

2
Aa� �

1

2
A0
�:

(2)

The bosonic fields of the theory are the U�2� gauge field, a
zero charge scalar a, a complex adjoint scalar aa (a �
1; 2; 3), and the fundamental scalars QkA and � ~Qy�kA where
k � 1, 2 is the color index of the SU�2� gauge subgroup
and A � 1, 2 is the flavor index. We can write these last
two fields as 2� 2 matrices in the color-flavor indices Q
and ~Qy. The parameters of the theory are the gauge cou-
plings e0 and e3, the mass parameters mA for each flavor,
and the Fayet-Iliopoulos term �. We can always consider
the case in which the masses mA are real, while � will be
assumed to be positive. Non-Abelian flux tubes emerge in
the limit m1 � m2. It is convenient to start from m1 � m2

(but keeping j�mj 	 jm1 �m2j 
 jm1;2j), in which case
we will deal with Abelian strings, and then proceed to the
limit m1 � m2.

The bosonic part of the Lagrangian is

L �
Z
d4x

�
1

4e2
3

jFa��j
2 �

1

4e2
0

jF��j
2 �

1

e2
3

jD�a
aj2

�
1

e2
0

j@�aj2 � Tr�r�Q�y�r�Q� � Tr�r� ~Q�

� �r� ~Qy� � V�Q; ~Q; aa; a�
�

(3)

where the potential V is the sum of D and F terms,

V �
e2

3

8

�
2

e2
3

�abc �abac � Tr�Qy�aQ� � Tr� ~Q�a ~Qy�
�

2

�
e2

0

8
�Tr�QyQ� � Tr� ~Q ~Qy� � 2��2

�
e2

3

2
jTr� ~Q�kQ�j2 �

e2
0

2
jTr� ~QQ�j2

�
1

2

X
A

j�a� �bab �
���
2
p
mA�QAj

2

� j�a� �bab �
���
2
p
mA� ~QyAj

2: (4)
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FIG. 1. Lattice of �p; k� vortices.
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Now, let us discuss the vacuum structure of our theory. The
adjoint field vacuum expectation values (VEVs) are

hai � �
���
2
p m1 �m2

2
;

ha3i � �
���
2
p m1 �m2

2
� 0; if �m � m1 �m2 � 0:

(5)

If m1 � m2, the gauge symmetry is broken to U�1�2 by
the VEVof the adjoint field. Below we will consider mostly
the case �m � 0 when the gauge group is not broken
by the condensation of the adjoint field a3. The VEVs of
the squark fields are

h ~Qi � 0; hQi �
���
�

p 1 0
0 1

� �
: (6)

The vacuum expectation value of hQi completely breaks
the gauge symmetry, so that all gauge bosons acquire
masses in the bulk.

Note that if �m � 0, although both gauge and flavor
groups are broken by the quark condensation, the global
diagonal subgroup of the product of the gauge and flavor
groups remains unbroken [21]. We call it SU�2�C�F. Its
action on the quark fields is given by

Q! UQU�1; (7)

where the matrix U on the left corresponds to the global
color rotation while the matrix U�1 on the right is asso-
ciated with the flavor rotation. This mechanism is called
color-flavor locking.

With two matter hypermultiplets, the SU�2� part of the
gauge group is asymptotically free, implying generation of
a dynamical scale �. If descent to � were uninterrupted,
the gauge coupling e2

3 would explode at this scale.
Moreover, strong coupling effects in the SU�2� subsector
at the scale � would break the SU�2� subgroup through the
Seiberg-Witten mechanism [22,23]. Since we want to stay
at weak coupling we assume that���

�
p
� �: (8)

This guarantees that the masses of all gauge bosons in the
bulk are much larger than �.
III. ABELIAN STRINGS

Let us start from �m � 0. In this case the SU�2� �U�1�
group is broken to U�1� �U�1� by the VEV of the adjoint
scalar field a3; see Eq. (5). Therefore, we have a lattice of
Abelian strings labeled by two integers �p; k� associated
with winding with respect to two U�1� factors. BPS strings
in the theory (3) were studied in [24]. Here we briefly
review the main results of this paper.

The charges of the �p; k� strings can be plotted in the
Cartan plane of the SU�3� algebra. This is because our
SU�2� �U�1� gauge theory can be considered as a theory
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with the SU�3� gauge group broken down to SU�2� �U�1�
at some high scale. Possible �p; k� strings form a root
lattice of the SU�3� algebra [24]. This lattice is shown in
Fig. 1. The vertical axis on this figure corresponds to
charges with respect to the U�1� gauge factor of the
SU�2� �U�1�, while the horizontal axis is associated
with the �3 generator of the SU�2� factor.

Two strings (1,0) and (0,1) are ‘‘elementary’’ or minimal
BPS strings. They are often called Z2 strings. All other
strings can be considered as bound states of these elemen-
tary strings. If we plot two lines along the charges of these
elementary strings (see Fig. 1) they divide the lattice into
four sectors. It turns out [24] that the strings in the upper
and lower sectors are BPS but they are marginally unstable.
On the contrary, the strings lying in the right and left
sectors are (meta)stable bound states of the elementary
ones; they are not BPS saturated.

The adjoint fields play no role in the string solutions.
They are equal to their VEVs (5). The same is true for the
~Q quark: it vanishes on the string solution, which is con-
sistent with the equations of motion. Hence, the relevant
part of the Lagrangian takes the following form:
L!
Z
d4x

�
1

4e2
3

jFa��j2 �
1

4e2
0

jF��j2 � Tr�r�Q�y�r�Q�

�
e2

0

8
�Tr�QyQ� � 2���2 �

e2
3

8
�Tr�Qy�aQ��2

�
: (9)
This gives us an expression for the tension which, in the
Bogomolny-completed form [2], can be written as (the
indices i; j � 1; 2 run over the spatial coordinates on
the plane perpendicular to the string direction):
-3



FIG. 2. Lattice of possible Abelian vortices. In the non-
Abelian case m1 � m2 � m, there is a moduli space interpolat-
ing between different elements of the lattice.
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T �
Z
d2x

�X3

a�1

�
1

2e3
F�a�ij �

e3

4
Tr�Qy�aQ��ij

�
2

�

�
1

2e0
Fij �

e0

4
�Tr�QyQ� � 2���ij

�
2

�
1

2
jriQ

A � i�ijrjQ
Aj2 � � ~F

�
: (10)

Equating the non-negatively-defined terms in the square
brackets to zero gives us the first-order equations for the
BPS strings. Then the last term in Eq. (10) gives the string
tension. The ansatz used to find an explicit solution for the
�p; k� string is

Q �
���
�

p eip’�1�r� 0

0 eik’�2�r�

 !
;

A3
i � �

�ijxj
r2 ��p� k� � f3�r�;

A0
i � �

�ijxj
r2 ��p� k� � f�r�;

(11)

where ’ and r are polar coordinates in the perpendicular
(1,2) plane. The string axis is assumed to coincide with the
z axis.

