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Unitarity cuts are widely used in analytic computation of loop amplitudes in gauge theories such as
QCD. We expand upon the technique introduced in hep-ph/0503132 to carry out any finite unitarity cut
integral. This technique naturally separates the contributions of bubble, triangle and box integrals in one-
loop amplitudes and is not constrained to any particular helicity configurations. Loop momentum
integration is reduced to a sequence of algebraic operations. We discuss the extraction of the residues
at higher-order poles. Additionally, we offer concise algebraic formulas for expressing coefficients of
three-mass triangle integrals. As an application, we compute all remaining coefficients of bubble and
triangle integrals for nonsupersymmetric six-gluon amplitudes.
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1For a review, see [22] and its citations. See also [23].
I. INTRODUCTION

Within the experimental program of the forthcoming
Large Hadron Collider, and the exigencies of efficient
ways to analyze huge amounts of data, perturbative QCD
will play the role of precision physics. To dig out interest-
ing signals we must be able to distinguish them from
backgrounds, largely dominated by QCD processes. In
order to have enough theoretical accuracy for comparisons
against the experimental counterpart, one-loop (and even
higher) many-leg amplitudes of several QCD processes are
needed [1,2]. However, the calculation of next-to-leading
order (NLO) amplitudes is extremely difficult; within the
current status of the available analytical results, ‘‘many
legs‘‘ means five [3] as regarding QCD corrections and six
[4] as for electroweak. The most recent theoretical efforts
for tackling the one-loop multileg amplitudes have been
using algebraic/seminumerical approaches [5].

For the analysis of jet-events produced at the high en-
ergies of the LHC, it is mandatory to overcome the bottle-
neck of the one-loop six-gluon amplitude.

Although it is very difficult to calculate QCD ampli-
tudes, various methods have been developed to attack this
problem. One efficient approach is the unitarity cut method
with the spinor-helicity formalism [6–8] (a review may be
found in [9]). It is shown in [3,10,11] that one-loop ampli-
tudes with all external gluons and a gluon circulating
around the loop can be decomposed into following three
pieces (the so-called supersymmetry decomposition),

A QCD �AN�4 � 4AN�1 �Ascalar; (1.1)

where AQCD denotes an amplitude with only a gluon
circulating in the loop, AN�4 has the full N � 4 mul-
tiplet circulating in the loop, AN�1 has an N � 1 chiral
06=73(10)=105004(43) 105004
supermultiplet in the loop, and Ascalar has only a complex
scalar in the loop. This last term is sometimes referred to as
AN�0.

The main advantage of this decomposition is that super-
symmetric amplitudes, AN�4 and AN�1, are four-
dimensional cut-constructible [10,11], meaning that they
do not suffer any ambiguity due to the presence of rational
terms; they are completely determined by their finite uni-
tarity cuts.

However, the term Ascalar cannot be completely recon-
structed from its absorptive part, and the presence of
rational functions of the kinematic invariants make its
calculation quite involved, though still simpler than the
full AQCD. In fact, it is our aim in this paper to complete
the program introduced in [12] to give a systematic way to
evaluate the cut-constructible piece of Ascalar. The deter-
mination of the rational terms could perhaps be later
achieved by implementing the recursive technique intro-
duced in [13–15]. An alternative is to apply the unitarity
method in (4� 2�) dimensions, for there the entire ampli-
tude is cut-constructible [16].

Our systematic method to deal with the Ascalar part is
related methods and ideas from the twistor string theory
initiated in [17] and further developed in [18–21]. In
particular, we make heavy use of the new way to write
phase space integrals and perform the integration given in
[18,21].1 The algorithm initiated in [12] and developed
here reduces phase space integration to algebraic
manipulations.

With the complete algorithm developed in this paper, we
calculate the (heretofore missing) cut-constructible part of
the NLO six-gluon amplitudes in QCD.
-1 © 2006 The American Physical Society
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A. The current status of amplitudes

Under the separation given by (1.1), the unitarity method
established itself as an effective means of computation
[10,11,24–28]. This method has been applied successfully
in several contexts, supersymmetric [10–12,28–30] as
well as nonsupersymmetric [24,25,31,32]. A recent inno-
vation [27,30], making use of leading singularities, allows
a simple determination of coefficients of integrals associ-
ated to box topologies, without any explicit integration.2

Some related methods are the use of MHV diagrams in the
cut calculations [37] and the use [21,38,39] of the holo-
morphic anomaly [20] to determine certain cut integrals
[21,40].

Although supersymmetric multiplets contain more par-
ticles, the reading of the QCD amplitudes in this super-
symmetric fashion introduces a degree of simplicity in
terms of computation.

The simplest term is the contribution of an N � 4 super
Yang-Mills multiplet. The N � 4 amplitudes can be ex-
pressed as a combination of scalar box integral functions
with rational coefficients [10]. These coefficients have
been evaluated in a closed form for the case with maximal
helicity violation (MHV), namely, helicity configurations
where two gluons are of negative helicity and the rest are of
positive helicity [10,37], and for the case of next-to-MHV
(NMHV) amplitudes [11,26–28,38]. The ingredients here
are the Parke-Taylor tree-level MHV amplitudes [33,34].

In the case of an N � 1 chiral multiplet, the all-n one-
loop MHV and one-loop six-gluon amplitudes are known
[11,12,37,39,41,42].

As we have said, the most difficult part in the decom-
position (1.1) is Ascalar part, which is known only in
special cases. All amplitudes with at most one negative-
helicity gluon were computed in [43–45]. The cut parts of
the MHVamplitudes are known [10,11,46] for an arbitrary
number of legs. Very recently an explicit form of the
rational functions has been presented for the all-
multiplicity MHVamplitude in which the negative-helicity
gluons are adjacent [13,15]. All box coefficients of the six-
gluon amplitude are given in [42]. All cut-constructible
coefficients of one-loop amplitudes where the gluons are
ordered in two adjacent bunches of opposite helicity (a
‘‘split helicity’’ configuration), for N � 0 and N � 1,
have been computed in [47].

To achieve the complete calculation of Ascalar for the
six-gluon amplitude, there are two possible paths to follow.
The first is to apply the unitarity method in (4� 2�)
dimensions instead of four [16]. Cases with four external
particles, and up to six, in special helicity configurations,
2With the unitarity method, tree-level amplitudes are the
bricks of the cut integral. Off-shell recursion relations [33,34]
are a well-known method to construct trees. As valid alterna-
tives, there are two new efficient techniques, exploiting the on-
shellness of the amplitudes: the MHV diagrammatic rules of [18]
and the on-shell recursion relations of [35,36].
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have been worked out along this way [25,31,32,48,49].
Recent progress in deriving the tree-amplitude ingredients
has appeared in [50–55]. Alternatively, one can split
Ascalar into a cut-constructible piece and a remaining
rational function, and tackle these two pieces separately.
The reason is as follows. Because of a better understanding
of the recursive structure of QCD amplitudes, at tree level
[35,36] and at one-loop [56], and exploiting the knowledge
of their collinear and soft- behavior, it has recently been
shown [13–15] that the rational term of one-loop QCD
amplitudes does have, in itself, a recursive character: given
the knowledge of the coefficients of the logarithmic and
polylogarithmic terms of an n-point amplitude, the leftover
rational coefficient has been reconstructed by feeding into
the recursion the rational coefficients of the �n� 1�-point
amplitudes which represent the all-channel collinear limits
of the n-point one. Thus, if we calculate the cut-
constructible part, we can try to obtain the corresponding
rational part by recursion relations. Combining the results,
one might obtain the complete answer for Ascalar.

B. The plan of the paper

The plan of this paper is as follows. In Sec. II, we give
the general setting for our paper. We exploit the divergent
behavior of the amplitude to reduce the size of the basis of
known integrals. Then we analyze the structure of our
phase space integration. We show that we can neatly divide
contributions into rational and logarithmic parts. For the
logarithmic parts, we show where the three-mass triangle
and four-mass box functions show up. Furthermore, we
give our general strategy to reduce integration to algebraic
manipulation. Specifically, we show how to read out resi-
dues of higher-order poles, which is one of the most
important steps in this procedure.

Starting from Sec. III, we describe the calculation of the
cut-constructible part of Ascalar of six-gluon scattering
amplitudes. Section III is dedicated to the helicity configu-
ration �1�; 2�; 3�; 4�; 5�; 6��; Section IV, to the configu-
ration �1�; 2�; 3�; 4�; 5�; 6��; and Sec. V, to configuration
�1�; 2�; 3�; 4�; 5�; 6��.

The results of the rational coefficients of bubble and
triangle functions are expressed, in compact form, in terms
of sums over spinor products.

Concluding remarks are given in Sec. VI.
We supply the paper with three appendices which con-

tain the main technical details of the calculation.
Appendix A gives the NMHV tree-level amplitudes which
enter the cuts. Appendix B contains a detailed analysis of
logarithmic contributions in cut-integration. In
Appendix C, we show how to read out the coefficients of
three-mass triangles, which require the computation of
one-Feynman-parameter integrals, and we define some
functions we will use throughout the manuscript.

We leave to future work the automatic implementation
of the whole algorithm for providing the numerical coun-
-2
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FIG. 1. Scalar bubble and triangle integrals. (a) One-mass
triangle I1m

3;i . (b) Two-mass triangle I2m
3:r;i. (c) Three-mass triangle

I3m
3:r:r0;i. (d) Bubble I2:r;i. Note that the modified basis in (2.4)

involves only three-mass triangles and bubbles.

3This technique is thoroughly discussed in [62]. While these
early works were not intended to apply to massless theories, we
find there is no obstacle in adapting them to our purposes. The
modern interpretation is found in [10,11].
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terpart of our results. That would allow numerical checks
of our results against those already existing in the litera-
ture. The nonuniqueness of the expressions in the frame-
work of the spinor formalism, due to hidden identities
among spinor products, (e.g. Schouten identities and mo-
mentum conservation), can make direct analytic compari-
son quite difficult. Currently, spinor algebra manipulation
is frequently carried out in MATHEMATICA, while the final
integration, employing the Cauchy residue theorem and,
when needed, one-Feynman-parameter representation, has
not been automatized.

II. GENERAL SETTING: PRELIMINARIES

In this paper, we freely use the word ‘‘amplitude’’ to
refer to the cut-constructible part of Ascalar for the leading-
color partial amplitude of gluons.

Our purpose is to expand and develop the procedure
introduced in [12], so we shall not repeat all the back-
ground information here. Rather we shall mainly just point
out the new features showing up in this application. We
also make use of the same notation and conventions as in
[12], which follows the spinor-helicity formalism [6–8]
and conventions of [17]. In particular, in the following
calculations we generally omit an overall factor of
�i �4��

2��

�2��4�2� .

By reduction techniques, the cut-constructible portion of
the amplitude may be expanded in a basis of scalar integral
functions known as boxes (I4), triangles (I3), and bubbles
(I2) [11,57].

An �
r���

2��

�4��2��
X
�c2I2 � c1m

3 I1m
3 � c

2m
3 I2m

3 � c
3m
3 I3m

3

� c1m
4 I1m

4 � c
2m e
4 I2m e

4 � c2m h
4 I2m h

4 � c3m
4 I3m

4

� c4m
4 I4m

4 �: (2.1)

This defines what we mean by the cut-constructible portion
of the amplitude. Here � � �4�D�=2 is the dimensional
regularization parameter, � is the renormalization scale,
and r� is defined by

r� �
��1� ���2�1� ��

��1� 2��
: (2.2)

The sum runs over all the cyclic permutations within each
type of integral.

For a gluon amplitude with a complex scalar in the loop,
the infrared and ultraviolet singular behavior is [58–60]

Ascalar
n jsingular �

r�

3��4��2��
Atree
n : (2.3)

Because the divergence has exactly the same �-dependence
as AN�1

n jsingular, we may follow the same argument as in
[12] to express the amplitude in terms of a smaller, modi-
fied basis of scalar integrals with no one-mass or two-mass
triangle functions:
105004
A scalar
n �

r���
2��

�4��2��
X
�c2I2 � c3m

3 I3m
3 � c

1m
4 I1m

4F

� c2m e
4 I2m e

4F � c2m h
4 I2m h

4F � c3m
4 I3m

4F

� c4m
4 I4m

4 �: (2.4)

This basis differs from the one in (2.1) in that each integral
function (except the bubble functions) has had its diver-
gences stripped away. See Figs. 1 and 2. Precise definitions
appear in Appendix A of [12].

The justification for eliminating one-mass and two-mass
triangles is based on the observation that according to (2.3),
Ascalar

n diverges as 1=�. Since one-mass and two-mass
triangle integrals are the only ones with larger, 1=�2,
divergences, these leading terms must conspire to cancel.
After observing further that these 1=�2 divergences arise
only in the particular combination ��s���=�2, where s is a
momentum invariant, it follows that the contributions of
one-mass and two-mass triangles may be neglected alto-
gether as per the modified basis in (2.4).

To compute the amplitude, it is sufficient to compute
each of these coefficients separately. The principle of the
unitarity-based method [10,11,31] is to exploit the unitarity
cuts of the scalar integrals to extract the coefficients.

A. Coefficients from unitary cuts

Our goal is to compute the coefficients in (2.4) by
applying unitarity cuts [61]3 directly in four dimensions.

On the right-hand side, the scalar integrals are known
functions, so their discontinuities are also known explicitly.
We can read out the coefficients of box integrals from
quadruple cuts, while coefficients of bubbles and three-
mass triangle integrals from double cuts. The procedure of
-3
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FIG. 3. Representation of the cut integral. Left and right tree-
level amplitudes are on shell. Internal lines represent the legs
coming from the cut propagators.
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FIG. 2. Scalar box integrals. (a) The outgoing external mo-
menta at each of the vertices are K1, K2, K3, K4, defined to
correspond to sums of the momenta of gluons in the exact
orientation shown. (b) One-mass I1m

4;i . (c) Two-mass ‘‘easy’’
I2m e

4:r;i . (d) Two-mass ‘‘hard’’ I2m h
4:r;i . (e) Three-mass I3m
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(f) Four-mass I4m
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4The discontinuities of box functions may be found in [21].
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[12] can be extended to box integrals as well, but since it is
more efficient to use quadruple cuts, we do not explore that
possibility any further here.

To be able to read out these coefficients of bubbles and
three-mass triangles we need to know their discontinuities
in double cuts. They are given by

�I2�Pcut� � �1; (2.5)

and

�I3m
3 �K1� �

Z 1

0
dz

1

�zQ� �1� z�K1�
2 ;

Q � K3 �
K2

3

K2
1

K1

(2.6)
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where K1 is the cut momentum (see [12] for detailed
derivations). In fact we could carry out the integration for
�I3m

3 �K1� as in [12]. But to read off the coefficients of
three-mass triangles, we need only compare the expres-
sions on both sides without really doing the z-integration,
so the form (2.6) is more useful.4

On the left-hand side of (2.4), the discontinuity of the
amplitude in the Pi;j momentum channel is computed by
the integral

Ci;i�1;...;j�1;j �
Z
d�Atree�‘1; i; i� 1; . . . ; j� 1; j; ‘2�

� Atree���‘2�; j� 1; j� 2; . . . ; i� 2;

i� 1; ��‘1��; (2.7)

where d� � d4‘1d
4‘2�

����‘2
1��

����‘2
2��

�4��‘1 � ‘2 � Pij�
is the Lorentz invariant phase space measure of two light-
like vectors �‘1; ‘2� constrained by momentum conserva-
tion. See Fig. 3.

We need to bring the integral (2.7) into a form conve-
nient to work with. In a nutshell, we begin by expressing
the two tree-level amplitudes in terms of spinor products.
We then use the four-dimensional delta function to inte-
grate one of the propagator momenta. Then, we use the
technique of [18] to rewrite the measure in terms of spin-
ors.Z

d4‘�����‘2���� �
Z 1

0
dtt

Z
h�; d�i	~�; d~�
���; (2.8)

where the bullets represent generic arguments, and the
integration contour for the spinors is the diagonal CP1

defined by ~� � ��.
Next, we use the remaining delta function to perform the

t-integral. The fact that � and ~� are independent homoge-
neous coordinates on two copies of CP1 means that the
result must be homogeneous in � and ~�. In particular, it
may be written as a sum of terms of the form
-4
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1

h‘jPcutj‘

n

Q
	ai‘


Q
hbj‘i

Q
h‘jQkj‘
Q

	ci‘

Q
hdj‘i

Q
h‘jOkj‘


;

Ok � Pcut; O2
k � 0;

(2.9)
where Pcut is the momentum in the channel of the corre-
sponding double cut and the Ok are massive.

There are two key features of the form (2.9). The first
key feature is that the degrees of both � and ~� are �2,
which is consistent with the scaling of the integration
measure

R
h‘d‘i	‘d‘
.