Now, using the ansatz above, the first-order equations
can be written for the profile functions �1, �2, f, f3

[8,10,24], namely

r
d

dr
�1�r� �

1

2
�f�r� � f3�r���1�r� � 0;

r
d

dr
�2�r� �

1

2
�f�r� � f3�r���2�r� � 0;

�
1

r
d

dr
f�r� �

e2
0

6
��1�r�2 ��2�r�2 � 2�� � 0;

�
1

r
d

dr
f3�r� �

e2
3

2
��1�r�2 ��2�r�2� � 0:

(12)

Furthermore, one needs to specify the boundary conditions
which would determine the profile functions in these equa-
tions. It is not difficult to see that the appropriate boundary
conditions are

f3�0� � p� k; f�0� � p� k;

f3�1� � 0; f�1� � 0
(13)

for the gauge fields, while the boundary conditions for the
squark fields are

�1�1� �
���
�

p
; �2�1� �

���
�

p
;

�1�0� � 0; �2�0� � 0:
(14)

Numerical solutions to the first-order equations (12) for the
(0,1) and (1,0) elementary strings were found in Ref. [8].
Numerical solutions for (2,0), (1,1), and (0,2) 2-strings will
be presented in Sec. V E.
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The tension of the �p; k� string is given by the boundary
term in (10). We get

Tp;k � 2���p� k�: (15)
IV. NON-ABELIAN 1-STRING

In this section we review the elementary non-Abelian 1-
vortex solution which is associated with the elementary
(1,0) and (0,1) Abelian strings and emerges in the limit
�m � 0 [8,10]. If �m � 0 the VEV of the adjoint scalar
field a3 does not break the gauge group SU�2�. The rele-
vant homotopy group in this case is the fundamental group

�1

�
SU�2� � U�1�

Z2

�
� Z: (16)

This means that the �p; k�-string lattice reduces to a tower
labeled by a single integer

n � p� k;

see Fig. 2. Note that the tension of all �p; k� strings with
given n are equal; see Eq. (15).

For instance, the �1;�1� string becomes classically un-
stable (no barrier). On the SU�2� group manifold it corre-
sponds to a winding along the equator on the sphere S3.
Clearly this winding can be shrunk to zero by contracting
the loop toward the north or south poles of the sphere [25].
On the other hand, the elementary (1,0) and (0,1) strings
cannot be shrunk. They correspond to a half-circle winding
along the equator. The (1,0) and (0,1) strings form a
doublet of the residual global SU�2�C�F.

A remarkable feature of the (1,0) and (0,1) strings is the
occurrence of non-Abelian moduli which are absent for the
Abelian ANO strings. Indeed, while the vacuum field (6) is
invariant under the global SU�2�C�F [see Eq. (7)], the
string configuration (11) is not. Therefore, if there is a
solution of the form (11), there is in fact a two-parametric
-4
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family of solutions obtained from (11) by the combined
global gauge-flavor rotation.

In particular, for (1,0) this gives

QkA �
���
�

p
U

ei’�1�r� 0

0 �2�r�

 !
U�1

�
���
�

p
e�i=2�’�1�na�a�U

�1�r� 0

0 �2�r�

 !
U�1;

Ai�x� � U
�
�
�3

2
�ij
xj
r2 �1� f3�r�

�
U�1

� �
1

2
na�a�ij

xj
r2 �1� f3�r�;

A0
i �x� � ��ij

xj
r2 �1� f�r�;

(17)

where the unit vector na is defined by

U�3Uy � na�a; a � 1; 2; 3: (18)

Now it is particularly clear that this solution smoothly
interpolates between the (1,0) and (0,1) strings: if n �
�0; 0; 1� the first-flavor squark winds at infinity while for
n � �0; 0;�1� it is the second-flavor squark.

Since the SU�2�C�F symmetry is not broken by the
squark vacuum expectation values, it is physical and has
nothing to do with the gauge rotations eaten by the Higgs
mechanism. The orientational moduli na are not gauge
artifacts. To see this it is instructive to construct gauge-
invariant operators which have explicit na dependence.
Such a construction is convenient in order to elucidate
features of our non-Abelian string solution as well as for
other purposes.

As an example, let us define the ‘‘non-Abelian’’ field
strength,

~F a �
1

�
Tr
�
QyF�b3

�b

2
Q�a

�
; (19)

where F�k � 1=2"kijFi;j (i; j; k � 1; 2; 3) and the subscript
3 marks the z axis, the direction of the string. From the very
definition it is clear that this field is gauge invariant.2

Moreover, Eq. (17) implies that

~F a � �na
��2

1 ��
2
2�

2�
1

r
df3

dr
: (20)

From this formula we readily infer the physical meaning
of the moduli na: the flux of the color-magnetic field3 in
the flux tube is directed along na. For strings in Eq. (11) the
color-magnetic flux is directed along the third axis in the
SU�2� group space, either upward or downward. It is just
2In the vacuum, where the matrix Q is that of VEVs, ~F a and
F�a3 would coincide.

3Defined in the gauge-invariant way; see Eq. (19).
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this aspect that allows us to refer to the strings above as
‘‘non-Abelian.’’

The internal moduli space of the vortex4 is given by the
symmetry group upon performing a quotient with respect
to the unbroken part [in this case, the U�1� subgroup
generated by �ana],

~M � SU�2�=U�1� � CP1 � S2: (21)

The vector na is the coordinate in the moduli space ~M.
An effective low-energy �1� 1�-dimensional theory for

the vortex zero modes can be readily written [7,8,10]. It
turns out to be an N � 2 CP1 sigma model with the
standard homogeneous metric. This is because all non-
translational zero modes for the system are generated by
the symmetry SU�2�C�F.

We will see that this is not the case for 2-strings which,
indeed, have additional zero modes not directly associated
with the symmetry of the Lagrangian. As it often happens,
BPS solutions with higher topological charges have more
symmetry than the underlying Lagrangian.
V. NON-ABELIAN 2-STRING

A. Preliminary remarks

If m1 � m2 we return to the Abelian string situation.
The only solutions to Eqs. (11) at level two (i.e. with n �
p� k � 2) are the (2,0), (1,1), and (0,2) strings. In the
non-Abelian case (�m � 0) we have the whole moduli
space of solutions, with (2,0), the (1,1) and the (0,2) strings
being represented by particular points on this moduli
space.