The second key feature is that among all kinds of factors
in denominators, namely h‘jPcutj‘
, 	c‘
, hd‘i and h‘jOj‘
,
only the factor h‘jPcutj‘
 can appear with power greater
than one. The reason is clear: the factor h‘jPcutj‘
 comes
from t-integration, so in principle we can have an arbitrary
power,5 while the other three factors 	c‘
, hd‘i and h‘jOj‘
,
withO2 � 0, come from tree-level amplitudes, which have
only single poles.

B. Canonical decomposition

Now we discuss the canonical decomposition procedure
given in [12]. When we do the decomposition we need to
choose which variables, � or ~�, to be reduced. For the
general discussion in this section and in Appendix B we
reduce ~� variables, but in the explicit examples, we may
reduce �, depending on the situation.

First, we should split the various single poles by partial
fractioning, using the following identity:

	‘c

	‘a
	‘b


�
	ab
	‘c

	ab
	‘a
	‘b


�
	‘a
	cb
 � 	‘b
	ac

	ab
	‘a
	‘b


�
	cb

	ab


1

	‘b

�
	ac

	ab


1

	‘a

; (2.10)
and its generalization, where the degree of ~� in both
numerator and denominator decreases by one. It is worth
noting that in the process of splitting, we may have the
following factors in the denominator: h‘jOkjci
 or
h‘jOkOjj‘i. But the important point is that these factors
appear only once, i.e., they are all single poles.

After splitting all single poles we end up with factors6

�h‘jPcutj‘

n	‘a
��1 or �h‘jPcutj‘


nh‘jQj‘
��1. Then we
need to perform the same splitting of h‘jPcutj‘
 and 	‘a

(or h‘jPcutj‘
 and h‘jQj‘
). After finishing this step we
have the following types of terms:
5The cases n � 1 and n � 0 are degenerate. For example, the
n � 0 case shows up in Appendix A of [27].

6As we have remarked, for degenerate cases we may end up
with factors like �h‘jOj‘
h‘jQj‘
��1 or �	‘a
	‘b
��1, but the
discussion applies to these cases as well.
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�1�
G��; ~��

h‘jPcutja

m�1h‘jPcutj‘


n�m ;

�2�
G��; ~��

h‘jPcutQj‘im�1h‘jPcutj‘
n�m
;

�3�
F���

h‘jPcutja
n�1

1

h‘jPcutj‘
	‘a

;

�4�
F���

h‘jPcutQj‘in�1

1

h‘jPcutj‘
h‘jQj‘

;

(2.11)

where G��; ~�� is a function of both � and ~� while F��� is a
function of � only. One important thing for both functions
G��; ~�� and F��� is that they have only single poles.

The results in (2.11) are our final results for the canoni-
cal decomposition. There are several points to be ex-
plained. First, we have multiple poles like h‘jPcutja
 or
h‘jPcutQj‘i, so we need to discuss how to read out residues
of these multiple poles. Second, as we will analyze care-
fully in Appendix B, terms of types (1) and (2) will
contribute to rational functions while terms of types (3)
and (4) will contribute to pure logarithmic functions.
Thirdly, type (3) will only contribute to one-mass, two-
mass and three-mass box functions, while type (4) will
contribute in addition to three-mass triangle and four-mass
box functions. The reason is because Q2 � 0 in type (4).
Since box coefficients are easily obtained from quadruple
cuts, we will pay the most attention to type (4).

C. Rewriting as total derivative

Before proceeding to extract residues of multiple poles,
let us recall the strategy of integration. The key idea is to
write

R
h‘d‘i	‘d‘
G��; ~�� in the form

R
h‘d‘i�

	d‘@‘
 ~G��; ~��. Then the integration is reduced to algebraic
manipulation by reading off residues at poles in ~G��; ~��.
One useful formula is given by [12]

	‘d‘

Qj�1
i�1 	�i‘
	�j�2‘


n�j�1

h‘jPj‘
n�2

� 	d‘@‘

�Qj�1

i�1 h‘jPj�i


h‘jPj‘
n�1

�

�Xj�1

k�0

��1�j�1�k�j� 1� k�!
�n� 1� �j� 1���n� 1� j� � � � �n� 1� k�

� gk	xs

	�j�2‘
n�1�k

h‘jPj�j�2

�j�1��1�k

��
; (2.12)

where � is an arbitrary but fixed auxiliary spinor and

gk	xi
 �
X

i1<i2<���<ik

xi1xi2 � � � xik ; with xi �
	�i‘

h‘jPj�i


:

(2.13)

One special case is when all the �i are the same and we
choose the auxiliary spinor to be same � as well. Then we
-5
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have

	‘d‘

�
	�‘
n

h‘jPj‘
n�2

�
� 	d‘@‘


�
1

�n� 1�

1

h‘jPj�

	�‘
n�1

h‘jPj‘
n�1

�
;

(2.14)

where no multiple poles show up. We will use (2.14) often
in later calculations.

For terms of types (1) and (2) we can use the formula
(2.12) directly, so the results are just pure rational functions
from residues of poles. But for type (3) and (4) we need to
use Feynman parametrization first to write it in our stan-
dard form, as in (2.12), and then read out residues. After
that we need to integrate the Feynman parameter. Notice
that the order of reading out residues versus Feynman
parameter integration is important. In Appendix B we
discuss with care the properties of this integration.

D. The residues of multiple poles

As we have seen, in general there are multiple poles in
~G��; ~�� after we rewrite the integral in the form

R
h‘d‘i�

	d‘@‘
 ~G��; ~��. We need to know how to read off residues
at these multiple poles.7

The main idea is the following. Recall the underlying
complex analysis. To obtain the residue of

H
dzz�nf�z�, we

need to take the �n� 1�th derivative of the function f�z�
and set z � 0. One important consequence of the above
result is that if the degree of polynomial function of f�z� is
less than (n� 1), we get zero contribution.

For our problem, notice that the degree of � is �2 in
~G��; ~��, so if we split ~G��; ~�� using the identity

h‘ai
h‘�ih‘bi

�
h�ai
h�bi

1

h‘�i
�
hbai
hb�i

1

h‘bi
; (2.15)

then at the end of splitting process we will have terms like
1
h‘�i2

, h‘ai
h‘�i3

, h‘aih‘bi
h‘�i4

etc. (or in general, taking the form
Pn�2���
h‘�in ) for the multiple poles. However, since the degree

of � in numerator is two less than the degree of � in
denominator, by similar reasoning the residues of all these
pieces will be zero.

Now we demonstrate our strategy in several examples.

1. The double pole contribution

Let us start from a term with a double pole,

I2 �
1

h‘�i2

QN
j�1h‘ajiQN
k�1h‘bki

: (2.16)

Using (2.15) once, we get
7In [12], no multiple poles were encountered. We do not know
whether it is a general feature of supersymmetric theories that no
multiple poles show up.
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I2 �
h�a1i

h�b1i

1

h‘�i2

QN
j�2h‘ajiQN
k�2h‘bki

�
1

h‘�i
ha1b1i

h�b1ih‘a1i

QN
j�1h‘ajiQN
k�1h‘bki

:

The second term already has just a single pole, namely
h‘�i, while the first term still has a double pole. We use
(2.15) for the first term again and get

I2 �
1

h‘�i
ha1b1i

h�b1ih‘a1i

QN
j�1h‘ajiQN
k�1h‘bki

�
h�a1i

h�b1i

1

h‘�i
ha2b2i

h�b2ih‘a2i

QN
j�2h‘ajiQN
k�2h‘bki

�
h�a1i

h�b1i

h�a2i

h�b2i

1

h‘�i2

QN
j�3h‘ajiQN
k�3h‘bki

: (2.17)

Iterating this step, we eventually reach the final result:

I2 �
1

h‘�i

XN�1

m�0

Qm
i h�aiiQm
i h�bii

ham�1bm�1i

h�bm�1ih‘am�1i

QN
j�m�1h‘ajiQN
k�m�1h‘bki

�
1

h‘�i2

QN
i h�aiiQN
i h�bii

: (2.18)

The second term does not contribute, as we have argued,
while the first term gives the following residue at the pole
j‘i � j�i:

P2	j�i; La; Lb
 �

QN
i h�aiiQN
i h�bii

XN
i�1

haibii
h�biih�aii

; (2.19)

where the subscript ‘‘2’’ indicates a double pole at the
spinor j�i. For ease of presentation we have also defined
two lists, La � fa1; a2; . . . ; aNg and Lb � fb1; b2; . . . ; bNg.

Let us do one brief example to illustrate the result (2.19).
Consider the integralZ

d�
h‘ai	b‘


h‘jPj‘
3
:

Using (2.12) we can write it asZ
h‘d‘i	d~‘@~‘


�
h‘ai	b‘
	�‘


h‘jPj‘
2h‘jPj�

�
h‘aih‘jPjb
	�‘
2

2h‘jPj‘
2h‘jPj�
2

�
:

Now we can do the integral in two ways. The first is to
choose j�
 � jb
 to eliminate the double pole. The result is
given by � hajPjb


2�P2�2
.

For the second way we just let � remain arbitrary. The
first term gives

�
hajPj�
h�jPjb


�P2�2h�jPj�

� �

hajPjb


�P2�2
�
ha�i	�b


�P2�h�jPj�

:

The second term has a double pole at j‘i � jPj�
. Then we
use the formula (2.19) to get the result. First, we have
	�‘
2 � h�jPj�
2. Second, we have ja1i � jai, ja2i �
jPjb
, jb1i � jb2i � jPj‘
 � ��P2�j�i where we have
-6
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used the fact that at the pole j‘
 ! jPj�i. Putting it to-
gether, we have

h�jPj�
2

2

hajPj�
	�b


�P2�h�jPj�
2

�
ha�i

h�jPj�
hajPj�

�

h�jPjb


h�jPj�
P2	�b


�

�
hajPj�
	�b


2�P2�

�2P2ha�i	�b
�hajPjb
h�jPj�
�

h�jPj�
hajPj�
P2	�b


�
�2P2ha�i	�b
�hajPjb
h�jPj�
�

2P2h�jPj�
P2

�
ha�i	�b


�P2�h�jPj�

�
hajPjb


2�P2�2
��
hajPjb


2�P2�2
; (2.20)

in agreement with the first method.

2. The triple pole contribution

Now we consider the triple pole given by

I3 �
h‘�i

h‘�i3

QN
j�1h‘ajiQN
k�1h‘bki

: (2.21)

Using (2.15) once, we get

I3 �
h�a1i

h�b1i

h‘�i

h‘�i3

QN
j�2h‘ajiQN
k�2h‘bki

�
1

h‘�i2
ha1b1ih‘�i
h�b1ih‘a1i

QN
j�1h‘ajiQN
k�1h‘bki

:

The second term has a double pole, which can be processed
using (2.19). Using (2.15) again on the first term we get

I3 �
1

h‘�i2
ha1b1ih‘�i
h�b1ih‘a1i

QN
j�1h‘ajiQN
k�1h‘bki

�
1

h‘�i2
h�a1i

h�b1i

ha2b2ih‘�i
h�b2ih‘a2i

QN
j�2h‘ajiQN
k�2h‘bki

�
h�a1i

h�b1i

h�a2i

h�b2i

h‘�i

h‘�i3

QN
j�3h‘ajiQN
k�3h‘bki

: (2.22)

Continuing in this way we get

I3 �
1

h‘�i2
XN�1

m�0

Qm
i h�aiiQm
i h�bii

ham�1bm�1ih‘�i
h�bm�1ih‘am�1i

QN
j�m�1h‘ajiQN
k�m�1h‘bki

�
h‘�i

h‘�i3

QN
i h�aiiQN
i h�bii

: (2.23)

Now we can use the result (2.19) to read out the con-
tribution at the triple pole. It is given by
105004
P3	j�i; La; Lb
 �
h��i

QN
i�1h�aiiQN

i�1h�bii

� X
1�i�j�N

haibii
h�biih�aii

�
hajbji

h�bjih�aji

�
XN
i�1

haibii
h�biih�aii

h�aii
h��ih�aii

�
(2.24)

where the two lists given as arguments are La �
fa1; a2; . . . ; aN; �g and Lb � fb1; b2; . . . ; bNg.

3. Higher multiplicity poles

We will not give the residue of a general multiple pole
explicitly, but one can now see how the procedure contin-
ues step by step. Defining

In �

Qn�2
j�1 h‘�ji

h‘�in

QN
k�1h‘akiQN
k�1h‘bki

; (2.25)

we have the following relation:

In �

Qn�2
j�2 h‘�ji

h‘�in�1

XN�1

m�0

Qm
i h�aiiQm
i h�bii

ham�1bm�1ih‘�1i

h�bm�1ih‘am�1i

�

QN
j�m�1h‘ajiQN
k�m�1h‘bki

�

Qn�2
j�1 h‘�ji

h‘�in

QN
i h�aiiQN
i h�bii

; (2.26)

where the last term does not contribute to the residue, while
the first term will give the residue of poles of one lower
multiplicity according to the formula for Pn�1	j�i; La; Lb
.
III. A�1�; 2�; 3�; 4�; 5�; 6��

In this section we demonstrate the principles outlined
above, in the case of A�1�; 2�; 3�; 4�; 5�; 6��, the sim-
plest of the three NMHV helicity configurations of six
gluons. The contribution to the cut-constructible part of
Ascalar in this ‘‘split helicity’’ configuration has already
appeared in the literature [47] and was derived there by a
recursive technique.

For this configuration of external gluons, there are no
contributions from box or triangle integrals, as explained in
[12]. The amplitude may be expressed in terms of bubble
integrals alone. So the cut integrals will turn out to be
rational functions.

The nonvanishing cuts are C34, C61, C234 and C345. This
amplitude is invariant under a Z2 symmetry generated by
�:1$ 3, 4$ 6. Under this symmetry, the cuts are related
through the relations ��C234� � C612 and ��C61� � C34.
Thus there are only two independent integrals, say C34 and
C612.

These two cuts are given as follows. For the cut C34 we
have
-7
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C34 �
Z
d�Atree�‘
1 ; 5

�; 6�; 1�; 2�; ‘�2 �A
tree���‘2�


; 3�; 4�; ��‘1�
��

�
Z
d�

�
h‘2j1� 2j6
3

	61
	12
h‘2‘1ih‘15iP2
612h5j6� 1j2


�
�
h‘1j1� 2j6


h‘2j1� 2j6


�
2 h3‘1i

2h3‘2i
2

h‘23ih34ih4‘1ih‘1‘2i

�
h1j5� 6j‘1


3

	2‘2
	‘2‘1
h56ih61iP2
561h5j6� 1j2


�
h1j5� 6j‘2


h1j5� 6j‘1


�
2 	4‘1


2	4‘2

2

	‘23
	34
	4‘1
	‘1‘2


�

�

�
h‘1j1� 2j6
4

	61
	12
h‘2‘1ih‘15iP2
612h5j6� 1j2
h‘2j1� 2j6


�
h‘2j1� 2j6


h‘1j1� 2j6


�
2 h3‘1i

2h3‘2i
2

h‘23ih34ih4‘1ih‘1‘2i

�
h1j5� 6j‘2


4

	2‘2
	‘2‘1
h56ih61iP2
561h5j6� 1j2
h1j5� 6j‘1


�
�
h1j5� 6j‘1


h1j5� 6j‘2


�
2 	4‘1


2	4‘2

2

	‘23
	34
	4‘1
	‘1‘2


�
; (3.1)

where the first square bracket uses the upper choice of helicities of the cut propagators and the second, the lower. The
expression may be simplified to get

C34 � 2
Z
d�

�
�

h‘2j1� 2j6
h‘1j1� 2j6
2

	61
	12
h‘2‘1ih‘15iP2
612h5j6� 1j2


h3‘1i
2h3‘2i

h34ih4‘1ih‘1‘2i

�
h1j5� 6j‘1
h1j5� 6j‘2


2

	2‘2
	‘2‘1
h56ih61iP2
561h5j6� 1j2


	4‘1
	4‘2

2

	‘23
	34
	‘1‘2


�
: (3.2)

For the cut C612 we have

C612 �
Z
d�Atree�‘
1 ; 6

�; 1�; 2�; ‘�2 �A
tree���‘2�


; 3�; 4�; 5�; ��‘1�
��

�
Z
d�

	‘16
4

	‘16
	61
	12
	2‘2
	‘2‘1


�
	‘26


	‘16


�
2 h3‘1i

4

h‘23ih34ih45ih5‘1ih‘1‘2i

�
h3‘2i

h3‘1i

�
2

�
	6‘2


4

	‘16
	61
	12
	2‘2
	‘2‘1


�
	‘16


	‘26


�
2 h3‘2i

4

h‘23ih34ih45ih5‘1ih‘1‘2i

�
h3‘1i

h3‘2i

�
2

� 2
Z
d�

	6‘2

2	6‘1


2

	‘16
	61
	12
	2‘2
	‘2‘1


h3‘2i
2h3‘1i

2

h‘23ih34ih45ih5‘1ih‘1‘2i
: (3.3)
A. The integration of cut C34

There are two terms in (3.2). Let us start with the first
term. We wish to eliminate ‘2 using the identities8

h‘2j1� 2j6


h‘2‘1i
� �

	‘1jP34P12j6


P2
34

and
h3‘2i

h‘1‘2i
�
	4‘1


	43

:

When this is done, we have

C�1�34 � �
2

�P2
34�

2P2
612	61
	12
h5jP612j2


�
Z
d�
	‘1jP34P12j6
h‘1jP612j6


2h3‘1i
2	4‘1


h‘15ih4‘1i
:

In the formula above, the measure is given by [18]

d� �
Z �1

0
tdth‘1d‘1i	‘1d‘1
���P34 � ‘1�

2�: (3.4)

For simplicity, we write ‘ instead of ‘1 from now on. We
8In our notation we have P2
12 � h12i	12
 and 2pa � pb �

�hajbja
.
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also represent j�i by j‘i and j ~�
 by j‘
. The cut integral is
then

C�1�34 � �
2

�P2
34�

2P2
612	61
	12
h5jP612j2


Z �1
0

tdth‘d‘i

� 	‘d‘
��P2
34 � th‘jP34j‘
�

�
t2	‘jP34P12j6
h‘jP612j6


2h3‘i2	4‘

h‘5ih4‘i

(3.5)

where it is essential to note that an extra factor of t2 shows
up in the second line. The reason is that we have pulled out
an overall t factor when we write measure (3.4). That is to
say, we have written [18,21]

P	 _	 � �old
	

~�old
_	 ! �

��
t
p
�new
	 ��

��
t
p

~�new
_	 � (3.6)

in the measure formula given by (3.4). Because of this
scaling, the extra two pairs of �old and ~�old in the numerator
will give an extra t2 after changing to the variables �new,
~�new.