Let us first consider two parallel elementary strings at a
large separation, R � R1 � R2 ! 1. As soon as two
strings do not interact in this limit we conclude that the
dimension of the moduli space of this configuration is
eight, twice the dimension of the moduli space of each
individual vortex. Two collective coordinates in this mod-
uli space correspond to the overall translations in the (1,2)
plane, two other collective coordinates correspond to rela-
tive separations R, while the other four coordinates are
associated with the internal moduli space. At large R the
internal moduli space is CP1 � CP1 (up to a discrete
quotient; see Sec. VI), described by two orientational
vectors na1 and na2 of the two constituent strings. Note
that as soon as strings are BPS objects their interaction
potential vanishes, and the effective �1� 1�-dimensional
theory on the string world sheet is a (classically) massless
sigma model.

In this paper we obtain the 2-string solution at zero
separation, R � 0, when both constituent strings are lo-
4In this case it coincides with the reduced moduli space
obtained from the full moduli space by removing overall
translations.
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cated at the same point in the (1,2) plane, i.e. they are
coaxial. By continuity we expect that the internal moduli
space is still four dimensional.

Obtaining the four-parametric family of solutions is a
serious problem. Suppose we start from the (2,0) string
solution [see (11) with p � 2, k � 0] and apply rotation
(7) to this solution. Then we generate only a two-
dimensional CP1 moduli space of solutions. In particular,
this transformation interpolates only between the (2,0) and
(0,2) strings.

Moreover, the (1,1) string imposes even a more severe
problem. The non-Abelian gauge potential is zero for this
solution, and the matrix Q is diagonal; see Eq. (11) at p �
k � 1. Therefore, the rotation (7) acts on this solution
trivially generating no internal moduli space at all. This
can be viewed as a naive embedding of the Abrikosov
string.

Below we find the solution for the non-Abelian 2-string
at R � 0 by explicitly solving the first-order BPS equa-
tions. We show that the internal moduli space is four
dimensional, as was expected. The family of solutions is
described by four parameters, one of them, �, being the
angle between two orientational vectors na1 and na2 of two
constituent strings. At � � 0 and � � � the internal mod-
uli space develops singular throats, effectively reducing its
dimension. At � � 0 it becomes CP1 [the (2,0)/(0,2)
string] while for � � � [the (1,1) string] it shrinks to a
point.

Our solution interpolates between all three Abelian
strings: (2,0), (0,2), and (1,1). To describe this solution
we introduce new profile functions which will depend on
the polar coordinate r and, as a parameter, on the relative
angle �. The general BPS equations for the 2-string are
then formulated in terms of these profile functions. Finding
them at arbitrary � is a rather complicated calculation. We
perform an explicit analysis only near particular points
corresponding to the (2,0) and (1,1) vortices (presented
in Appendixes A and B).
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B. The ansatz

Our 2-string solution is parametrized by two vectors, ~n1

and ~n2. The following expression is used for Q:

Q �
���
�

p
	�r�U1

z1�r�ei’ 0
0 1

� �
U�1

1 U2
z2�r�ei’ 0

0 1

� �
U�1

2 ;

(22)

where

U1�3U
y
1 � na1�a; U2�3U

y
2 � na2�a; (23)

and 	, z1, z2 are functions of the radial coordinate r and
angle � between two vectors n1 and n2. Taking U1 �
U2 � UG the global orientational zero modes are obtained.
In order to study nontrivial � dependence we can take

~n 1 � �0; 0; 1�; ~n2 � �sin�; 0; cos��; (24)

with 0 � � � � (see Fig. 3). Once the solution parame-
trized by the single parameter � is found we can recover
the general solution, making a global rotation UG. In
particular, the functions 	, z1, z2 depend only on the
relative angle � between ~n1 and ~n2 and not on the global
orientation of the 2-string.

The particular choice (24) gives the following expres-
sion for Q:

Q �
���
�

p
	
z1ei’ 0

0 1

� �
U

z2ei’ 0
0 1

� �
U�1; (25)

where

U
z2e

i’ 0
0 1

� �
U�1 �

�z2ei’ � 1�

2
1�
�z2ei’ � 1�

2
� ~� � ~l�

(26)

and

~l � �sin�; 0; cos��: (27)

A more explicit expression for Q has the form
Q �
���
�

p
	
�cos2 �

2�e
2i’z1z2 � �sin2 �

2�e
i’z1

sin�
2 �e

2i’z1z2 � ei’z1�
sin�

2 �e
i’z2 � 1� �cos2 �

2� � �sin2 �
2�e

i’z2

 !
; (28)

where ’ is the polar angle. The BPS equations are

�r1 � ir2�Q � 0; (29)

which can be identically rewritten as

A1 � iA2 � �i�@1Q� i@2Q�Q�1: (30)

Substituting the ansatz (25) in this expression gives us the form of the gauge fields. The result of a rather tedious calculation
is
-6
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�i�@1Q� i@2Q�Q
�1 � iei’

�
2

r
� 2

	0

	
�
z01
z1
�
z02
z2

�
1� iei’

�
1� cos�

r
�
z01
z1
� cos�

z02
z2

�
�3

� ei’�sin��
�
1

r
�
z02
z2

��
i
z2

1 � 1

2z1
�cos’� �

z2
1 � 1

2z1
�sin’�

�
�1

� ei’�sin��
�
1

r
�
z02
z2

��
�i

z2
1 � 1

2z1
�sin’� �

z2
1 � 1

2z1
�cos’�

�
�2: (31)
In order to satisfy Eq. (30) we choose the following gauge
potentials:

A0
�i� � �

�ijxj
r2 �2� f�;

A3
�i� � �

�ijxj
r2 ��1� cos�� � f3�;

A1
�i� � �

�ijxj
r2 �sin���cos’��1� g� �

xi
r2 �sin���sin’�h;

A2
�i� � �

�ijxj
r2 �sin���sin’��1� g� �

xi
r2 �sin���cos’�h:

(32)

To facilitate reading, let us summarize here our set of
profile functions. The set includes

	; zi�i � 1; 2�; f; f3; g; h: (33)

Now we calculate the field strength tensor

F�� � @�A� � @�A� �
i
4
�Aa��a; Ab��b: (34)

Note that the commutator term does not vanish now, while
in the 1-string case it was zero. Technically this is a very
important distinction.

The only nonvanishing component of the field strength is
Fa�12�, namely,

F0
�12� � �

f0

r
;

F3
�12� � �

f03
r
�
�1� g�h�sin��2

r2 ;

F1
�12� � �cos’��sin��

�
�
g0

r
�

cos�� f3

r2 h
�
;

F2
�12� � ��sin’��sin��

�
�
g0

r
�

cos�� f3

r2 h
�
:

(35)
FIG. 3 (color online). It is always possible to align ~n1 with the
�3 axis and put ~n2 on the �3–�1 plane. The angle between ~n1 and
~n2 is �. A global SU�2�C�F rotation introduced three extra
angles.
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C. The BPS equations

The full set of the BPS equations we will deal with are

~Fa�3� �
e2

3

2
Tr�Qy�aQ� � 0;

~F0
�3� �

e2
0

2
�Tr�QyQ� � 2�� � 0;

A1 � iA2 � �i�@1Q� i@2Q�Q�1:

(36)

Substituting our ansätze we get the following system of the
first-order differential equations:

f0

r
�
e2

0

4
��1� z2

1��1� z
2
2�	

2

� cos��1� z2
1��1� z

2
2�	

2 � 4�;

f03
r
�
�1� g�h�sin��2

r2 �
e2

3

4
��z2

1 � 1��z2
2 � 1�	2

� cos��z2
1 � 1��z2

2 � 1�	2�;

g0

r
�

cos�� f3

r2 h �
e2

3

2
	2z1�z

2
2 � 1�;

f
r
� 2

	0

	
�
z01
z1
�
z02
z2
;

f3

r
�
z01
z1
� cos�

z02
z2
;

1� g
r
�
z2

1 � 1

2z1

�
1

r
�
z02
z2

�
:

(37)

The function h can be expressed in terms of other profile
functions,

h �
z2

1 � 1

z2
1 � 1

�1� g�: (38)

The boundary conditions that must be imposed on the
profile functions at r! 0 are

f�r� � 2�O�r2�; f3�r� � �1� cos�� �O�r2�;

g�r� � 1�O�r3�; h�r� � O�r3�; z1�r� ! O�r�;

z2�r� ! O�r�; 	�r� ! O�1�: (39)

The boundary conditions at r! 1 are

f; f3; g; h! 0; 	; z1; z2 ! 1: (40)

We see that the boundary conditions for the gauge
profile functions f and f3 at r � 0 are
-7
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f�0� � 2 and f3�0� � 1� cos�: (41)

This is in accordance with the boundary conditions for the
Abelian strings, Eq. (13). For the (2,0) string we have p �
2, k � 0, and Eq. (13) gives f�0� � 2, f3�0� � 2. This
corresponds to � � 0 in Eq. (39); the vectors na1 and na2
of two 1-string constituents of the 2-string are parallel.

For the (1,1) string we have p � 1, k � 1, and Eq. (13)
gives f�0� � 2, f3�0� � 0. This case corresponds to � �
� in Eq. (39), so that the vectors na1 and na2 are antiparallel.

D. Another gauge

With an appropriate gauge transformation (only a con-
stant color rotation, no flavor rotation)

U � exp
�
i�2

�
��

�
2

��
; (42)

we can cast the solution in the following form:

Q �
���
�

p
	
� cos�2 e

2i’z1z2 sin�2 e
i’z1

� sin�2 e
i’z2 � cos�2

 !
: (43)

Then the gauge field takes the form

A’ �
�3�cos��f�f3

2r
ei’�1�g� sin�

2r
e�i’�1�g� sin�

2r
�1�cos��f�f3

2r

 !
;

Ar �
0 iei’ sin�

2r h
�ie�i’ sin�

2r h 0

 !
:

(44)

In this gauge the expressions are more compact; the VEV
of the squark field Q at infinity takes the form

Q �
���
�

p � cos�2 e
2i’ sin�2 e

i’

� sin�2 e
i’ � cos�2

 !
: (45)

E. Numerical solution

Explicit numerical calculations can be and were per-
formed for the vortex profile functions. The dependence on
� is nontrivial. Some of the profile functions at � � 0
(light grey, green online), � � �

2 (medium grey, red on-
line), � � � (black, blue online) are plotted and compared
in Figs. 4 and 5. The couplings are chosen as

R. AUZZI, M. SHIFMAN, AND A. YUNG
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e2
0 � 1; e2

3 � 2: (46)

It seems that there is a small but nontrivial dependence on
�. This is evident, in particular, for 	, but also for z1, z2.

F. Physical interpretation

To understand the explicit solution better, it is instructive
to calculate the gauge-invariant operator ~F a. It is possible
to make a global SU�2�C�F rotation of the solution, so that
F �1;2� averaged with respect to the azimuthal angle ’ are
zero.

The following matrix realizes this:

~U � exp
�
�i�

�2

2

�
; (47)

acting on the field as

F a�a ! ~Uy �F a�a � ~U; Q! ~Uy �Q � ~U: (48)

This gives us a minimal non-Abelian 2-string solution
parametrized by angle �. To obtain the full moduli space of
solutions we have to apply the global SU�2�C�F rotation to
the minimal solution.

The minimal solution has the form
Q �
���
�

p
	
�cos2 �

2�e
2i’z1z2 � �sin2 �

2�e
i’z2 � sin�

2 �e
i’z1 � 1�

� sin�
2 �e

2i’z1z2 � ei’z2� �cos2 �
2� � �sin2 �

2�e
i’z1

 !
; (49)
and

~F 3 � A��; r�; ~F 1 � �cos’�B��; r�;

~F 2 � ��sin’�B��; r�;
(50)

where
A��; z� �
�
g0

r
�
h�cos�� f3�

r2

�
	2z1�z2

2 � 1��sin��2

�

�
f03
r
�
h�1� g��sin��2

r2

�
cos�

2

� �	2�z2
1 � 1��z2

2 � 1�

� 	2�z2
1 � 1��z2

2 � 1� cos�� (51)
-8
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and

B��; z� � �cos� sin��	2z2

�
2
�
g0

r
�
h�cos�� f3�

r2

�
z1

�

�
f03
r
�
h�1� g��sin��2

r2

�
�z2

1 � 1�
�
: (52)

This solution at fixed � can be rotated by applying an
SU�2� global color� flavor rotation. For generic � � 0,
�, all SU�2�C�F generators are broken by the vortex solu-
tion. The �1;2 generators rotate the color flux direction
which is independent of the cylindrical coordinate ’; the
�3 generator shifts a phase ’ in the arguments of the sine
and cosine functions in Eq. (50). The resulting moduli
space is parametrized by the Euler angles, in complete
analogy to the phase space of a cylindrical rotator in
three-dimensional space. In particular, for � � 0 [(2,0)
vortex] we have B � 0, and for � � � [(1,1) vortex] we
have A � B � 0. The behavior of the solution near these
points is discussed in Appendixes A and B; here we
summarize our results at the qualitative level.