Since we are working in the dynamical region P2
34 > 0,

to find a nonzero result from the delta function we must
-8
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have h‘jP34j‘
< 0. This is important when we integrate
the delta function, because

��ax� �
1

jaj
��x�:

Now we can perform the t-integration to get

C�1�34 � �
2P2

34

P2
612	61
	12
h5jP612j2


Z
h‘d‘i	‘d‘


�
	‘jP34P12j6
h‘jP612j6


2h3‘i2	4‘


h‘jP34j‘

4h‘5ih4‘i

: (3.7)

Notice that (3.7) is in the form of type (1) in (2.11), so in
principle we can already apply (2.12) to do the integration.
But by observing the identity

h‘3i	‘jP34P612j6
 � �h‘jP34j‘
h3jP612j6


� h‘jP612j6
h3jP34j‘
;

we can split it into two terms that are much easier to
integrate:

C�1�34 � C
Z
h‘d‘i	‘d‘


�
�
h‘jP612j6


2h‘3i	4‘
h3jP612j6


h‘jP34j‘
3h‘5ih4‘i

�
h‘jP612j6


3h‘3i	4‘
2h34i

h‘jP34j‘

4h‘5ih4‘i

�
;

where

C � �
2P2

34

P2
612	61
	12
h5jP612j2


:

The reason for doing so is simple: we find that by a judi-
cious choice of the auxiliary spinor � in (2.12) we can
reduce the integration to the special case (2.14) in which
multiple poles have been canceled.

Using (2.14) for the first term of C�1�34 , we get

C�1;1�
34 � �

C
2	34


Z
h‘d‘i	d‘@‘


�

�
h‘jP612j6


2h3jP612j6
	4‘

2

h‘5ih4‘i
1

h‘jP34j‘
2

�
:

Now we can read off the contributions at the poles.
Naively, there are two poles, j‘i � j5i and j‘i � j4i.
However, due to the factor of 	4‘
2 in the numerator, the
residue at the second pole is zero. In the end we arrive at9

C�1;1�
34 � �

h34i	45
2h3jP612j6
h5jP612j6

2

P2
612	61
	12
h45ih5jP612j2
h5jP34j5


2 :
9Here we remark on signs in these calculations. There are
several places to pay attention to signs. First, we need to write
the pole in the right form (h‘ai or 	‘a
) in order to apply the
formulas of Sec. II. Second, the contribution to the integral [as,
for example, in the formulas (2.19) and (2.24)] is the negative of
the residue obtained by substituting the value of ‘ at the pole.
However, to read out the coefficient of the corresponding bubble
function we need to put another minus sign in front of the
rational part of the cut integration, because of the minus sign
in (2.5).
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Similarly we can find the second term of C�1�34 and the
second term of C34. Putting it all together, we find that the
coefficient of the bubble integral I2:2;3 is

c2:2;3 � �
2h23i3	34
2h1jP561j2


3

3	23
h2jP34j2

3h56ih61iP2

561h5jP561j2


�
h23i2	34
h1jP561j2


2h1jP561j4


	23
h2jP34j2

2h56ih61iP2

561h5jP561j2


�
h34i	45
2h3jP612j6
h5jP612j6


2

P2
612	61
	12
h45ih5jP612j2
h5jP34j5


2

�
2h34i2	45
3h5jP612j6


3

3P2
612	61
	12
h45ih5jP612j2
h5jP34j5


3 : (3.8)
B. The cut C612

For the cut C612 given by (3.3) we perform similar
manipulations to reach

C612 �
2P2

345

	61
	12
h34ih45i

Z
h‘d‘i	‘d‘


�

�
h3jP345j6
h‘jP345j6
h3‘i

2

h‘jP345j2
h‘5i

	6‘


h‘jP345j‘

3

�
P2

345h‘jP345j6
h3‘i
3

h‘jP345j2
h‘5i

	6‘
2

h‘jP345j‘

4

�
: (3.9)

After doing the integration we find that the coefficient of
the bubble integral I2:3;6 is

c2:3;6 �

�
P2

345h3jP345j6


	61
	12
h34ih45ih5jP345j2


�
h35i2	56
2

h5jP345j5

2

�
	61
2h12i2h3jP345j2


2

�P2
345�

2h2jP345j2

2

�

�
2�P2

345�
2

3	61
	12
h34ih45ih5jP345j2


�
h35i3	56
3

h5jP345j5

3

�
	61
3h12i3h3jP345j2


3

�P2
345�

3h2jP345j2

3

��
: (3.10)

We have verified that the above results satisfy the sin-
gular behavior given by (2.3).
IV. A�1�; 2�; 3�; 4�; 5�; 6��

In this configuration, there are one-mass and two-mass-
hard box functions, three-mass triangle functions, and
bubble functions. This amplitude is invariant under a Z6

symmetry generated by 	:i! i� 1 accompanied by con-
jugation. Because of this, we need to calculate just one
coefficient for each type of function and act on it by 	 to
obtain all the others. Representative box coefficients are
-9



RUTH BRITTO, BO FENG, AND PIERPAOLO MASTROLIA PHYSICAL REVIEW D 73, 105004 (2006)
given by [42]

c2m h
4:2;2 �

2	12
h56ih5jP123j1

2h6jP123j2


2P2
123

	23
h45ih4jP123j1
h6jP123j3
h6jP123j1

4 ;

c1m
4;4 �

2	12
	23
h5jP123j1

2h5jP123j3


2

	13
4h45ih56ih4jP123j1
h6jP123j3
P
2
123

:

(4.1)

We need to choose just two representative integrals, one
105004
in a three-particle channel and one in a two-particle chan-
nel. We choose the following cuts.

C123 �
2

	12
	23
h45ih56i�P2
123�

2

Z
d�
	2‘
2h‘jP123j2


2

	‘1
h‘jP123j3


�
h5‘i2h5jP123j‘
2

h4jP123j‘
h6‘i
;

C56 � 2
Z
d�

	‘12
2h3‘2i
2h3jP‘112j2


2

	‘11
	12
h34ih4‘2iP
2
‘112h4jP‘112j‘1
h‘2jP‘112j2


h5‘1i
2h5‘2i

2

h‘25ih56ih6‘1ih‘1‘2i

�
h‘11i2h‘21i2	24
4

h‘2‘1ih‘11i	23
	34
h1jP234j4
h‘2jP234j2
P2
234

h5‘1i
2h5‘2i

2

h‘25ih56ih6‘1ih‘1‘2i

�
	4‘1


2	4‘2

2h31i4

h12ih23i	4‘2
	‘2‘1
P2
123h3jP123j‘1
h1jP123j4


h5‘1i
2h5‘2i

2

h‘25ih56ih6‘1ih‘1‘2i
: (4.2)
A. Cut C123

We start with the cut C123 because it does not contain
three-mass triangle functions and should thus be easier to
deal with. Since we know the box coefficients, we need
only to extract the rational functions giving the bubble
coefficients.

After the t-integration we get

C123 �
2�P2

123�

	12
	23
h45ih56i

Z
h‘d‘i	‘d‘


1

h‘jP123j‘
4

�
	2‘
2h‘jP123j2


2

	‘1
h‘jP123j3


h5‘i2h5jP123j‘
2

h4jP123j‘
h6‘i
:

We look for singularities in j‘
 in the denominator; we find
two single poles 	‘1
 and h4jP123j‘
 and one quadruple
pole h‘jP123j‘
.

To demonstrate our general strategy, we give some de-
tails of the calculation. Since there are only two single
poles, we can separate them by application of (2.10) to find

C123 � C
Z
h‘d‘i	‘d‘


1

h‘jP123j‘
4
	2‘
2h‘jP123j2


2

h‘jP123j3


�
h5‘i2h5jP123j‘


h6‘i

�
P2

123h54i

h4jP123j‘

�
h5jP123j1


	‘1


�
;

where

C �
2�P2

123�

	12
	23
h45ih56ih4jP123j1

:

Next we split the simple pole from the quadruple pole by
repeating (2.10). Finally we get

C123 � Crational
123 � Clog

123; (4.3)

where
Crational
123 � �

2�P2
123�

2

	12
	23
h45ih56i

Z
h‘d‘i	‘d‘


	2‘
2

h‘jP123j‘
4
h5‘i4h‘jP123j2


2

h‘4ih‘jP123j1
h‘jP123j3
h6‘i
�

2�P2
123�h45i2

	12
	23
h45ih56ih4jP123j1


�
Z
h‘d‘i	‘d‘


h‘jP123j2

3h5‘i2

h‘4i2h‘jP123j3
h6‘i

	2‘


h‘jP123j‘

3 �

2h45i2

	12
	23
h45ih56ih4jP123j1


Z
h‘d‘i	‘d‘


�
h‘jP123j2


3h5‘i2h4jP123j2


h‘4i3h‘jP123j3
h6‘i

1

h‘jP123j‘

2 �

2�P2
123�h5jP123j1


2

	12
	23
h45ih56ih4jP123j1


Z
h‘d‘i	‘d‘


h‘jP123j2

3h5‘i2

h‘jP123j1

2h‘jP123j3
h6‘i

�
	2‘


h‘jP123j‘

3 �

2�P2
123�h5jP123j1


2	21


	12
	23
h45ih56ih4jP123j1


Z
h‘d‘i	‘d‘


h‘jP123j2

3h5‘i2

h‘jP123j1

3h‘jP123j3
h6‘i

1

h‘jP123j‘

2 (4.4)

and

Clog
123 �

2h45i2

	12
	23
h45ih56ih4jP123j1


Z
h‘d‘i	‘d‘


h‘jP123j2

2h5‘i2h4jP123j2


2

h‘4i3h‘jP123j3
h6‘i

1

h‘jP123j‘
h4jP123j‘


�
2�P2

123�h5jP123j1

2	21
2

	12
	23
h45ih56ih4jP123j1


Z
h‘d‘i	‘d‘


h‘jP123j2

2h5‘i2

h‘jP123j1

3h‘jP123j3
h6‘i

1

h‘jP123j‘
	‘1

: (4.5)
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The key feature of the above expansion is that each term
in (4.3) is in the standard form given in (2.11), so we know
how to deal with each one. Furthermore, as indicated by
our notation, Crational

123 gives only a rational contribution
while Clog

123 contributes only to pure logarithmic terms
(see Appendix B for a discussion of the latter), from which
we can read the coefficients of corresponding one-mass
and two-mass hard box functions. Since we have calculated
these box functions by quadruple cuts, it can serve as an
independent check of our method. However, we will not do
it here.

Now we focus on the rational part, Crational
123 . If we use

(2.14) for the first term we find that we get only a single
pole, easily dealt with. The second and fourth terms have
double poles which are new to us, so we will use them to
demonstrate our general strategy as laid out in Sec. II.
However, before we proceed to a detailed treatment of
double poles, we want to remark upon the third and fifth
terms. Naively we have triple poles, but recall that in the
relation

	‘d‘

1

h‘jP123j‘

2 � 	d‘@‘


	�‘

h‘jP123j‘
h‘jP123j�


we have some freedom in the choice of j�
. If we choose
j�
 � j4
 for the third term, the numerator factor 	4‘
 will
make the contribution from triple pole 1

h‘4i3
to be zero. A

similar manipulation can be done in fifth term by choosing
j�
 � jP123j1i.

1. Double pole: The second term of Crational
123

We can write the second term of Crational
123 as

Crational;2
123 � C

Z
h‘d‘i	d‘@‘


�
h‘jP123j2


3h5‘i2

h‘4i2h‘jP123j3
h6‘i

�
	2‘
2

h‘jP123j‘

2h‘jP123j2


�

105004
with

C �
�P2

123�h45i

	12
	23
h56ih4jP123j1

:

There are several single poles but we will be concerned
only with the double pole h‘4i. To read out the residue at
this double pole, we write the integrand as

�C	24
2
1

h‘4i2
h‘jP123j2


3h‘5i2

h‘jP123j3
h‘6ih‘jP123j4

2h‘jP123j2


;

where we have made the replacement j‘
 � j4
. Now it is
in our standard form for a double pole, so we can use (2.18)
and (2.19) to write down the answer as

�C	24
2P2	j4i; L
�II;C123�
1 ; L�II;C123�

2 
;
where we will make use of the following lists:

L�II;C123�
1 � fj5i; j5i; jP123j2i; jP123j2ig;

L�II;C123�
2 � fj6i; jP123j3i; jP123j4i; jP123j4ig

L�II;C123�
3 � fj6i; jP123j3i; j1i; j1ig:

(4.6)
2. The coefficient of bubble I2:3;1

Combining all these results, we find that the coefficient
of the bubble integral I2:3;1 is given by
c2:3;1 �
1

	12
	23
h45ih56i

�
�

2�P2
123�

2

3

X4

i�1

lim
j‘i!j‘ii

h‘‘ii
�
	2‘
3

h‘jP123j‘
3
h5‘i4h‘jP123j2


h‘4ih‘jP123j1
h‘jP123j3
h6‘i

�

�
2h45i2

h4jP123j1


X
i�1;2;6

lim
j‘i!j‘ii

h‘‘ii
�
�
h‘jP123j2


3h5‘i2h4jP123j2


h‘4i3h‘jP123j3
h6‘i

	4‘

h‘jP123j‘
h‘jP123j4


�
�

2�P2
123�h5jP123j1


2	21


h4jP123j1


�
X

i�1;2;5

lim
j‘i!j‘ii

h‘‘ii
�

h‘jP123j2

3h5‘i2

h‘jP123j1

3h‘jP123j3
h6‘i

h1jP123j‘


h‘jP123j‘
P2
123h‘1i

�
�

X
i�1;2

lim
j‘i!j‘ii

h‘‘ii

�

�
�P2

123�h45i2

h4jP123j1


h‘jP123j2

2h5‘i2

h‘4i2h‘jP123j3
h6‘i

	2‘
2

h‘jP123j‘

2 �
�P2

123�h5jP123j1

2

h4jP123j1


h‘jP123j2

2h5‘i2

h‘jP123j1

2h‘jP123j3
h6‘i

	2‘
2

h‘jP123j‘

2

�

�
�P2

123�h45i2	24
2

h4jP123j1

P2	j4i; L

�II;C123�
1 ; L�II;C123�

2 
 �
h5jP123j1


2h13i2	23
2

h4jP123j1
�P
2
123�

P2	jP123j1
; L
�II;C123�
1 ; L�II;C123�

3 


�
; (4.7)

where the list L�II;C123�
i has been given in (4.6), while the various poles are given by

j‘1i � jP123j3
; j‘2i � j6i; j‘3i � j4i; j‘4i � jP123j1
; j‘5i � j1i; j‘6i � jP123j4
:
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Let us give a brief explanation for the result (4.7). The
first three lines give single pole contributions of the first,
the third and the fifth terms in (4.4). The fourth and fifth
lines give single pole contributions of the second and the
fourth terms in (4.4). The last two lines are double pole
contributions of the second and the fourth terms in (4.4).
105004
B. Cut C56