Let us consider the solution as a function of the angle �
(see Fig. 3). At � � 0 we have the (2,0) vortex; the action
of the global SU�2� is similar to the action of spatial
rotation over a stick of zero thickness and the moduli space
is S2. At small nonzero � the stick acquires a thickness of
order � and becomes, in color space, similar to a cigarette.
The moduli space is now parametrized by three Euler
angles in color space and it is three dimensional.
Increasing � we can imagine that the cigarette becomes
shorter and fatter, becoming a can. At � � �� � the
length becomes zero at the linear order in �; on the other
hand, the diameter of our can is of order �. The configu-
ration in color space becomes similar to a coin with zero
thickness: the moduli space is still parametrized by three
Euler angles. At � � � our coin shrinks to a point and the
action of global color-flavor rotation is trivial.
VI. THE 2-STRING MODULI SPACE

A. Field-theory perspective

The 2-vortex moduli space is a manifold with real
dimension 8. Two coordinates correspond to a global trans-
lation and we factorize them from the other six, which
correspond to the nontrivial part of the moduli space:

M � C� ~M:

In the limit of large relative distance between the two
elementary vortices, ~M has the following structure [19]:

~M �
C� CP1 � CP1

Z2
; (53)

where C corresponds to the relative distance of the two
elementary vortices and the two CP1 factors stand for the
non-Abelian internal orientation of the elementary vorti-
105012
ces. The Z2 quotient acts on �z; ~n1; ~n2� 2
~M as follows:

Z 2: z! �z; ~n1 ! ~n2; ~n2 ! ~n1: (54)

In the following we will discuss topology of the slice of
the moduli space in which the relative distance of the
elementary vortices is zero. We denote this subspace by
T . In the previous section we have found an explicit
solution, which can be parametrized by an SU�2� �
SU�2� element �U1; U2�,

Q �
���
�

p
	�r�U1

z1�r�ei’ 0
0 1

� �
U�1

1 U2
z2�r�ei’ 0

0 1

� �
U�1

2 ;

(55)

where

U1�3U
y
1 � na1�a; U2�3U

y
2 � na2�a: (56)

The functions 	, z1, z2 depend on the relative angle �
between ~n1 and ~n2 in a nontrivial way. Taking U1 � U2 �
U, the usual global orientation zero modes are obtained.
Each of the SU�2� subgroups is broken down locally to
U�1�. However, the situation is different globally: for
example, taking ~n1 � � ~n2 � ~n we find just a point in
the moduli space [the (1,1) vortex] rather than a two-
dimensional submanifold. So T is not CP1 � CP1 as
one could naively expect.

Let us consider topology of different slices at constant
�. At � � 0, the moduli space is given by

T ��0 � SU�2�=U�1� � CP1 � S2:

At 0<�<�, the moduli space is given by the quotient

T 0<�<� � SU�2�=Z2 � RP3 � S3=Z2; (57)

because the global rotations from the center of SU�2� have
trivial effect on the solution. At � � �, the moduli space is
just a point rather than a manifold. If it were a manifold,
then a submanifold of constant small � would be topologi-
cally equivalent to S3, but we know that it is RP3, which
differs from S3 by a Z2 quotient. We conclude that at� � 0
there is a conical singularity; this is similar to the singu-
larity in the 1-instanton moduli space for the zero-size
instanton. For a dedicated discussion of the occurrence of
the Z2 factor in Eq. (57), see Sec. VI B.

Topology of T is equivalent to a discrete quotient of
CP2. To make it clear, we use the following parametriza-
tion of CP2:

~m � �m1; m2; m3�; (58)

where mi (i � 1; 2; 3) are complex variables subject to the
constraint

jm1j
2 � jm2j

2 � jm3j
2 � 1 (59)

and identification

~m� ei
 ~m: (60)
-9



FIG. 6. The structure of the moduli space is very similar to the
phase space of a cylindrical rotator whose shape depends on the
parameter �. At � � 0 one of the inertial moments is zero (as for
a stick with zero thickness); at � � � all the inertial moments
are zero.
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Complex vector ~m has six real variables. Condition (59)
and identification (60) reduce this number to four, which is
the dimension of CP2.

The variable jm1j plays a role of sin�=2 for our solution.
At � � 0 [i.e. (2,0) string] the vector ~m has only two
components and parametrizes the CP1 manifold which is
a moduli space of the (2,0) string indeed. At � � �

m2 � m3 � 0

and the space described by the vector ~m shrinks to a point,
just like the moduli space of the (1,1) string. At intermedi-
ate �,

0<�<�;

the vector ~m produces SU�2� � S3 submanifolds. We con-
clude that topology of the 2-string moduli space T is given
by the following quotient:

T � CP2=Z2;

where Z2 acts as

�m1; m2; m3� ! �m1;�m2;�m3�: (61)

This Z2 subgroup acts trivially at � � � [where ~m �
�1; 0; 0�] and at � � 0 [where ~m � �0; m2; m3�] because
of the identification (60). The sections at constant � with
0<�<� have the topology of RP3 � S3=Z2. Near � �
� there is a conical singularity.

When one chooses a particular ansatz, generally speak-
ing, one is not guaranteed that in this given ansatz all
moduli space of the solitonic object at hand is covered.
In principle, it could happen that an ansatz containing an
appropriate number of collective coordinates is still not
general enough in order to describe in full the family of
solutions. We would like to argue that this is not the case
here—we do cover all the moduli space of two coincident
vortices. Our ansatz has the right number of collective
coordinates; it is not singular anywhere on the moduli
space. Moreover, we expect that T is a topological space
with just a single connected component. Finally, let us
stress that the Z2 quotient (a subtle point of the construc-
tion) appears as a consequence of the SU�2� global rota-
tions rather than as a specific feature of the particular form
of our ansatz. As a nontrivial check, we will show in
Sec. VI B, with satisfaction, that the result agrees with
one from of the brane construction.

The effective �1� 1�-dimensional theory on the string
world sheet is a sigma model determined by the metric on
the vortex moduli space. We know from SU�2�C�F sym-
metry arguments that the metric on T has the form of a
cylindrical rotator with an extra parameter � (see Fig. 6),

wd�2 �
1

2

�
Ixyd�2 �

�Iz � Ixy� � �Iz � Ixy� cos2�

2
d�2

� Izd 2 � 2Iz cos�d�d 
�
; (62)
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where �, �, and  are Euler angles while � is an extra
parameter, 0<�<�. Explicit determination of the func-
tions w���, Jxy���, and Jz��� remains an open problem.

B. The 2-vortex in the brane construction

In Refs. [7,19] a construction for topology of the 2-
vortex moduli space was proposed within the Hanany-
Witten approach. In these papers it is shown that the
moduli space of k vortices in the U�N� theory with Nf �
N flavor hypermultiplets is a Kähler manifold with real
dimension 2kNc that we will denote as H k;N. The Kähler
manifold H k;N is built as follows.

Let us start with a k� k complex matrix Z and a k� N
complex matrix �, with the constraint

�Z; Zy ���y � 1; (63)

where 1 is the identity matrix. The space H k;N is defined
as the quotient of the solution of this constraint divided by
the U�k� action,

Z! UZUy; �! U�: (64)

The manifold H k;N has the symmetry SU�N� �U�1�,

SU�N�: �! �V; V 2 SU�2�;

U�1�: Z! ei�Z:
(65)

In this formalism the action of the SU�N� group is physi-
cally identified with the SU�N�C�F while that of theU�1� is
physically identified with the rotational symmetry of the
plane.

In the case of 2-strings in the Nf � N � 2 gauge theory,
both Z and � are 2� 2 matrices. Requiring TrZ � 0 we
project out the trivial center-of-mass motion. The action of
Eq. (64) can be used to transform Z in the upper-triangular
form,

Z �
z !
0 �z

� �
; � �

a1 a2

b1 b2

� �
: (66)

The coordinate z represents the relative positions of the
strings; the other entries of the matrices have a less intui-
-10
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tive interpretation. This does not completely fix the U�2�
quotient; a remaining U�1�1 �U�1�2 � Z2 has to be fixed,
namely,

U�1�1: U �
ei� 0

0 1

 !
; U�1�2: U �

1 0

0 ei�

 !
;

Z2: U �
�1��������������������������

1� j2z=!j2
p �1 �2z=!��

�2z=!� 1

 !
: (67)

We have the following charges with respect to
�U�1�1; U�1�2�:

ai ! �1; 0�; bi ! �0; 1�;

!! �1;�1�; z! �0; 0�:

The constraints in Eq. (63) read

ja1j
2 � ja2j

2 � j!j2 � 1;

jb1j
2 � jb2j

2 � j!j2 � 1;X
aib�i � 2z�!:

(68)

If we put z � 0 we can recover topology of T . Let us
consider, following Ref. [19], slices at constant !. At ! �
0 a point is found which is the (1,1) vortex [note that the
entries of the matrix Z all vanish and all U�2� quotients
have to be fixed for the matrix �]. At j!j � 1 a copy of
CP1 is found which is the (2,0) vortex and its color-flavor
rotated configurations. [This is because ai � 0 and bi
define a CP1 modulo the U�1�2 action].

The slices at 0< j!j< 1 are slightly more complex. Let
us consider them in detail. Let us define U�1�A as U�1�1 �
U�1�2 and U�1�B as U�1�1 �U�1�2. We have the following
charges with respect to �U�1�A; U�1�B�:

ai ! �1; 1�; bi ! �1;�1�; !! �0; 2�:

The most general solution to the constraints in Eq. (68) is

a � �1� j!j2�ei��cos�; sin�ei��;

b � �1� j!j2�ei�� sin�; cos�e�i��;

! � ei�j!j:

(69)

The quotient U�1�B just gauges away the phase � so that
effectively � � 0, with a redefinition of � and . Using
U�1�A at this point we can bring the solution to the follow-
ing form [where 
 � ��� �=2]:

a � �1� j!j2�ei
�cos�; sin�ei��;

b � �1� j!j2�e�i
�� sin�; cos�e�i��;

! � j!j:

(70)

The three angles ��; 
;�� parametrize an S3 inside C4. We
have to be careful, however, because we still have to
perform a quotient in order to find the moduli space.
Namely, in S3 we have to identify the opposite points as
105012
�ai; bi; j!j� ! ��ai;�bi; j!j� (71)

because if we shift 
 by�we have that both ai, bi get a�1
phase which is exactly a � rotation by U�1�A. This special
rotation keeps the solution in the form of Eq. (70), and,
therefore, we have to take account of this special rotation
‘‘by hand.’’ In other words, when we put the solutions of
the constraints in the form (70), we fix almost all gauge
freedom, with the exception of a Z2 subgroup generated by
a � rotation by U�1�A.

We conclude that our solitonic solution is consistent
with the brane technique-based results. The � � � section
in the field-theory approach corresponds to ! � 0 in the
brane construction [the (1,1) vortex]; � � 0 corresponds to
! � 1 [the (2,0) vortex moduli space]. Sections at inter-
mediate � and ! are in both cases S3=Z2, and at the end
both approaches give T � CP2=Z2.
VII. CONFINED MONOPOLES

If the Fayet-Iliopoulos term � vanishes, the squark con-
densate vanishes too, and the theory is in the Coulomb
phase. Then there exists the ’t Hooft-Polyakov monopole,
and its magnetic flux is unconfined. When a nonvanishing
� is introduced, the squarks develop a VEV, and the theory
is in the Higgs phase. The monopole flux is confined. In our
theory there is a stable configuration for the monopole
confined by two strings oriented in opposite directions. In
this configuration the monopole flux is carried by two
elementary flux tubes (see [9–11,26]). This monopole
can be interpreted as the junction of two different magnetic
strings.

If �
 �m
 �1=2 the quasiclassical treatment is reli-
able. We find that the monopole is a classical soliton which
is the junction of the (1,0) and (0,1) strings. The composite
monopole� vortex object is 1=4 BPS; the energy is given
by the BPS bound:Z

Hd3x �
Z

Tr
�
�Bz �

1

e2
3

@��a � B��
�
d3x

�
Z
Tvdz�Mmon; (72)

where

Tv � 2��; Mmon �
2��m1 �m2�

e2
3

: (73)

The effective world-sheet description is given by an N �
2 CP1 sigma model with a large twisted mass term � �
�m, which has two classical vacua (see [10,11,27,28]).