Now we consider to the two-particle channel where the
cut integral is given by (4.2). Of the three terms, only the
first one will contribute to the three-mass triangle, so we
leave it for last.
1. The second term

For the second term in (4.2) we achieve the following separation by our standard splitting process:

C�2r�56 �
2	24
4P2

56h56i

	23
	34
h1jP234j4
P2
234

Z
h‘d‘i	‘d‘


h‘5ih‘1i3	6‘
2

h‘jP234j2
h‘6ih‘jP56j‘
4
�

2	24
4P2
56h61i

	23
	34
h1jP234j4
P2
234

Z
h‘d‘i	‘d‘


�
h‘5i2h‘1i2	6‘


h‘jP234j2
h‘6i2h‘jP56j‘

3 �

2	24
4P2
56h61i

	23
	34
h1jP234j4
P
2
234

Z
h‘d‘i	‘d‘


h‘5i2h‘1i2

h‘jP234j2
h‘6i3h‘jP56j‘

2 ; (4.8)

and

C�2l�56 �
2	24
4P2

56h61i

	23
	34
h1jP234j4
P2
234

Z
h‘d‘i	‘d‘


h‘5ih‘1i2

h‘jP234j2
h‘6i3	5‘
h‘jP56j‘

;

where r, l indicate rational and logarithmic parts, respectively.
It can be shown that in this case, with a judicious choice of the auxiliary spinor�, we can get rid of all multiple poles and

are left with only single pole contributions. The contribution to the coefficient of the bubble I2:2;5 is given by

c�2�2:2;5 �
2	24
4h56ih61i

	23
	34
h1jP234j4
P2
234

h5jP234j2
h1jP234j2

2h2jP234j6


h6jP234j2

3h2jP234P56P234j2


�
	24
4h56ih61i

	23
	34
h1jP234j4
P2
234

�
h1jP234j2


2h2jP234j6

2h5jP234j2


h6jP234j2

2h2jP234P56P234j2


2 �
2	24
4h56i2h1jP234j2


3h2jP234j6

3

3	23
	34
h1jP234j4
P2
234h6jP234j2
h2jP234P56P234j2


3 : (4.9)

2. The third term

Now we split the third term of (4.2) into

C�3r�56 �
2h31i4P2

56	56


h12ih23iP2
123h1jP123j4


Z
h‘d‘i	‘d‘


	4‘
3	6‘
h‘5i2

h3jP123j‘
	5‘
h‘jP56j‘
4
�

2h31i4P2
56	45


h12ih23iP2
123h1jP123j4


Z
h‘d‘i	‘d‘


�
	4‘
2	6‘
2h‘5i

h3jP123j‘
	5‘

2h‘jP56j‘


3 �
2h31i4P2

56	45


h12ih23iP2
123h1jP123j4


Z
h‘d‘i	‘d‘


	4‘
2	6‘
2

h3jP123j‘
	5‘

3h‘jP56j‘


2 (4.10)

and

C�3l�56 �
2h31i4P2

56	45


h12ih23iP2
123h1jP123j4


Z
h‘d‘i	‘d‘


	4‘
2	6‘


h3jP123j‘
	5‘

3h‘6ih‘jP56j‘


:

From here we read out the bubble coefficient part as

c�3�2:2;5 � �
2h13i4	56
2h3jP123j4


3h5jP123j3

3

3h12ih23iP2
123h1jP123j4
h3jP123j5
h3jP123P56P123j3


3 �
h13i4	45
	56
h3jP123j4


2h3jP123j6
h5jP123j3

2

h12ih23iP2
123h1jP123j4
h3jP123j5


2h3jP123P56P123j3

2

�
2h13i4	45
	56
h3jP123j4


2h3jP123j6
h5jP123j3


h12ih23iP2
123h1jP123j4
h3jP123j5


3h3jP123P56P123j3

: (4.11)
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3. The first term

Now we move to the first term in (4.2). After doing the t-integration and setting ‘ � ‘1, we get

C�1�56 � �
2

	12
h34iP2
56

Z
h‘d‘i	‘d‘


�P2
56�

2

h‘jP56j‘
3
	‘2
2h3jP56j‘
2h5‘i2	6‘


	‘1
h4jP12j‘
h4jP56j‘
	2jP5612P56j‘
h6‘i

�
h3jP12j2


2 � 2
P2

56

h‘jP56j‘

h3jP12j2
h3‘i	‘2
 �

�P2
56
�2

h‘jP56j‘
2
h3‘i2	‘2
2

P2
12 �

P2
56h‘jP12j‘

h‘jP56j‘


: (4.12)
Defining

Q � P12 �
P2

12

P2
56

P56;

we get

C�1�56 � �
2

	12
h34i

Z
h‘d‘i	‘d‘


1

h‘jP56j‘
3

�
	‘2
2h3jP56j‘
2h5‘i2	6‘


	‘1
h4jP12j‘
h4jP56j‘
	2jP5612P56j‘
h6‘i

�

�
h3jP12j2


2h‘jP56j‘

h‘jQj‘


�
2P2

56h3jP12j2
h3‘i	‘2


h‘jQj‘


�
�P2

56�
2h3‘i2	‘2
2

h‘jP56j‘
h‘jQj‘


�
: (4.13)

To simplify the calculation further we define
105004
g�~‘� � �
	‘6
	‘2
2	‘jP56j3i

2

	‘1
	‘jP12j4i	‘jP56j4i	‘jP56P34j2

: (4.14)

The tilde in g�~‘� indicates that this function is
antiholomorphic.

Now we can use our standard splitting method to split
each of them to reach the form given in (2.11). The result is

C�1�56 � C�1r�56 � C
�1l�
56 � C

�1;3m�
56 ;

where 1r, 1l, 3m respectively indicate rational contribu-
tions, logarithmic contributions for box functions and
logarithmic contributions for three-mass triangle func-
tions. Since we do not compute box coefficients from
double cuts, we do not record them here, but give only
the other two parts as:
C�1r�56 � �
2�P2

56�
2

	12
h34i

Z
h‘d‘i	‘d‘


g�~‘�	‘2
2h3jP56j‘

2

h6jP56j‘
	‘jP56Qj‘

h5‘i2

h‘jP56j‘
4
�

2�P2
56�

2

	12
h34i

Z
h‘d‘i	‘d‘


g�~‘�	‘2
2h36i2h5jP56j‘


h6jQj‘
h6jP56j‘
2

�
h5‘i

h‘jP56j‘
3
�

2�P2
56�

2

	12
h34i

Z
h‘d‘i	‘d‘


g�~‘�	‘2
2h3jQj‘
2h5jP56j‘


h6jQj‘
	‘jP56Qj‘
2
h5‘i

h‘jP56j‘
3
�

4P2
56h13i

h34i

Z
h‘d‘i	‘d‘


�
g�~‘�	‘2
	6‘
h3jP56j‘

	5‘
	‘jP56Qj‘


h5‘i

h‘jP56j‘

3 �

4P2
56h13i

h34i

Z
h‘d‘i	‘d‘


g�~‘�	‘2
	6‘
2h65ih3jQj‘


	‘5
	‘jP56Qj‘

2

1

h‘jP56j‘

2 �

4P2
56h13i

h34i

�
Z
h‘d‘i	‘d‘


g�~‘�	‘2
	6‘
h3jP56j‘


	‘5
2	‘jP56Qj‘


1

h‘jP56j‘
2
�

2h13i2	12


h34i

Z
h‘d‘i	‘d‘
g�~‘�

g�~‘�h56i	6‘
2

	5‘
	‘jP56Qj‘

1

h‘jP56j‘
2

�
2�P2

56�
2

	12
h34i

Z
h‘d‘i	‘d‘


g�~‘�	‘2
2h36i2h5jP56j‘
h56i

h6jQj‘
h6jP56j‘
3
1

h‘jP56j‘
2

�
2�P2

56�
2

	12
h34i

Z
h‘d‘i	‘d‘


g�~‘�	‘2
2h3jQj‘
2h5jP56j‘
h5jQj‘


h6jQj‘
	‘jP56Qj‘

3

1

h‘jP56j‘

2 ; (4.15)

C�1;3m�
56 � �

2h13i2	12


h34i

Z
h‘d‘i	‘d‘
g�~‘�

h5jQj‘
2

h6jQj‘
	‘jP56P12j‘

1

h‘jP56j‘
h‘jQj‘

�

2�P2
56�

2

	12
h34i

Z
h‘d‘i	‘d‘
g�~‘�	‘2
2

�
h3jQj‘
2h5jQj‘
2

h6jQj‘
	‘jP56P12j‘
3
1

h‘jP56j‘
h‘jQj‘

�

4P2
56h13i

h34i

Z
h‘d‘i	‘d‘
g�~‘�	‘2


h3jQj‘
h5jQj‘
2

h6jQj‘
	‘jP56P12j‘
2

�
1

h‘jP56j‘
h‘jQj‘

: (4.16)

Now we will discuss them one by one. But before doing that we need to know how to deal with poles from 	‘jP56Qj‘
.
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Dealing with 	‘jP56Qj‘
.—Now we need to deal with
the factor 	‘jP56Qj‘
 in the denominator. We expand it as

j‘
 � ja
 � xjb


where a, b are two arbitrary massless spinors. With this
substitution we find

0 � 	ajP56Qja
 � x�	ajP56Qjb
 � 	bjP56Qja
�

� x2	bjP56Qjb
x


�
��	ajP56Qjb
 � 	bjP56Qja
� 
 	ab


���������
�3m

p
2	bjP56Qjb


;

�3m � �P2
12�

2 � �P2
34�

2 � �P2
56�

2 � 2P2
12P

2
34 � 2P2

12P
2
56

� 2P2
34P

2
56 (4.17)

Now we can write the factor as

	‘�1
	‘�2
 � 	‘a
2 � �x� � x��	‘a
	‘b
 � x�x�	‘b
2

�
	ab
2	‘jP56Qj‘

	bjP56Qjb


(4.18)

where j�1
 � ja
 � x�jb
 and j�2
 � ja
 � x�jb
. In
105004
other words, we write

	‘jP56Qj‘
 � 	‘�1
	‘�2

	bjP56Qjb


	ab
2
; (4.19)

where

j�1
 � ja
 � x�jb
; j�2
 � ja
 � x�jb
;

x
 �
��	ajP56Qjb
 � 	bjP56Qja
� 
 	ab


���������
�3m

p
2	bjP56Qjb


:

The rational part.—Now we discuss the rational part,
C�1r�56 , given in (4.15). Upon a few moments’ study, we see
that among these nine terms, only the ninth one has a triple
pole and only the third and the fifth have double poles. All
of the remaining six terms have only single poles. For
example, although the second term has the pole 1

h65i2	5‘
2 ,

the factor of h5‘i in the numerator sets its contribution to
zero. Also, the first term in (4.15) has a factor of 1

	6‘
 , but

g�~‘� has the same factor in the numerator, so it is not a pole.
To read out the rational contributions we define the

following three functions:
A1 �
2�P2

56�
2	ab
2

3	12
h34ih56i2	bjP56Qjb


g�~‘�	‘2
2h3jP56j‘

2h5‘i3

	5‘
	‘�1
	‘�2
	6‘
h‘jP56j‘

3 �

	56
2

	12
h34i

g�~‘�	‘2
2h36i2h5‘i2

h6jQj‘
	5‘
2h‘jP56j‘

2

�
2P2

56h13i	ab
2

h34ih56i	bjP56Qjb

g�~‘�	‘2
h3jP56j‘
h5‘i

2

	5‘
	‘�1
	‘�2
h‘jP56j‘
2
�

4P2
56h13i	ab
2

h34ih56i	bjP56Qjb

g�~‘�	‘2
h3jP56j‘
h5‘i

	‘5
2	‘�1
	‘�2
h‘jP56j‘


�
2h13i2	12
	ab
2

h34i	bjP56Qjb

g�~‘�	6‘
h5‘i

	5‘
	‘�1
	‘�2
h‘jP56j‘

�

2�P2
56�

2h36i2

	12
h34ih56i2
g�~‘�	‘2
2h5‘i

h6jQj‘
	5‘
3h‘jP56j‘

(4.20)

A2 � �
�P2

56�
2	ab
4

	12
h34i	bjP56Qjb

2

g�~‘�	‘2
2h3jQj‘
2h5‘i2

h6jQj‘
	‘�1

2	‘�2


2h‘jP56j‘

2 �

4P2
56h13i	ab
4

h34i	bjP56Qjb

2

g�~‘�	‘2
	6‘
h3jQj‘
h5‘i

	‘5
	‘�1

2	‘�2


2h‘jP56j‘

(4.21)
A3 � �
2�P2

56�
2	ab
6

	12
h34i	bjP56Qjb

3

�
g�~‘�	‘2
2h3jQj‘
2h5jP56j‘
h5jQj‘
h�1‘i

h6jQj‘
h�1jP56j‘
	‘�1

3	‘�2


3h‘jP56j‘

(4.22)

The function A1 is the collection of the first, second,
fourth, sixth, seventh and eighth terms after writing them in
the form of hd‘@‘i���. Similarly, A2 is the collection of the
third and fifth terms, while A3 is the ninth term, after
writing them in the form hd‘@‘i���. Unlike in A1, we
have double poles in A2 and triple poles in A3, so we
need to separate these contributions. One feature A3 is
that we have chosen the auxiliary spinor carefully to cancel
one of the two triple poles (notice the factor h�1‘i in
numerator).

First, A1 gives the following contribution to the bubble
coefficient:

c1r;A1
2:2;5 �

X7

i�1

lim
‘!‘i
�	‘‘i
A1� (4.23)
where

j‘1
 � j1
; j‘2
 � jP12j4i; j‘3
 � jP56j4i;

j‘4
 � jP56P5612j2
; j‘5
 � jQj6i;

j‘6
 � j�1
; j‘7
 � j�2


A2 gives the following single pole contribution

c1r;A2�1
2:2;5 �

X5

i�1

lim
‘!‘i
�	‘‘i
A2� (4.24)

and double pole contribution

c1r;A2�2
2:2;5 �

�P2
56�

2	ab
4h5�1i
2

	12
h34i	bjP56Qjb

2 P2	j�1
; L1; L2


�
4P2

56h13i	ab
4h5�1i

h34i	bjP56Qjb
2
P2	j�1
; L3; L4


� fj�1
 $ j�2
g (4.25)

where these lists are
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L1 � fj6
; j2
; j2
; jP56j3i; jP56j3i; j2
; j2
; jQj3i; jQj3ig

L2 � fj1
; jP12j4i; jP56j4i; jP56P34j2
; jQj6i; j�2
; j�2
; jP56j�1i; jP56j�1ig

L3 � fj6
; j2
; j2
; jP56j3i; jP56j3i; j2
; j6
; jQj3ig

L4 � fj1
; jP12j4i; jP56j4i; jP56P34j2
; j5
; j�2
; j�2
; jP56j�1ig

(4.26)

and the function P2 is given in (2.19).
For A3, the single pole contribution is

c1r;A3�1
2:2;5 �

X5

i�1

lim
‘!‘i
�	‘‘i
A3� � lim

‘!jP56j�1i
�	‘jP56j�1iA3�; (4.27)

and the triple pole contribution is

c1r;A3�2
2:2;5 � �

2�P2
56�

2	ab
6h56ih�1�2i

	12
h34i	bjP56Qjb
3
P3	j�2
; L5; L6
 (4.28)

with

L5 � fj6
; j2
; j2
; jP56j3i; jP56j3i; j2
; j2
; jQj3i; jQj3i; j6
; jQj5ig

L6 � fj1
; jP12j4i; jP56j4i; jP56P34j2
; jQj6ji; j�1
; j�1
; j�1
; jP56j�1i; jP56j�1ig;
(4.29)
and the function P3 is given in (2.24).
Putting it all together, we find that the coefficient c2:2;5 is

given by the sum of (4.9), (4.11), (4.23), (4.24), (4.25),
(4.27), and (4.28).