In the limit �m
 �
 �1=2 the situation is more
subtle; the monopole is not a classical object. The vortex
world-sheet theory is an N � 2 CP1 sigma model.
Classically this model has an infinite number of vacua
parametrized by points of CP1 and there are Goldstone
states. In quantum theory, due to nonperturbative effects,
-11
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all states become massive. The theory has two quantum
vacua, as can be shown by Witten-index arguments. These
two vacua correspond to two quantum non-Abelian strings.
The monopole can be interpreted as a kink between these
two vacua; the monopole mass is given by the mass of the
kink in the 1� 1-dimensional sigma model [10]

Mmon �
2

�
�CP1 ; (74)

where �CP1 � �QCD. In both the limits we have two
physical string states and a confined monopole which can
be interpreted as the junction between these strings.

Let us consider what happens for the case of the com-
posite 2-vortex. If �m� � we have Abelian vortices with
the same tension, the (2,0), (0,2), and (1,1) vortices. There
are two possible kinds of confined monopoles: the one
between the (2,0) and the (1,1) vortices and the one be-
tween the (2,0) and the (0,2). If we calculate the monopole
masses using the central charge, we find that

M�2;0�!�1;1� �
2��m1 �m2�

e2
3

�
M�2;0�!�0;2�

2
: (75)

We can think of the �2; 0� ! �0; 2� kink as the composite
state of the �2; 0� ! �1; 1� and the �1; 1� ! �0; 2� kinks (see
Fig. 7); it is reasonable that there is no net force between
the two elementary kinks because the energy of the bound
state is equal to the sum of masses of two elementary kinks.

When we go to the limit �m
 � the situation becomes
rather complicated. Even if we neglect, for simplicity, the
coordinate corresponding to the relative distance of the
elementary vortices, the physics is described by a sigma
model with target space T � CP2=Z2 (a space that is not
even a manifold due to a conical singularity) and with a
quite complicated metric. However, in analogy to the 1-
vortex case it is reasonable to think that the spectrum of
BPS states in the two-dimensional world-sheet model co-
incides with the monopole/dyon spectrum of the four-
dimensional bulk theory on the Coulomb branch because
it cannot depend on the FI parameter � [10,11]. The latter
spectrum is given by the exact Seiberg-Witten solution
[22,23].
FIG. 7 (color online). Elementary BPS confined monopoles
connecting the (2,0) to the (1,1) vortex and the (1,1) to the
(0,2) vortex. The mass of a BPS monopole connecting the (2,0)
to the (0,2) vortex is exactly the double of an elementary
monopole. We can conjecture that the length of the intermediate
layer of the (1,1) vortex is a modulus of the composite soliton.
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VIII. CONCLUSIONS

In this paper we considered a composite non-Abelian
vortex with winding number 2 in N � 2 supersymmetric
theory with gauge group U�2�.

The explicit BPS solution of first-order equations has
been found in the case when two component elementary
vortices are parallel and coincident in the space.

The internal moduli space T has the topology CP2=Z2;
there is a conical singularity near the (1,1) vortex. The
computation of the metric for the effective sigma model on
T still remains an open question. However, perturbing the
system with a �m, it is possible to guess the number of
vacua and the spectrum of kinks in the 1� 1-dimensional
effective description.
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Note added.—After this work was finished, we became
aware of a paper by Eto et al. [29]. Eto et al. extended the
analysis of Ref. [19] and thus completed a construction
allowing one to introduce the full number 2Nk of (real)
collective coordinates in the generic k-string BPS solution.
The problem of introduction and actual calculation of the
profile functions was not addressed. Our result is comple-
mentary albeit not generic. One can show that our ansatz,
being cast in the form suggested in [29], reduces to

H0�z� �
� cos�2 z

2 sin�2 z
� sin�2 z � cos�2

 !
(76)

in the gauge discussed in Sec. V D, modulo global SU�2�
rotations (which introduce three other collective coordi-
nates). The determinant of the matrix above is z2, with a
degenerate zero at the origin, which is a signal, in the
language of Ref. [29], of the coincidence of the positions
of two constituents of the 2-string under consideration. It
seems very plausible that applying the general method of
[29] one can extend our ansatz to include two missing
collective coordinates responsible for the relative separa-
tion of two constituents of the 2-string in the perpendicular
plane.

While this paper was in the preprint form, the issue of
the Z2 quotient in the moduli space of two coincident
vortices was studied also by K. Konishi and collaborators,
whose results agree with the one of this paper.

APPENDIX A: ZERO MODES FOR THE (1,1)
VORTEX

Let us consider a small perturbation around the (1,1)
vortex at � � �; let us write � � �� ~�. All profile
-12
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functions are nontrivial functions of ~�. We will calculate
the corrections to the profile functions at the first nontrivial
order in ~�. Then we substitute our solution into the action
[see Eq. (9)] and check that the linear and the quadratic
corrections in ~� to the tension are zero. To this order, it is
consistent to consider 	, z1, z2 as constants in �. We
calculate profile functions h and g to O�1� order in ~�;
however, f should be calculated with higher accuracy,
namely, to the order O�~�2�. Notice that at this order it is
consistent to take z1 � z2 � z and as a consequence f3 �
O�~�2� [this follows from the BPS equations

f03
r
� ~�2 h�1� g�

r2 �
e2

3

2
�	2�z2

1 � z
2
2��;

f3

r
�
z01
z1
�
z02
z2
�1�O� ~�2��

(A1)

combined with the boundary condition f3�r! 0� �
O�~�2�], so we will not need to compute f3 because it gives
a contribution of order ~�4 to the action.

Other BPS equations are

f0

r
�
e2

0

2

�
2	2z2

�
~�2

4
	2�z2 � 1�2 � 2

�
;

g0

r
� �1� f3��1� g�

z2 � 1

z2 � 1

1

r2 �
e2

3

2
	2z�z2 � 1�;

f
r
� 2

	0

	
� 2

z0

z
;

1� g
r
�

1

2

z2 � 1

2z

�
1

r
�
z0

z

�
: (A2)

In what follows we put ~� � 0 in the first equation in
(A2). The following change of variables is used:

	 �
w

�2 ; z � �2;

� �
�����
z1
p
�

�����
z2
p

; w � 	z:
(A3)

In these variables our problem reduces to

f � 2
w0

w
r; f0 � e2

0r�w
2 � 1�: (A4)

These are equations for the (1,1) Abelian vortex; see
Eq. (12) for p � k � 1. In addition, we have new profile
functions which satisfy the equations

1� g
r
�

1

2

�4 � 1

�2

�
1

r
� 2

�0

�

�
;

g0

r
� �1� g�

�4 � 1

�4 � 1

1

r2 �
e2

3

2
��4 � 1�

w2

�2 :

(A5)

Let us rewrite them in a form convenient for numerical
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calculations,