The coefficient of triangle I3:2;2;1.—To read off the co-
efficient of three-mass triangle function I3:2;2;1 from (4.16),
we need to be careful about different poles. As discussed
carefully in Appendix B, poles from the factor 	‘jP56Qj‘

are special. In this example, the poles from factors other
than 	‘jP56Qj‘
 are all single poles, and their contributions
are given by

c�1�3:2;2;1 �
X6

i�1

lim
j‘
!j‘i


	‘‘i

g�~‘�
	‘~�


R1	‘; ~�;P56; Q


�

�
�

2h13i2	12


h34i

h5jQj‘
2

h6jQj‘
	‘jP56P12j‘


�
2�P2

56�
2

	12
h34i

	‘2
2h3jQj‘
2h5jQj‘
2

h6jQj‘
	‘jP56P12j‘
3

�
4P2

56h13i

h34i

	‘2
h3jQj‘
h5jQj‘
2

h6jQj‘
	‘jP56P12j‘

2

�
(4.30)

with the following poles:

j‘1
 � j1
; j‘2
 � jP12j4i; j‘3
 � jP56j4i;

j‘4
 � jP56P5612j2
; j‘5
 � jQj6i;

j‘6
 � j~�
j‘7
 � j�1
; j‘8
 � j�2


(4.31)

Now consider the contributions from the poles from
	‘jP56Qj‘
. The first term in (4.16), is a single pole, so
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c�2�3:2;2;1 � �
2h13i2	12


h34i

	ab
2

	bjP56Qjb


�

�
g�~‘7� ~R2	‘7; ~�; P56
h5jQj‘7


2

h6jQj‘7
	‘7 ~�
	‘7‘8


�
g�~‘8� ~R2	‘8; ~�; P56
h5jQj‘8


2

h6jQj‘8
	‘8 ~�
	‘8‘7


�
(4.32)

where ~R2	‘7; ~�; P56
 is the conjugated version of R2 given
in Appendix B, i.e., j�i $ j�
.

The third term in (4.16) has a double pole, so the con-
tribution is

c�3�3:2;2;1�
4P2

56h13i

h34i

	ab
4

	bjP56Qjb

2

g�~‘7�	‘72
h3jQj‘7
h5jQj‘7

2

	‘7‘8

2h6jQj‘7
	‘7 ~�


� ~R2	‘7; ~�;P56

X8

i�1

	L7;iL8;i


	‘7L7;i
	‘7L8;i

�

4P2
56h13i

h34i

�
	ab
4

	bjP56Qjb

2

g�~‘7�	‘72
h3jQj‘7
h5jQj‘7

2

	‘7‘8

2h6jQj‘7
	‘7 ~�
	‘72


� ~R3	‘7; ~�;j2
;P56
�fj�1
$j�2
g (4.33)

with the following two lists:

L7 � fj6
; j2
; j2
; jP56j3i; jP56j3i; jQj5i; jQj5i; jQj3i; j2
g

L8 � fj1
; jP12j4i; jP56j4i; jP56P34j2
; jQj6i; j‘8
; j‘8
; j~�
;

jPj‘7ig (4.34)

The second term in (4.16) has a triple pole, so the
contribution is
-15
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c�4�3:2;2;1 �
2�P2

56�
2

	12
h34i

	ab
6

	bjP56Qjb

3

g�~‘7�	‘72
2h3jQj‘7

2h5jQj‘7


2

	‘7‘8

3h6jQj‘7
	‘7 e�


� X
1�i�j�9

	L9;iL10;i


	‘7L9;i
	‘7L10;i


	L9;jL10;j


	‘7L9;j
	‘7L10;j

~R2	‘7; ~�; P56


�
X9

i�1

	L9;iL10;i


	‘7L9;i
	‘7L10;i


	L9;11L9;i


	‘7L9;11
	‘7L9;i

~R2	‘7; ~�;P56
 �

	L9;11L9;i


	‘7L9;11
	‘7L9;i
	‘72

~R3	‘7; ~�; j2
; P56


�
X

1�i�9

	L9;iL10;i


	‘7L9;i
	‘7L10;i
	‘72

~R3	‘7; ~�; j2
; P56
 �

1

	‘72
2
~R4	‘7; ~�; j2
; P56


�
� fj�1
 $ j�2
g (4.35)

with the following two lists:

L9 � fj6
; j2
; j2
; jP56j3i; jP56j3i; jQj3i; jQj3i; jQj5i; jQj5i; j2
; j2
g

L10 � fj1
; jP12j4i; jP56j4i; jP56P34j2
; jQj6i; j‘8
; j‘8
; j8
; j~�
; jPj‘7ig:
(4.36)
The result of cut C56.—The coefficient of bubble I2:2;5 is
the sum of (4.9), (4.11), (4.23), (4.24), (4.25), (4.27), and
(4.28):

c2:2;5 � c�3r�2:2;5 � c
1r;A1
2:2;5 � c

1r;A2�1
2:2;5 � c1r;A2�2

2:2;5 � c1r;A3�1
2:2;5

� c1r;A3�2
2:2;5 : (4.37)

The coefficient of the three-mass triangle function I3:2;2;1

is given by the sum of (4.30), (4.32), (4.33), and (4.35):

c3:2;2;1 � c�1�3:2;2;1 � c
�2�
3:2;2;1 � c

�3�
3:2;2;1 � c

�4�
3:2;2;1: (4.38)

The result could have been written directly using the
functions defined at the end of Appendix C. Here we have
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given some intermediate steps for illustration. For further
details, see Appendix C.

V. A�1�; 2�; 3�; 4�; 5�; 6��

The last of the NMHV six-gluon helicity configurations
requires the heaviest computation. However, there are no
essentially new features encountered. In this section we
present, with minimal discussion, some of our intermediate
steps in order to allow the reader to confirm our final
formulas for the coefficients.

This helicity configuration is invariant under a Z2 sym-
metry generated by 	:i$ 7� i accompanied by conjuga-
tion. There are box, triangle and bubble contributions. The
box coefficients are straightforward to calculate by qua-
druple cuts and have been given in [42]. We list them again
here in the notation consistent with the rest of this paper.10
c2m h
4:2;2 � 2

	13
2h46i2h4jP123j1
h6jP123j3
P2
123

	12
	23
h45ih56ih6jP123j1

4 c2m h

4:2;4 � 2
	62
2h34ih4jP345j2


2h3jP345j6
P
2
345

h45i	61
	12
h5jP345j2
h3jP345j2

4

c2m h
4:2;6 � 2

h15i2	34
h5jP234j3

2h1jP234j4
P2

234

	23
h56ih61ih5jP234j2
h5jP234j4

4 c1m

4;5 � 2
	23
	34
h1jP234j2


2h1jP234j4


	24
4h56ih61ih5jP234j2
P
2
234

c1m
4;6 � 2

h34ih45ih5jP345j6

2h3jP345j6


h35i4	61
	12
h5jP345j2
P
2
345

(5.1)
10An apparent discrepancy is due to a typo in the numerator of
the coefficient cN�0

5 in [42].
In this configuration, there is only one nonvanishing
three-mass-triangle coefficient, with the distribution
�23j45j61�.

For the bubble part, we have the following cuts: three
particle channels C123, C612 and C234; two particle chan-
nels C23, C34, C45 and C61. Among these, the pairs
�C612; C234� and �C23; C45� are related by the Z2 symmetry,
while the others are invariant. So in total we have five
independent double cuts C123, C234, C23, C34 and C61. We
address these one by one.
Throughout this section we freely omit the integral sign
when its presence may be inferred from spinor
differentials. A. Cut C123

ForC123, there is no three-mass triangle contribution and
the calculation will be relatively simple. The expression is
given by
-16
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C123 �
Z
d�	A�‘�1 ; 1

�; 2�; 3�; ‘�2 �A�‘
�
2 ; 4

�; 5�; 6�; ‘�1 �

� A�‘�1 ; 1
�; 2�; 3�; ‘�2 �A�‘

�
2 ; 4

�; 5�; 6�; ‘�1 �


�
Z
d�

2h4‘1i
2h4‘2i

2	3‘1

2	3‘2


h45ih56ih6‘1ih‘1‘2ih‘24i	12
	23
	‘11
	‘2‘1


(5.2)

After the t-integration, the rational contribution can be read
as a sum of three contributions,

Crat
123�C

�1r�
123�C

�2r�
123�C

�3r�
123 ; (5.3)

each of which will be discussed separately.

1. The term C�1r�123

C�1r�123 �
2h‘d‘i	‘d‘
h4‘i2h4jP123j1
h‘jP123j3


2	31
�P2
123�

h45ih56ih6‘ih‘jP123j1

3h‘jP123j‘
2	12
	23


:

(5.4)

This integrand may be turned into a full derivative by
choosing as a reference spinor j�
 � P123j1i, to neutralize
the multiple pole h‘jP123j1


3:

C�1r�123

�
2h‘d‘i	d‘@‘
h4‘i

2h1jP123j‘
h4jP123j1
h‘jP123j3

2	31


h1‘ih45ih56ih6‘ih‘jP123j1

3h‘jP123j‘
	12
	23


:

(5.5)

The sum of the residues can therefore be performed as
follows:

C�1r:s�123 �
2h4jP123j1
	31


h45ih56i	12
	23


X
i�1;2

lim
‘!‘i
h‘‘ii

�
h4‘i2h1jP123j‘
h‘jP123j3


2

h1‘ih6‘ih‘jP123j1

3h‘jP123j‘


; (5.6)

with j‘1i � j1i and j‘2i � j6i.

2. The term C�2r�123

C�2r�123 �
2h‘d‘i	‘d‘
h4‘i2h4jP123j1
h‘jP123j3


2	3‘
�P2
123�

h45ih56ih6‘ih‘jP123j1

2h‘jP123j‘


3	12
	23


(5.7)

In this case, one can write the integrand as a full derivative
by choosing the reference spinor � � 3, so that

C�2r�123 ��
h‘d‘i	d‘@‘
h4‘i2h4jP123j1
h‘jP123j3
	3‘
2�P2

123�

h45ih56ih6‘ih‘jP123j1

2h‘jP123j‘


2	12
	23

:

(5.8)

Note the presence of a double pole, h‘jP123j1

2.
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The residue of the single pole ‘ � 6 is

C�2r:s�123 � �
h46i2h4jP123j1
h6jP123j3
	36
2�P2

123�

h45ih56ih6jP123j1

2h6jP123j6


2	12
	23

;

(5.9)

while the residue of the double pole j‘i � P123j1
 is

C�2r:d�123

��
h4jP123j1
	3jP123j1i

2

h45ih56i	12
	23
�P2
123�

P2	P123j1
;L
II:C123
1 ;LII:C123

2 


(5.10)

with

LII:C123
1 � fj4i; j4i; P123j3
g LII:C123

2 � fj6i; j1i; j1ig

(5.11)

since, having chosen j‘
 � P123j1i, we used h‘jP123j‘
 !
P2

123h‘1i.

3. The term C�3r�123

C�3r�123 �
2h‘d‘i	‘d‘
h4‘i3h‘jP123j3
	3‘
2�P2

123�
2

h45ih56ih6‘ih‘jP123j1
h‘jP123j‘
4	12
	23

:

(5.12)

It is straightforward to write it as a full derivative with � �
3:

C�3r�123 � �
2h‘d‘i	d‘@‘
h4‘i3	3‘
3�P2

123�
2

3h45ih56ih6‘ih‘jP123j1
h‘jP123j‘
3	12
	23

:

(5.13)

We obtain an expression where only single poles are
present, whose sum of residues is

C�3r:s�123 � �
2�P2

123�
2

3h45ih56i	12
	23


X
i�2;3

lim
‘!‘i
h‘‘ii

�
h4‘i3	3‘
3

h6‘ih‘jP123j1
h‘jP123j‘

3 ; (5.14)

with j‘2i � j6i and j‘3i � P123j1

Finally, the coefficient of the bubble I2:3;1 is obtained by

adding (5.6), (5.9), (5.10), and (5.14):

c2:3;1 � C�1r:s�123 � C
�2r:s�
123 � C

�2r:d�
123 � C�3r:s�123 (5.15)
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B. Cut C234

The cut C234 is given by

C234 �
Z
d�	A�‘�1 ; 2

�; 3�; 4�; ‘�2 �A�‘
�
2 ; 5

�; 6�; 1�; ‘�1 �

� A�‘�1 ; 2
�; 3�; 4�; ‘�2 �A�‘

�
2 ; 5

�; 6�; 1�; ‘�1 �


�
Z
d�

2h1‘1ih1‘2i
2	3‘1


2	3‘2

2

h56ih61ih‘1‘2ih‘25i	23
	34
	4‘2
	‘12
	‘2‘1


(5.16)

After the t-integration, the rational contribution can be read
as a sum of three contributions,

Crat
234 � C�1r�234 � C

�2r�
234 � C

�3r�
234 ; (5.17)

each of which will be discussed separately.

1. The term C�1r�234

C�1r�234 ��
2h‘d‘i	‘d‘
h1‘i2h1jP234j4
h‘jP234j3


3�P2
234�

h56ih5‘ih61ih‘jP234j2
h‘jP234j4

3h‘jP234j‘


2	23

:

(5.18)

We write it as a full derivative by choosing the reference
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spinor j�
 � P234j4i in order to neutralize the multiple
pole h‘jP23j4


3:
C�1r�234

� �
2h‘d‘i	d‘@‘
h1‘i

2h1jP234j4
h4jP234j‘
h‘jP234j3

3

h4‘ih56ih5‘ih61ih‘jP234j2
h‘jP234j4

3h‘jP234j‘
	23


:

(5.19)
The sum of the residues can be therefore performed as
follows:
C�1r:s�234 � �
2h1jP234j4


h56ih61i	23


X
i�1;2;3

lim
‘!‘i
h‘‘ii

�
h1‘i2h4jP234j‘
h‘jP234j3


3

h4‘ih5‘ih‘jP234j2
h‘jP234j4

3h‘jP234j‘


;

(5.20)
with j‘1i � j4i; j‘2i � j5i, and j‘3i � P234j2
.
2. The term C�2r�234

C�2r�234 � �
2h‘d‘i	‘d‘
h1‘i2h1jP234j4
h‘jP234j3


3	3‘
�P2
234�

h56ih5‘ih61ih‘jP234j2
h‘jP234j4

2h‘jP234j‘
3	23
	34


: (5.21)

We write it as a full derivative by choosing the reference spinor � � 3:

C�2r�234 �
h‘d‘i	d‘@‘
h1‘i2h1jP234j4
h‘jP234j3


2	3‘
2�P2
234�

h56ih5‘ih61ih‘jP234j2
h‘jP234j4

2h‘jP234j‘


2	23
	34

: (5.22)

The sum of the residues of the single pole is

C�2r:s�234 �
h1jP234j4
�P

2
234�

h56ih61i	23
	34


X
i�2;3

lim
‘!‘i
h‘‘ii

h1‘i2h‘jP234j3

2	3‘
2

h5‘ih‘jP234j2
h‘jP234j4

2h‘jP234j‘


2 ; (5.23)

with j‘2i � j5i, and j‘3i � P234j2
. The residue of double pole j‘i � P234j4
 can be written as

C�2r:d�234 �
h1jP234j4
h4jP234j3


2

�P2
234�h56ih61i	23
	34


P2	P234j4
; L
II:C234
1 ; LII:C234

2 
; (5.24)

with

LII:C234
1 � fj1i; j1i; P234j3
; P234j3
g LII:C234

2 � fj5i; P234j2
; j4i; j4ig (5.25)

since, having chosen j‘
 � P234j4i, we used h‘jP234j‘
 ! P2
234h‘4i.

3. The term C�3r�234

C�3r�234 � �
2h‘d‘i	‘d‘
h1‘i3h‘jP234j3


2	3‘
2�P2
234�

2

h56ih5‘ih61ih‘jP234j2
h‘jP234j4
h‘jP234j‘

4	23
	34


: (5.26)

In this case only simple poles are present. We can write it as a full derivative with � � 3:
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C�3r�234 �
2h‘d‘i	d‘@‘
h1‘i3h‘jP234j3
	3‘
3�P2

234�
2

3h56ih5‘ih61ih‘jP234j2
h‘jP234j4
h‘jP234j‘
3	23
	34

: (5.27)

We obtain an expression where only single poles are present, whose sum of residues is

C�3r:s�123 �
2�P2

234�
2

3h56ih61i	23
	34


X
i�2;3;4

lim
‘!‘i
h‘‘ii

h1‘i3h‘jP234j3
	3‘
3

h5‘ih‘jP234j2
h‘jP234j4
h‘jP234j‘
3
; (5.28)

with j‘2i � j5i, j‘3i � P234j2
 and j‘4i � P234j4
.
Finally the coefficient of the bubble I2:3;2 is obtained by adding (5.20), (5.23), (5.24), and (5.28):

c2:3;2 � C�1r:s�234 � C
�2r:s�
234 � C

�3r:d�
234 � C�3r:s�234 (5.29)

C. Cut C34

For this double cut, there is no triangle contribution and the result is simpler. The cut is given by

C34 �
Z
d�	A�‘�1 ; 3

�; 4�; ‘�2 �A�‘
�
2 ; 5

�; 6�; 1�; 2�; ‘�1 � � A�‘
�
1 ; 3

�; 4�; ‘�2 �A�‘
�
2 ; 5

�; 6�; 1�; 2�; ‘�1 �


�
Z
d�

�
2h4‘1i

2h4‘2ih1jP56j‘1

2h1jP56j‘2


h34ih56ih61ih‘13ih‘2‘1ih5jP61j2
	2‘1
	‘1‘2
�P
2
561�
�

2h4‘1i
2h4‘2ih‘1jP12j6
h‘2jP12j6


2

h34ih‘13ih‘1‘2ih‘25ih‘2‘1ih5jP61j2
	12
	61
�P2
345�

�
� C�1�34 � C

�2�
34 (5.30)
Because of the possibility of writing A�‘�1 ; 3
�; 4�; ‘�2 � in

terms of either holomorphic or antiholomorphic spinor
products, as follows,

A�‘�1 ; 3
�; 4�; ‘�2 � �

h4‘1i
2h4‘2i

2

h‘13ih34ih4‘2ih‘2‘1i

�
	3‘1


2	3‘2

2

	‘13
	34
	4‘2
	‘2‘1

; (5.31)

one can rewrite C�2�34 as

C�2�34 �
2h4‘1i

2h4‘2ih‘1jP12j6
h‘2jP12j6

2

h34ih‘13ih‘1‘2ih‘25ih‘2‘1ih5jP61j2
	12
	61
�P2
345�

�
2	3‘2


2	3‘1
h‘1jP12j6
h‘2jP12j6

2

	34
	‘24
	‘2‘1
h‘25ih‘2‘1ih5jP61j2
	12
	61
�P2
345�

:

(5.32)

In this shape, C�2�34 can be obtained from C�1�34 , as the
following relation holds,

P2
345C34�2; 0� � ��1�TfmfP2

561C34�1; 0�g (5.33)

where Tfm is the composition of three operations:
(i) Parity: h; i $ 	; 
; (ii) relabeling: f1; 2; 3; 4; 5; 6g !
f6; 5; 4; 3; 2; 1g; (iii) exchange: ‘1 $ ‘2. Therefore one
can worry only about C�1�34 and recover C�2�34 at the end
through the above relation.

After the t-integration, the rational contribution coming
from C�1�34 can be read as
105004
C�1r�34 �
2h‘d‘i	‘d‘
h1jP56j‘


3	3‘
	43
P34

h56ih61ih5jP61j2
h‘jP34j‘
2	2‘
	4‘
3�P2
561�

�
2h‘d‘i	‘d‘
h1jP56j3
h1jP56j‘
2	3‘
P34

h56ih61ih5jP61j2
h‘jP34j‘

2	2‘
	4‘
2�P2

561�

�
2h‘d‘i	‘d‘
h4‘ih1jP56j‘


3	3‘
	43
P34

h56ih61ih5jP61j2
h‘jP34j‘
3	2‘
	4‘
2�P2
561�

�
2h‘d‘i	‘d‘
h4‘ih1jP56j3
h1jP56j‘
2	3‘
P34

h56ih61ih5jP61j2
h‘jP34j‘

3	2‘
	4‘
�P2

561�

�
2h‘d‘i	‘d‘
h4‘i2h1jP56j‘


3	3‘
	43
P34

h56ih61ih5jP61j2
h‘jP34j‘
4	2‘
	4‘
�P2
561�

:

(5.34)

This can be written as a full derivative by choosing as
reference spinor � � 4:

C�1r�34 �
2	‘d‘
hd‘@‘ih4‘ih1jP56j‘


3	43
P34

h43ih56ih61ih5jP61j2
h‘jP34j‘
	2‘
	4‘
3�P2
561�

�
2	‘d‘
hd‘@‘ih4‘ih1jP56j3
h1jP56j‘
2P34

h43ih56ih61ih5jP61j2
h‘jP34j‘
	2‘
	4‘

2�P2

561�

�
	‘d‘
hd‘@‘ih4‘i

2h1jP56j‘

3	43
P34

h43ih56ih61ih5jP61j2
h‘jP34j‘
2	2‘
	4‘
2�P2
561�

�
	‘d‘
hd‘@‘ih4‘i2h1jP56j3
h1jP56j‘
2P34

h43ih56ih61ih5jP61j2
h‘jP34j‘

2	2‘
	4‘
�P2

561�

�
2	‘d‘
hd‘@‘ih4‘i

3h1jP56j‘

3	43
P34

3h43ih56ih61ih5jP61j2
h‘jP34j‘
3	2‘
	4‘
�P2
561�

:

(5.35)

As one can see, the higher pole 	4‘
n is neutralized, and the
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only active pole is ‘ � 2, whose residue reads as follows:

C�1r:s�34 � �
2h42ih1jP56j2


2h1jP56j3
P34

h43ih56ih61ih2jP34j2
h5jP61j2
	24
2�P2
561�

�
h42i2h1jP56j2


2h1jP56j3
P34

h43ih56ih61ih2jP34j2

2h5jP61j2
	24
�P2

561�

�
2h42ih1jP56j2


3	43
P34

h43ih56ih61ih2jP34j2
h5jP61j2
	24
3�P2
561�

�
h42i2h1jP56j2


3	43
P34

h43ih56ih61ih2jP34j2

2h5jP61j2
	24
2�P2

561�

�
2h42i3h1jP56j2


3	43
P34

3h43ih56ih61ih2jP34j2

3h5jP61j2
	24
�P2

561�

(5.36)
105004
Through the relation in Eq. (5.33) one can get the other
term contributing to the cut,

C�2r:s�34 �
2h4jP12j6
h5jP12j6


2	35
P34

h53i2h5jP34j5
h5jP61j2
	16
	21
	34
�P2
612�

�
2h34ih5jP12j6


3	35
P34

h53i3h5jP34j5
h5jP61j2
	16
	21
	34
�P2
612�

�
h4jP12j6
h5jP12j6


2	35
2P34

h53ih5jP34j5

2h5jP61j2
	16
	21
	34
�P2

612�

�
h34ih5jP12j6


3	35
2P34

h53i2h5jP34j5

2h5jP61j2
	16
	21
	34
�P2

612�

�
2h34ih5jP12j6


3	35
3P34

3h53ih5jP34j5

3h5jP61j2
	16
	21
	34
�P2

612�
:

(5.37)
Finally, the coefficient of the bubble I2:2;3 is obtained by adding (5.36) and (5.37):

c2:2;3 � C�1r:s�34 � C�2r:s�34 (5.38)

D. Cut C23

The cut in the P23-channel receives two contributions:

C23 �
Z
d�	A�‘�1 ; 2

�; 3�; ‘�2 �A�‘
�
2 ; 4

�; 5�; 6�; 1�; ‘�1 � � A�‘
�
1 ; 2

�; 3�; ‘�2 �A�‘
�
2 ; 4

�; 5�; 6�; 1�; ‘�1 �
 � 2C�1�23 ;

(5.39)

where

C�1�23 �
Z
d�

�
h1‘1ih1‘2i

2h2‘1i
2h2‘2i

2	56
3

h23ih3‘2ih‘12ih‘1‘2ih‘2‘1ih1jP456j4
h‘2jP456j6
	45
P456

�
h2‘1i

2h2‘2i
2h1jP561j‘1


2h1jP561j‘2

2

h23ih3‘2ih56ih61ih‘12ih‘2‘1ih1jP561j4
h5jP561j‘1
	‘1‘2
	‘24
P561

�
h2‘1i

2h2‘2i
2h‘24i3h4jP61‘1

j6
2	6‘1

4

h23ih3‘2ih45ih4‘2i
2h‘12ih‘2‘1ih5jP61‘1

j‘1
h‘2jP61‘1
j6
	1‘1
	61
	‘16
2�P2

61‘1
�

�
: (5.40)
Therefore we concentrate just on the term C�1�23 , and
finally multiply by 2, in order to get the coefficients of
the proper functions. In particular, since this cut contains
the contributions to both bubbles and three-mass triangle
coefficients, we discuss these separately.

In the following formulas, for this cut only, we define

Q � �P2
61=P

2
23�P23 � P61

and

j!6
 � P23P123j6
:
1. Rational contribution from C�1�23

After the t-integration, the rational term which will
contribute to the bubble coefficients I2:2;2 reads as a sum
of six terms:

C�1;rat�
23 � C�1;r;1�23 � C�1;r;2�23 � C�1;r;3�23 � C�1;r;4�23 � C�1;r;5�23

� C�1;r;6�23 : (5.41)

For each of these we give the expression after the
t-integration, the form as full derivative, and the residues.
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The term C�1;r;1�23 .—
(i) t-integrated formula:

C�1;r;1�23 �
h‘d‘i	‘d‘
h1jP56j3


2h1jP56j‘
2	23
	3‘


h56ih61ih1jP56j4
h5jP61j‘
h‘jP23j‘
2	2‘
	4‘
�P2
561�

�
h‘d‘i	‘d‘
h23i2h1jP56j‘
4	23
3	34
2	3‘


h56ih61ih1jP56j4
h5jP61j‘
h‘jP23j‘

2	2‘
	4‘
3�P2

23�
2�P2

561�

�
2h‘d‘i	‘d‘
h23ih1jP56j3
h1jP56j‘


3	23
2	34
	3‘


h56ih61ih1jP56j4
h5jP61j‘
h‘jP23j‘
2	2‘
	4‘
2�P2
23��P

2
561�

(5.42)

(ii) full derivative:

C�1;r;1�23 �
	‘d‘
hd‘@‘ih4‘ih1jP56j3


2h1jP56j‘
2	23
	3‘


h56ih61ih1jP56j4
h4jP23j‘
h5jP61j‘
h‘jP23j‘
	2‘
	4‘
�P2
561�

�
	‘d‘
hd‘@‘ih23i2h4‘ih1jP56j‘


4	23
3	34
2	3‘


h56ih61ih1jP56j4
h4jP23j‘
h5jP61j‘
h‘jP23j‘
	2‘
	4‘

3�P2

23�
2�P2

561�

�
2	‘d‘
hd‘@‘ih23ih4‘ih1jP56j3
h1jP56j‘
3	23
2	34
	3‘


h56ih61ih1jP56j4
h4jP23j‘
h5jP61j‘
h‘jP23j‘
	2‘
	4‘
2�P2
23��P

2
561�

(5.43)

As one can see the higher pole 	4‘
n in neutralized by the presence of h4‘i in the corresponding numerator. Therefore,
only single poles will give nonzero residues,

C�1;r;1:s�
23 �

X4

i�1

lim
‘!‘i
	‘‘i


�
h4‘ih1jP56j3


2h1jP56j‘
2	23
	3‘


h56ih61ih1jP56j4
h4jP23j‘
h5jP61j‘
h‘jP23j‘
	2‘
	4‘
�P2
561�

�
h23i2h4‘ih1jP56j‘


4	23
3	34
2	3‘


h56ih61ih1jP56j4
h4jP23j‘
h5jP61j‘
h‘jP23j‘
	2‘
	4‘

3�P2

23�
2�P2

561�

�
2h23ih4‘ih1jP56j3
h1jP56j‘
3	23
2	34
	3‘


h56ih61ih1jP56j4
h4jP23j‘
h5jP61j‘
h‘jP23j‘
	2‘
	4‘
2�P2
23��P

2
561�

�
(5.44)

with j‘i
 � P23j4i, P61j5i, j2
, j4
 for �i � 1; . . . ; 4�.

The term C�1;r;2�23 .—
(i) t-integrated formula:

C�1;r;2�23 �
2h‘d‘i	‘d‘
h2‘ih1jP56j3
h1jP56j‘
3	23
2	3‘


h56ih61ih1jP56j4
h5jP61j‘
h‘jP23j‘
3	2‘
	4‘
�P2
561�

�
h‘d‘i	‘d‘
h23ih2‘ih1jP56j‘
4	23
3	34
	3‘


h56ih61ih1jP56j4
h5jP61j‘
h‘jP23j‘
3	2‘
	4‘
2�P2
23��P

2
561�

(5.45)

(ii) full derivative:

C�1;r;2�23 �
	‘d‘
hd‘@‘ih2‘i2h1jP56j3
h1jP56j‘
3	23
2

h23ih56ih61ih1jP56j4
h5jP61j‘
h‘jP23j‘

2	2‘
	4‘
�P2

561�

�
	‘d‘
hd‘@‘ih2‘i

2h1jP56j‘

4	23
3	34


2h56ih61ih1jP56j4
h5jP61j‘
h‘jP23j‘
2	2‘
	4‘
2�P2
23��P

2
561�

(5.46)

In this case we have both the residues of the simple poles,
105004-21
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C�1;r;2:s�
23 �

h1jP56j3
	23
2

h23ih56ih61i�P2
561�

X4

i�2

lim
‘!‘i
	‘‘i


h2‘i2h1jP56j‘

3

h1jP56j4
h5jP61j‘
h‘jP23j‘

2	2‘
	4‘


�
	23
3	34


2h56ih61ih1jP56j4
�P
2
23��P

2
561�

X3

i�2

lim
‘!‘i
	‘‘i


h2‘i2h1jP56j‘
4

h5jP61j‘
h‘jP23j‘

2	2‘
	4‘
2

; (5.47)
and the residue from a double pole,

C�1;r;2:d�
23 � �

	23
3	34
h24i2

2h56ih61ih1jP56j4
�P2
23��P

2
561�

P2	j4
; L
II:C23
1 ; LII:C23

2 
; (5.48)
with

LII:C23
1 � fP561j1i; P561j1i; P561j1i; P561j1ig LII:C23

2 � fP561j5i; P23j4i; P23j4i; j2
g: (5.49)

The term C�1;r;3�23 .—
(i) t-integrated formula:

C�1;r;3�23 �
h‘d‘i	‘d‘
h2‘i2h1jP56j‘
4	23
3	3‘


h56ih61ih1jP56j4
h5jP61j‘
h‘jP23j‘

4	2‘
	4‘
�P2

561�
(5.50)
(ii) full derivative:

C�1;r;3�23 �
	‘d‘
hd‘@‘ih2‘i

3h1jP56j‘

4	23
3

3h23ih56ih61ih1jP56j4
h5jP61j‘
h‘jP23j‘
3	2‘
	4‘
�P2
561�

(5.51)
There are only simple poles. Therefore,

C�1;r;3:s�
23 �

	23
3

3h23ih56ih61ih1jP56j4
�P
2
561�

X4

i�2

lim
‘!‘i
	‘‘i


h2‘i3h1jP56j‘

4

h5jP61j‘
h‘jP23j‘

3	2‘
	4‘


: (5.52)

The term C�1;r;4�23 .—
(i) t-integrated formula:

C�1;r;4�23 � �
h‘d‘i	‘d‘
h23ih41i2h4jP23j‘
	3‘
3	61
	6‘
2

h45ih5jP61j‘
h‘jP23j‘

2	1‘
	2‘
	‘jP23Qj‘
	‘!6


�
2h‘d‘i	‘d‘
h41ih2jQj‘
h4jP23j‘
2	3‘
2	6‘
3�P2

23�

h45ih5jP61j‘
h‘jP23j‘

2	1‘
	2‘
	‘jP23Qj‘


2	‘!6


�
h‘d‘i	‘d‘
h2jQj‘
h4jQj‘
h4jP23j‘


2	3‘
2	6‘
4�P2
23�

2

h45ih5jP61j‘
h‘jP23j‘

2	1‘
	2‘
	61
	‘jP23Qj‘


3	‘!6


(5.53)
(ii) full derivative:

C�1;r;4�23 � 	‘d‘
hd‘@‘iI
�4� (5.54)
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I �4� � �
h2‘ih41i2h4jP23j‘
	3‘
2	61
	6‘
2	ab
2

h45ih5jP61j‘
h‘jP23j‘
	1‘
	2‘
	�1‘
	�2‘
	bjP23Qjb
	‘!6


�
2h41ih�1‘ih2jQj‘
h4jP23j‘


2	6‘
3	ab
4	�13
2�P2
23�

h45ih5jP61j‘
h‘jP23j‘
h�1jP23j‘
	1‘
	2‘
	�1‘
2	�1�2

2	�bjP23Qjb
2	‘!6


�
2h41ih�2‘ih2jQj‘
h4jP23j‘
2	3�2


2	6‘
3	ab
4�P2
23�

h45ih5jP61j‘
h‘jP23j‘
h�2jP23j‘
	1‘
	2‘
	�1�2

2	�2‘
2	bjP23Qjb
2	‘!6


�
4h1‘ih41ih2jQj‘
h4jP23j‘
2	3�2
	6‘
3	ab
4	�13
�P2

23�

h45ih1jP23j‘
h5jP61j‘
h‘jP23j‘
	1‘
	2‘
	�1‘
	�1�2

2	�2‘
	bjP23Qjb
2	‘!6


�
h�1‘ih2jQj‘
h4jQj‘
h4jP23j‘


2	3‘
2	6‘
	ab
6	�16
3�P2
23�

2

h45ih5jP61j‘
h‘jP23j‘
h�1jP23j‘
	1‘
	2‘
	61
	�1‘
3	�1�2

3	bjP23Qjb
3	‘!6


�
h�2‘ih2jQj‘
h4jQj‘
h4jP23j‘


2	3‘
2	6‘
	6�2

3	ab
6�P2

23�
2

h45ih5jP61j‘
h‘jP23j‘
h�2jP23j‘
	1‘
	2‘
	61
	�1�2

3	�2‘


3	bjP23Qjb

3	‘!6


�
3h�2‘ih2jQj‘
h4jQj‘
h4jP23j‘
2	3‘
2	6‘
	6�2


2	ab
6	�16
�P2
23�

2

h45ih5jP61j‘
h‘jP23j‘
h�2jP23j‘
	1‘
	2‘
	61
	�1‘
	�1�2

3	�2‘
2	bjP23Qjb
3	‘!6


�
3h�1‘ih2jQj‘
h4jQj‘
h4jP23j‘
2	3‘
2	6‘
	6�2
	ab
6	�16
2�P2

23�
2

h45ih5jP61j‘
h‘jP23j‘
h�1jP23j‘
	1‘
	2‘
	61
	�1‘
2	�1�2

3	�2‘
	bjP23Qjb
3	‘!6


: (5.55)
The term C�1;r;5�23 .—
(i) t-integrated formula:

C�1;r;5�23 � �2
h‘d‘i	‘d‘
h23ih41ih4‘ih4jP23j‘
	3‘
3	6‘
3�P2

23�

h45ih5jP61j‘
h‘jP23j‘
3	1‘
	2‘
	‘jP23Qj‘
	‘!6


�
h‘d‘i	‘d‘
h4‘ih2jQj‘
h4jP23j‘
2	3‘
2	6‘
4�P2

23�
2

h45ih5jP61j‘
h‘jP23j‘
3	1‘
	2‘
	61
	‘jP23Qj‘
2	‘!6


�
h‘d‘i	‘d‘
h1‘ih21ih1jP23j‘
	3‘
2	56
3�P2

23�

h1jP456j4
h‘jP23j‘
3	2‘
	45
	‘!6
�P2
123�

(5.56)

(ii) full derivative:

C�1;r;5�23 � 	‘d‘
hd‘@‘iI �5� (5.57)

I �5� � �
h23ih41ih4‘i2	3‘
3	6‘
3	ab
2�P2

23�

h45ih5jP61j‘
h‘jP23j‘

2	1‘
	2‘
	�1‘
	�2‘
	bjP23Qjb
	‘!6


�
h�1‘i

2h2jQj‘
h4jP23j‘

3	6‘
4	ab
4	�13
2�P2

23�
2

2h45ih5jP61j‘
h‘jP23j‘

2h�1jP23j‘


2	1‘
	2‘
	61
	�1‘

2	�1�2


2	bjP23Qjb

2	‘!6


�
h4�1ih�1‘ih2jQj‘
h4jP23j‘


2	6‘
4	ab
4	�13
2�P2
23�

2

h45ih5jP61j‘
h‘jP23j‘
h�1jP23j‘

2	1‘
	2‘
	61
	�1‘


2	�1�2

2	bjP23Qjb


2	‘!6


�
h�2‘i

2h2jQj‘
h4jP23j‘

3	3�2


2	6‘
4	ab
4�P2
23�

2

2h45ih5jP61j‘
h‘jP23j‘

2h�2jP23j‘


2	1‘
	2‘
	61
	�1�2

2	�2‘


2	bjP23Qjb

2	‘!6


�
h4�2ih�2‘ih2jQj‘
h4jP23j‘


2	3�2

2	6‘
4	ab
4�P2

23�
2

h45ih5jP61j‘
h‘jP23j‘
h�2jP23j‘
2	1‘
	2‘
	61
	�1�2

2	�2‘
2	bjP23Qjb
2	‘!6


�
h4‘i2h2jQj‘
h4jP23j‘
	3�2
	6‘


4	ab
4	�13
�P2
23�

2

h45ih5jP61j‘
h‘jP23j‘
2	1‘
	2‘
	61
	�1‘
	�1�2

2	�2‘
	bjP23Qjb
2	‘!6


�
h1‘i2h21i	3‘
2	56
3�P2

23�

2h1jP456j4
h‘jP23j‘
2	2‘
	45
	‘!6
�P2
123�

: (5.58)
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The above expression contains single and double poles. The residues of the single poles will be read off later; for the
total rational contribution, we consider here only the terms having double poles, h�1jP23j‘


2 and h�2jP23j‘

2:

C�1;r;5:d�
23 � 	‘d‘
hd‘@‘iI

�5:d� (5.59)

I �5:d� � �
h�1‘i

2h2jQj‘
h4jP23j‘

3	6‘
4	ab
4	�13
2�P2

23�
2

2h45ih5jP61j‘
h‘jP23j‘
2h�1jP23j‘
2	1‘
	2‘
	61
	�1‘
2	�1�2

2	bjP23Qjb
2	‘!6


�
h4�1ih�1‘ih2jQj‘
h4jP23j‘


2	6‘
4	ab
4	�13
2�P2
23�

2

h45ih5jP61j‘
h‘jP23j‘
h�1jP23j‘

2	1‘
	2‘
	61
	�1‘


2	�1�2

2	bjP23Qjb


2	‘!6

� f�1 ! �2g (5.60)
The residues in this case give

C�1;r;5:d�
23 �

	ab
4	�13
2h�1jP23j�1

2

2h45i	61
	�1�2

2	bjP23Qjb


2

� ~P2	P23j�1i; L
II:C23
1 ; LII:C23

2 


�
h4�1i	ab


4	�13
2h�1jP23j�1
�P
2
23�

h45i	61
	�1�2

2	bjP23Qjb


2

� ~P2	P23j�1i;M
II:C23
1 ;MII:C23

2 
 � f�1 $ �2g;

(5.61)
105004
with

LII:C23
1 � fQj2i; P23j4i; P23j4i; P23j4i; j6
; j6
; j6
; j6
g

LII:C23
2 � fP61j5i; j1
; j2
; j�1
; j�1
; j�1
; j�1
; j!6
g

MII:C23
1 � fQj2i; P23j4i; P23j4i; j6
; j6
; j6
; j6
g

MII:C23
2 � fP61j5i; j1
; j2
; j�1
; j�1
; j�1
; j!6
g (5.62)

since we used j‘i � P23j�1
.
The term C�1;r;6�23 .—
(i) t-integrated formula:

C�1;r;6�23 � �
h‘d‘i	‘d‘
h23ih4‘i2h4jP23j‘
	3‘


3	6‘
4�P2
23�

2

h45ih5jP61j‘
h‘jP23j‘
4	1‘
	2‘
	61
	‘jP23Qj‘
	‘!6

�
h‘d‘i	‘d‘
h1‘i2h23ih1jP23j‘
	3‘


3	56
3�P2
23�

h1jP456j4
h‘jP23j‘
4	2‘
	45
	‘!6
�P2
123�

(5.63)

(ii) full derivative:

C�1;r;6�23 � 	‘d‘
hd‘@‘iI �6� (5.64)

I �6� � �
h23ih4‘i3	3‘
3	6‘
4	ab
2�P2

23�
2

3h45ih5jP61j‘
h‘jP23j‘
3	1‘
	2‘
	61
	�1‘
	�2‘
	bjP23Qjb
	‘!6


�
h1‘i3h23i	3‘
3	56
3�P2

23�

3h1jP456j4
h‘jP23j‘

3	2‘
	45
	‘!6
�P

2
123�

(5.65)
Given the expressions of C�1;r;4�23 , C�1;r;5�23 and C�1;r;6�23 , in
Eqs. (5.55), (5.60), and (5.65), their combined contribution
can be written as,

C�1;r;4;5;6�23 � 	‘d‘
hd‘@‘ifI �4� � I �5� � I �6�g (5.66)

Therefore, the sum of residues of their single poles will
give

C�1;r;4;5;6:s�
23 �

X10

j�1

lim
‘!‘j
	‘‘j
fI �4� � I �5� � I �6�g; (5.67)
with

j‘j
 � P61j5i; j1
; j2
; j4
; j�1
; j�2
; j!6
; P23j1i; P23j�1i;

P23j�2i �j � 1; . . . ; 10�: (5.68)

The coefficient of the bubble I2:2;2 is given by adding
Eqs. (5.44), (5.47), (5.48), (5.52), (5.61), and (5.67), and
multiplying by 2:

c2:2;2 � 2�C�1;r;1:s�
23 � C�1;r;2:s�

23 � C�1;r;2:d�
23 � C�1;r;3:s�

23

� C�1;r;3;4;5;6:s�
23 � C�1;r;5:d�

23 �: (5.69)

3-mass-triangle contribution from C�1�23 .—After the
t-integration the contribution to the three-mass-triangle
-24
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coefficient reads:

C�1;3m�23 � C�1;3m;1�23 � C�1;3m;2�23 � C�1;3m;3�23 : (5.70)

Unlike in the case presented in Sec. IV, here we make use of the functions defined in Appendix C to write down answers
directly and compactly.

The term C�1;3m;1�23 .—
(i) after t-integration

C�1;3m;1�23 � �
h41i2	61


h45i

h‘d‘i	‘d‘
h2jQj‘
h4jP23j‘
	3‘

2	6‘
2

h‘jQj‘
h‘jP23j‘
	‘jP23Qj‘
h5jP61j‘
	1‘
	2‘
	!6‘

(5.71)

(ii) triangle coefficient:

C�1;3m;1�23 � �
h41i2	61


h45i
~CII

3 	La; L
II
b ; P23; Q
 (5.72)

La � fQj2i; P23j4i; j3
; j3
; j6
; j6
g LII
b � fP61j5i; j1
; j2
; j!6
; j�
g (5.73)

The term C�1;3m;2�23 .—
(i) after t-integration

C�1;3m;2�23 � �
2h41i�P2

23�

h45i

h‘d‘i	‘d‘
h2jQj‘
h4jQj‘
h4jP23j‘
	3‘

2	6‘
3

h‘jQj‘
h‘jP23j‘
	‘jP23Qj‘

2h5jP61j‘
	1‘
	2‘
	!6‘


(5.74)

(ii) triangle coefficient:

C�1;3m;2�23 � �
2h41i�P2

23�

h45i
~CIII

3 	La; L
III
b;1; L

III
b;2; P23; Q
 (5.75)

La � fQj2i; Qj4i; P23j4i; j3
; j3
; j6
; j6
; j6
g LIII
b;1 � fP61j5i; j1
; j2
; j!6
; j�
; j�2
; j�2
g

LIII
b;2 � fP61j5i; j1
; j2
; j!6
; j�
; j�1
; j�1
g

(5.76)

The term C�1;3m;3�23 .—
(i) after t-integration

C�1;3m;3�23 � �
�P2

23�
2

h45i	61


h‘d‘i	‘d‘
h2jQj‘
h4jQj‘
2h4jP23j‘
	3‘

2	6‘
4

h‘jQj‘
h‘jP23j‘
	‘jP23Qj‘

3h5jP61j‘
	1‘
	2‘
	!6‘


(5.77)

(ii) triangle coefficient:

C�1;3m;3�23 � �
�P2

23�
2

h45i	61

~CIV

3 	La; L
IV
b;1; L

IV
b;2; P23; Q
 (5.78)

La � fQj2i; Qj4i; Qj4i; P23j4i; j3
; j3
; j6
; j6
; j6
; j6
g

LIV
b;1 � fP61j5i; j1
; j2
; j!6
; j�
; j�2
; j�2
; j�2
g

LIV
b;2 � fP61j5i; j1
; j2
; j!6
; j�
; j�1
; j�1
; j�1
g

(5.79)

Finally, the coefficient of the thee-mass triangle I3:2:2;2 can be obtained by taking the sum of (5.72), (5.75), and (5.78) and
multiplying the result by 2:

c3:2:2;2 � 2�C�1;3m;1�23 � C�1;3m;2�23 � C�1;3m;3�23 �: (5.80)
105004-25
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E. Cut C61

This cut has contributions from three-mass triangle, so the result will be more complicated. Also since it is the same
three-mass triangle function as in cut C23, we can use it as an independent check for this coefficient.

The cut is given by

C61 �
Z
d�	A�‘�1 ; 6

�; 1�; ‘�2 �A�‘
�
2 ; 2

�; 3�; 4�; 5�; ‘�1 � � A�‘
�
1 ; 6

�; 1�; ‘�2 �A�‘
�
2 ; 2

�; 3�; 4�; 5�; ‘�1 �


� �
2h1‘1i

2h1‘2ih42i4	5‘1
	5‘2

2

h23ih34ih61ih6‘1ih‘2‘1ih2jP234j5
h4jP234j‘2
	‘1‘2
�P2
234�

�
2h1‘1i

2h1‘2ih2‘1i
2h2‘2i	35
4

h61ih6‘1ih‘1‘2ih‘2‘1ih2jP‘1‘22j5
h‘1jP‘1‘22j3
	34
	45
�P2
‘1‘22�

�
2h1‘1i

2h1‘2ih4‘1i
2h4jP‘223j3


2	‘23
2

h45ih5‘1ih61ih6‘1ih‘2‘1ih4jP‘223j‘2
h‘1jP‘223j3
	23
	‘22
�P2
‘223�

(5.81)

In the following formulas, for this cut only, we define

j!5i � P61P23j4i

and

Q � �P2
23=P

2
61�P61 � P23:

1. Rational contribution from C61

Crat
61 � C�r;1�61 � C

�r;2�
61 � C

�r;3�
61 � C

�r;4�
61 � C

�r;5�
61 : (5.82)

The term C�r;1�61 .—
(i) t-integrated formula:

C�r;1�61 �
2h‘d‘i	‘d‘
h1‘i2h21ih2‘i2	1‘
	35
4�P2

61�

h6‘i2h2jP612j5
h‘jP61j‘
3h‘jP612j3
	34
	45
�P2
612�

(5.83)

We describe in detail how to write this term as a full derivative to show a technical point which allows us to get
rid of higher poles—when possible.
We have seen in many examples that a suitable choice of the reference spinor� can simplify writing an integrand
as a full derivative, when using the integration-by-parts identity Eq. (2.14). In the above expression there is a
double pole h6‘i2, but the presence in the numerator of 	1‘
 seems to force us to pick up � � 1. By doing so, one
would end up with an expression containing a triple pole h‘6i3, to be dealt with afterwards. Alternatively, one can
multiply C�r;1�61 by 1 � 	6‘
=	6‘
 and use the following identity,

	1‘

h‘jP61j‘
	6‘


�
1

h‘jP61j6


�
h‘jP61j1


h‘jP61j‘

�
	16


	6‘


�
(5.84)

to write C�r;1�61 as a sum of two terms,

C�r;1�61 � �
2h‘d‘i	‘d‘
h1‘ih21ih2‘i2	35
4P61

h6‘i2h2jP612j5
h‘jP61j‘

2h‘jP612j3
	34
	45
�P2

612�

�
2h‘d‘i	‘d‘
h1‘ih21ih2‘i2	35
4	61
	6‘
P61

h6‘ih2jP612j5
h‘jP61j‘

3h‘jP612j3
	16
	34
	45
�P2

612�

(5.85)

each of which can be integrated by parts by using � � 6, to neutralize the double pole. In fact its expression can
be written as
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(ii) full derivative:

C�r;1�61 � h‘d‘i	d‘@‘
I �1� (5.86)

I �1� � �
2h21ih2‘i2	35
4	6‘
�P2

61�

h6‘i2h2jP612j5
h‘jP61j‘
h‘jP612j3
	16
	34
	45
�P2
612�

�
h21ih2‘i2	35
4	61
	6‘
2�P2

61�

h6‘ih2jP612j5
h‘jP61j‘

2h‘jP612j3
	16
2	34
	45
�P2

612�
(5.87)

where the term with 1=h6‘i2 has a factor in the numerator of 	6‘
, which annihilates its residue. Therefore the
contribution of this term to the corresponding bubble coefficients will be given by the sum of residues of only
simple poles.