�0 �
�
2r

�
1� �1� g�

2�2

1��4

�
;

g0 � ��4 � 1�
�
e2

3

2

w2r

�2 �
1� g

r�1��4�

�
:

(A6)

The squark field can be written as

Q �
wei’ � ~�

2 �e
2i’�2w� ei’w�

� ~�
2 �e

i’w� w
�2� wei’

 !
: (A7)

The expression for the gauge field in the nonsingular gauge
is completely straightforward; see Eqs. (32) and (35). The
profile function h is given by

h �
�4 � 1

�4 � 1
�1� g�: (A8)

Now, let us compute the value of the gauge-invariant
operator ~F a at first order in ~�,

~F 3 � 0; ~F 1 � 2 ~�w2�cos’�
�
g0

r
�
h

r2

�
;

~F 2 � �2 ~�w2�sin’�
�
g0

r
�
h

r2

�
:

(A9)

In particular, Eqs. (A7) and (A9) give us the Abelian
(1,1) vortex at ~� � 0 [note that the 2-string also has the
U�1� gauge field F0

12 � �f
0=r].

Let us consider the action of a global color� flavor
rotation, given by an SU�2� matrix U,

F a�a ! UF a�aUy; Q! UQUy:

The action is trivial only at ~� � 0; otherwise the situation
is similar to a rotation of a rigid body in the ordinary three-
dimensional space. All SU�2� global generators act non-
trivially on the solution (A7) and (A9). At fixed ~� our
solution is parametrized by some kind of Euler angles in
color space. The ‘‘shape’’ in color space is similar to a coin
with vanishing thickness (at the leading order in ~�) and
with diameter of the order of ~�.
APPENDIX B: ZERO MODES FOR THE (2,0)
VORTEX

Now we consider a small perturbation around the (2,0)
vortex at � � 0. Again, acting in the same way as in the
case of the (1,1) string, we calculate our profile functions
with accuracy which ensures cancellation of the first- and
second-order corrections with respect to � in the action;
see Eq. (9). As before, at this order it is consistent to treat
	, z1, z2 as constants in �. We also calculate g, h at order
O�1� in �. On the other hand, we need to consider O��2�
corrections to the functions f, f3.
-13
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The BPS equations are

f0

r
�
e2

0

2

�
	2 � 	2z2

1z
2
2 �

�2

4
	2�1� z2

1��1� z
2
2� � 2

�
;

(B1)

f03
r
�
e2

3

2
�z2

1z
2
2 � 1�	2 �

�2

8
	2�z2

1 � 1��z2
2 � 1�; (B2)

g0

r
�

1� f3

r2

z2
1 � 1

z2
1 � 1

�1� g� �
e2

3

2
	2z1�z

2
2 � 1�; (B3)

f
r
� 2

	0

	
�
z01
z1
�
z02
z2
; (B4)

f3

r
�
z01
z1
�
z02
z2
; (B5)

1� g
r
�
z2

1 � 1

2z1

�
1

r
�
z02
z2

�
: (B6)

Instead of z1, z2, and 	 we introduce new profile functions,

z1 �
s

t�2 ; z2 � �2; 	 � t;

s � 	z1z2; t � 	; � �
�����
z2
p

:
(B7)

With this change of variables we find the following equa-
tions:

f0

r
�
e2

0

2
�s2 � t2 � 2�;

f03
r
�
e2

3

2
�s2 � t2�;

f
r
�
s0

s
�
t0

t
;

f3

r
�
s0

s
�
t0

t
:

(B8)

These equations coincide with the first-order equations
(12) for the Abelian (2,0) string (p � 2, k � 0). They
can be solved separately.

Equations for the zero mode profile functions have the
form

1� g
r
�

1

2

s2 � t2�4

st�2

�
1

r
� 2

�0

�

�
;

g0

r
�

1� f3

r2

s2 � t2�4

s2 � t2�4 �1� g� �
e2

3

2

�
�2 �

1

�2

�
st:

(B9)

Let us rewrite them in a form convenient for numerical
calculations,

�0 �
�
2r

�
1� �1� g�

2st�2

s2 � t2�4

�
;

g0 �
e2

3

2

�4 � 1

�2 rst�
�1� g��1� f3�

r
s2 � t2�4

s2 � t2�4 :

(B10)
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Numerical solutions can be found; see Secs. V E and
V F(for numerical studies we take e2

0 � 1 and e2
3 � 2).

Furthermore, the squark field can be written as

Q �
se2i’ �

2 �e
2i’s� ei’ s

�2�
�
2 �e

i’t�2 � t� t

 !
: (B11)

The profile function h is given by

h �
s2 � t2�4

s2 � t2�4 �1� g�: (B12)

Calculating the value of the gauge-invariant operator ~F a at
first order in �, we obtain

~F 3 �
f03
r
�s2� t2�;

~F 1 � ��s2� t2�
f03
r
���cos’�

�
2
�
g0

r
�
h�1� f3�

r2

�
st

�
f03
r

�
s2

�2� t
2�2

��
;

~F 2 ����sin’�
�
2
�
g0

r
�
h�1� f3�

r2

�
st�

f03
r

�
s2

�2� t
2�2

��
:

(B13)

It is possible to globally rotate the solution, so that F �1;2�

have no constant parts, and their average with respect to ’
vanishes (a minimal solution). The matrix which realizes
this transformation has the form

~U � exp
�
i�
�2

2

�
; (B14)

acting on the fields as

F a�a ! ~UyF a�a ~U; Q! ~UyQ ~U: (B15)

The result of the rotation is

~F 3 �
f03
r
�s2 � t2�;

~F 1 � 2��cos’�
�
2
�
g0

r
�
h�1� f3�

r2

�
st�

f03
r

�
s2

�2 � t
2�2

��
;

~F 2 � �2��sin’�
�
2
�
g0

r
�
h�1� f3�

r2

�
st

�
f03
r

�
s2

�2 � t
2�2

��
; (B16)

Q �
se2i’ �

2 ��e
i’ s

�2 � t�
�
2 ��e

2i’s� ei’t�2� t

 !
: (B17)

At � � 0 these equations give us a solution for the
Abelian (2,0) string; see (11). At � � 0 the action of the
global SU�2� is similar to the rotation of a stick of zero
thickness in the three-dimensional space: the moduli space
-14
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is S2 � CP1. At � � 0 the situation is similar to a rigid
body rotation in the ordinary three-dimensional space. All
SU�2� global generators act nontrivially on the solution
105012
(17). At fixed � our solution is parametrized by the Euler
angles in color space. The shape in color space is similar to
a cigarette with thickness of order � and length 2.
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