The term C�r;2�61 .—
(i) t-integrated formula:

C�r;2�61 � �
2h‘d‘i	‘d‘
h1‘i3h21ih2‘i2	16
	1‘
2	35
4�P2

61�

h6‘i2h2jP612j5
h‘jP61j‘

4h‘jP612j3
	34
	45
	61
�P2

612�

�
2h‘d‘i	‘d‘
h1‘i2h26ih2‘i2	35
4	6‘
2�P2

61�

h6‘ih2jP612j5
h‘jP61j‘
4h‘jP612j3
	34
	45
�P2
612�

(5.88)

(ii) full derivative:

C�r;2�61 � h‘d‘i	d‘@‘
I
�2� (5.89)

I �2� �
2h21ih2‘i2	35
4	6‘
�P2

61�

h6‘i2h2jP612j5
h‘jP61j‘
h‘jP612j3
	34
	45
	61
�P2
612�

�
2h21ih2‘i2	35
4	6‘
2�P2

61�

h6‘ih2jP612j5
h‘jP61j‘
2h‘jP612j3
	16
	34
	45
�P2
612�

�
2h1‘ih26ih2‘i2	35
4	6‘
3�P2

61�

3h6‘ih2jP612j5
h‘jP61j‘

3h‘jP612j3
	16
	34
	45
�P2

612�

�
2h21ih2‘i2	35
4	61
	6‘
3�P2

61�

3h2jP612j5
h‘jP61j‘

3h‘jP612j3
	16
2	34
	45
�P2

612�
(5.90)

The term C�r;3�61 .—
(i) t-integrated formula:

C�r;3�61 � �
2h‘d‘i	‘d‘
h1‘i3h46i2h4‘i2h‘jQj6
2h‘jP61j3


4	16


h45ih5‘ih6‘ih!5‘ih‘jP61Qj‘i3h‘jP61j2
h‘jP61j‘
2h‘jP612j3
	23


�
2h‘d‘i	‘d‘
h1‘i3h42i2h4‘i2h‘jP61j3


2	16
	23


h45ih5‘ih6‘ih!5‘ih‘jP61Qj‘ih‘jP61j2
h‘jP61j‘

2h‘jP612j3


�
4h‘d‘i	‘d‘
h1‘i3h41ih42ih4‘i2h‘jQj1
h‘jP61j3


3	61


h45ih5‘ih6‘ih!5‘ih‘jP61Qj‘i
2h‘jP61j2
h‘jP61j‘


2h‘jP612j3


�
4h‘d‘i	‘d‘
h1‘i3h42ih46ih4‘i2h‘jQj6
h‘jP61j3


3	61


h45ih5‘ih6‘ih!5‘ih‘jP61Qj‘i2h‘jP61j2
h‘jP61j‘
2h‘jP612j3


�
2h‘d‘i	‘d‘
h1‘i2h41i2h4‘i2h‘jQj1
h‘jQj6
h‘jP61j3


4	61


h45ih5‘ih!5‘ih‘jP61Qj‘i3h‘jP61j2
h‘jP61j‘
2h‘jP612j3
	23


�
4h‘d‘i	‘d‘
h1‘i2h41ih46ih4‘i2h‘jQj6
2h‘jP61j3


4	61


h45ih5‘ih!5‘ih‘jP61Qj‘i
3h‘jP61j2
h‘jP61j‘


2h‘jP612j3
	23

(5.91)
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(ii) full derivative:

C�r;3�61 � h‘d‘i	d‘@‘
I �3� (5.92)

I �3� � �
2h1‘i2h42i2h4‘i2h‘jP61j3


2	23
	6‘

h45ih5‘ih6‘ih!5‘ih‘jP61Qj‘ih‘jP61j2
h‘jP61j‘
h‘jP612j3


�
2h1‘i3h46i2habi6h�14i3h‘jQj6
2h‘jP61j3


4	16
	�1‘


h45ih4‘ih5‘ih6‘ih�1‘i3h�1�2i
3h!5‘ihbjP61Qjbi3h‘jP61j2
h‘jP61j‘
h‘jP61j�1
h‘jP612j3
	23


�
6h1‘i3h46i2h4�2ihabi

6h�14i2h‘jQj6
2h‘jP61j3

4	16
	�1‘


h45ih4‘ih5‘ih6‘ih�1‘i2h�1�2i
3h�2‘ih!5‘ihbjP61Qjbi3h‘jP61j2
h‘jP61j‘
h‘jP61j�1
h‘jP612j3
	23


�
4h1‘i3h41ih42ihabi4h�14i2h‘jQj1
h‘jP61j3


3	61
	�1‘


h45ih5‘ih6‘ih�1‘i2h�1�2i
2h!5‘ihbjP61Qjbi2h‘jP61j2
h‘jP61j‘
h‘jP61j�1
h‘jP612j3


�
8h1‘i3h41ih42ih4�2ihabi4h�14ih‘jQj1
h‘jP61j3


3	61
	�1‘


h45ih5‘ih6‘ih�1‘ih�1�2i
2h�2‘ih!5‘ihbjP61Qjbi2h‘jP61j2
h‘jP61j‘
h‘jP61j�1
h‘jP612j3


�
4h1‘i3h42ih46ihabi4h�14i2h‘jQj6
h‘jP61j3


3	61
	�1‘


h45ih5‘ih6‘ih�1‘i2h�1�2i
2h!5‘ihjP61Qjbi2h‘jP61j2
h‘jP61j‘
h‘jP61j�1
h‘jP612j3


�
8h1‘i3h42ih46ih4�2ihabi4h�14ih‘jQj6
h‘jP61j3


3	61
	�1‘


h45ih5‘ih6‘ih�1‘ih�1�2i
2h�2‘ih!5‘ihbjP61Qjbi2h‘jP61j2
h‘jP61j‘
h‘jP61j�1
h‘jP612j3


�
2h1‘i2h41i2habi6h�14i3h‘jQj1
h‘jQj6
h‘jP61j3


4	61
	�1‘


h45ih4‘ih5‘ih�1‘i3h�1�2i
3h!5‘ihbjP61Qjbi3h‘jP61j2
h‘jP61j‘
h‘jP61j�1
h‘jP612j3
	23


�
6h1‘i2h41i2h4�2ihabi

6h�14i2h‘jQj1
h‘jQj6
h‘jP61j3

4	61
	�1‘


h45ih4‘ih5‘ih�1‘i
2h�1�2i

3h�2‘ih!5‘ihbjP61Qjbi
3h‘jP61j2
h‘jP61j‘
h‘jP61j�1
h‘jP612j3
	23


�
4h1‘i2h41ih46ihabi6h�14i3h‘jQj6
2h‘jP61j3


4	61
	�1‘


h45ih4‘ih5‘ih�1‘i
3h�1�2i

3h!5‘ihbjP61Qjbi
3h‘jP61j2
h‘jP61j‘
h‘jP61j�1
h‘jP612j3
	23


�
12h1‘i2h41ih46ih4�2ihabi6h�14i2h‘jQj6
2h‘jP61j3


4	61
	�1‘


h45ih4‘ih5‘ih�1‘i2h�1�2i
3h�2‘ih!5‘ihbjP61Qjbi3h‘jP61j2
h‘jP61j‘
h‘jP61j�1
h‘jP612j3
	23


�
2h1‘i3h46i2h4�2i

3habi6h‘jQj6
2h‘jP61j3

4	16
	�2‘


h45ih4‘ih5‘ih6‘ih�1�2i
3h�2‘i3h!5‘ihbjP61Qjbi3h‘jP61j2
h‘jP61j‘
h‘jP61j�2
h‘jP612j3
	23


�
6h1‘i3h46i2h4�2i

2habi6h�14ih‘jQj6
2h‘jP61j3

4	16
	�2‘


h45ih4‘ih5‘ih6‘ih�1‘ih�1�2i
3h�2‘i

2h!5‘ihbjP61Qjbi
3h‘jP61j2
h‘jP61j‘
h‘jP61j�2
h‘jP612j3
	23


�
4h1‘i3h41ih42ih4�2i

2habi4h‘jQj1
h‘jP61j3

3	61
	�2‘


h45ih5‘ih6‘ih�1�2i
2h�2‘i

2h!5‘ihbjP61Qjbi
2h‘jP61j2
h‘jP61j‘
h‘jP61j�2
h‘jP612j3


�
4h1‘i3h42ih46ih4�2i

2habi4h‘jQj6
h‘jP61j3

3	61
	�2‘


h45ih5‘ih6‘ih�1�2i
2h�2‘i

2h!5‘ihbjP61Qjbi
2h‘jP61j2
h‘jP61j‘
h‘jP61j�2
h‘jP612j3


�
2h1‘i2h41i2h4�2i

3habi6h‘jQj1
h‘jQj6
h‘jP61j3

4	61
	�2‘


h45ih4‘ih5‘ih�1�2i
3h�2‘i

3h!5‘ihbjP61Qjbi
3h‘jP61j2
h‘jP61j‘
h‘jP61j�2
h‘jP612j3
	23


�
6h1‘i2h41i2h4�2i

2habi6h�14ih‘jQj1
h‘jQj6
h‘jP61j3

4	61
	�2‘


h45ih4‘ih5‘ih�1‘ih�1�2i
3h�2‘i2h!5‘ihbjP61Qjbi3h‘jP61j2
h‘jP61j‘
h‘jP61j�2
h‘jP612j3
	23


�
4h1‘i2h41ih46ih4�2i

3habi6h‘jQj6
2h‘jP61j3

4	61
	�2‘


h45ih4‘ih5‘ih�1�2i
3h�2‘i3h!5‘ihbjP61Qjbi3h‘jP61j2
h‘jP61j‘
h‘jP61j�2
h‘jP612j3
	23


�
12h1‘i2h41ih46ih4�2i

2habi6h�14ih‘jQj6
2h‘jP61j3

4	61
	�2‘


h45ih4‘ih5‘ih�1‘ih�1�2i
3h�2‘i

2h!5‘ihbjP61Qjbi
3h‘jP61j2
h‘jP61j‘
h‘jP61j�2
h‘jP612j3
	23


(5.93)
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The term C�r;4�61 .—
(i) t-integrated formula:
C�r;4�61 �
4h‘d‘i	‘d‘
h1‘i3h41ih46ih4‘i2h‘jP61j3


4	16
	1‘


h45ih5‘ih6‘i2h!5‘ih‘jP61Qj‘ih‘jP61j2
h‘jP61j‘
3h‘jP612j3
	23


�
4h‘d‘i	‘d‘
h1‘i3h41ih46ih4‘i2h‘jQj6
h‘jP61j3


4	16
	1‘


h45ih5‘ih6‘ih!5‘ih‘jP61Qj‘i2h‘jP61j2
h‘jP61j‘
3h‘jP612j3
	23


�
2h‘d‘i	‘d‘
h1‘i2h41i2h4‘i2h‘jQj6
h‘jP61j3


4	1‘
	61


h45ih5‘ih!5‘ih‘jP61Qj‘i
2h‘jP61j2
h‘jP61j‘


3h‘jP612j3
	23


�
2h‘d‘i	‘d‘
h1‘i3h46i2h4‘i2h‘jQj6
h‘jP61j3


4	16
	6‘


h45ih5‘ih6‘ih!5‘ih‘jP61Qj‘i
2h‘jP61j2
h‘jP61j‘


3h‘jP612j3
	23


�
4h‘d‘i	‘d‘
h1‘i2h41ih42ih4‘i2h‘jP61j3


3	61
	6‘


h45ih5‘ih!5‘ih‘jP61Qj‘ih‘jP61j2
h‘jP61j‘

3h‘jP612j3


�
4h‘d‘i	‘d‘
h1‘i3h42ih46ih4‘i2h‘jP61j3


3	61
	6‘


h45ih5‘ih6‘ih!5‘ih‘jP61Qj‘ih‘jP61j2
h‘jP61j‘
3h‘jP612j3


�
2h‘d‘i	‘d‘
h1‘ih42i4h‘jP61j5


2	56
	6‘
�P2
61�

h23ih34ih6‘ih!5‘ih2jP234j5
h‘jP61j‘
3	16
�P2
234�

(5.94)
(ii) full derivative:
C�r;4�61 � h‘d‘i	d‘@‘
I �4� (5.95)
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I �4� �
2h1‘i2h41i2h4�2ihabi4h�14ih‘jQj6
h‘jP61j3


4	1‘
2

h45ih5‘ih6‘ih�1‘ih�1�2i
2h�2‘ih!5‘ihbjP61Qjbi2h‘jP61j2
h‘jP61j‘
2h‘jP612j3
	23


�
4h1‘ih41ih46ih4‘i2habi2h‘jP61j3


4	6‘


h45ih5‘ih6‘i2h�1‘ih�2‘ih!5‘ihbjP61Qjbih‘jP61j2
h‘jP61j‘
h‘jP612j3
	23


�
8h1‘ih41ih46ih4�2ihabi4h�14ih‘jQj6
h‘jP61j3


4	6‘


h45ih5‘ih6‘ih�1‘ih�1�2i
2h�2‘ih!5‘ihbjP61Qjbi

2h‘jP61j2
h‘jP61j‘
h‘jP612j3
	23


�
2h1‘i2h46i2h4�2ihabi4h�14ih‘jQj6
h‘jP61j3


4	6‘
2

h45ih5‘ih6‘ih�1‘ih�1�2i
2h�2‘ih!5‘ihbjP61Qjbi

2h‘jP61j2
h‘jP61j‘

2h‘jP612j3
	23


�
2h1‘ih41ih42ih4‘i2habi2h‘jP61j3


3	61
	6‘
2

h45ih5‘ih�1‘ih�2‘ih!5‘ihbjP61Qjbih‘jP61j2
h‘jP61j‘

2h‘jP612j3
	16


�
2h1‘i2h42ih46ih4‘i2habi2h‘jP61j3


3	61
	6‘
2

h45ih5‘ih6‘ih�1‘ih�2‘ih!5‘ihbjP61Qjbih‘jP61j2
h‘jP61j‘

2h‘jP612j3
	16


�
2h1‘ih41ih46ih4‘i2habi2h‘jP61j3


4	61
	6‘
2

h45ih5‘ih6‘ih�1‘ih�2‘ih!5‘ihbjP61Qjbih‘jP61j2
h‘jP61j‘

2h‘jP612j3
	16
	23


�
4h1‘ih41ih46ih4�2ihabi

4h�14ih‘jQj6
h‘jP61j3

4	61
	6‘
2

h45ih5‘ih�1‘ih�1�2i
2h�2‘ih!5‘ihbjP61Qjbi

2h‘jP61j2
h‘jP61j‘

2h‘jP612j3
	16
	23


�
4h1‘i3h41ih46ihabi4h�14i2h‘jQj6
h‘jP61j3


4	16
	1�1
	�1‘


h45ih5‘ih6‘ih�1‘i
2h�1�2i

2h!5‘ihbjP61Qjbi
2h‘jP61j2
h‘jP61j‘
h‘jP61j�1


2h‘jP612j3
	23


�
2h1‘i2h41i2habi4h�14i2h‘jQj6
h‘jP61j3


4	1�1
	61
	�1‘


h45ih5‘ih�1‘i2h�1�2i
2h!5‘ihbjP61Qjbi2h‘jP61j2
h‘jP61j‘
h‘jP61j�1


2h‘jP612j3
	23


�
2h1‘i3h46i2habi4h�14i2h‘jQj6
h‘jP61j3


4	16
	6�1
	�1‘


h45ih5‘ih6‘ih�1‘i2h�1�2i
2h!5‘ihbjP61Qjbi2h‘jP61j2
h‘jP61j‘
h‘jP61j�1


2h‘jP612j3
	23


�
h1‘i4h46i2habi4h�14i2h‘jQj6
h‘jP61j3


4	16
2	�1‘

2

h45ih5‘ih6‘ih�1‘i2h�1�2i
2h!5‘ihbjP61Qjbi2h‘jP61j2
h‘jP61j‘
2h‘jP61j�1


2h‘jP612j3
	23


�
2h1‘i3h41ih46ihabi4h�14i2h‘jQj6
h‘jP61j3


4	61
2	�1‘

2

h45ih5‘ih�1‘i2h�1�2i
2h!5‘ihbjP61Qjbi2h‘jP61j2
h‘jP61j‘
2h‘jP61j�1


2h‘jP612j3
	23


�
h1‘i2h41i2h6‘ihabi4h�14i2h‘jQj6
h‘jP61j3


4	61
2	�1‘
2

h45ih5‘ih�1‘i2h�1�2i
2h!5‘ihbjP61Qjbi2h‘jP61j2
h‘jP61j‘
2h‘jP61j�1


2h‘jP612j3
	23


�
4h1‘i3h41ih46ihabi4h�24i2h‘jQj6
h‘jP61j3


4	16
	1�2
	�2‘


h45ih5‘ih6‘ih�2‘i2h�2�1i
2h!5‘ihbjP61Qjbi2h‘jP61j2
h‘jP61j‘
h‘jP61j�2


2h‘jP612j3
	23


�
2h1‘i2h41i2habi4h�24i2h‘jQj6
h‘jP61j3


4	1�2
	61
	�2‘


h45ih5‘ih�2‘i2h�2�1i
2h!5‘ihbjP61Qjbi2h‘jP61j2
h‘jP61j‘
h‘jP61j�2


2h‘jP612j3
	23


�
2h1‘i3h46i2habi4h�24i2h‘jQj6
h‘jP61j3


4	16
	6�2
	�2‘


h45ih5‘ih6‘ih�2‘i2h�2�1i
2h!5‘ihbjP61Qjbi2h‘jP61j2
h‘jP61j‘
h‘jP61j�2


2h‘jP612j3
	23

(5.96)

�
h1‘i4h46i2habi4h�24i2h‘jQj6
h‘jP61	3


4	16
2	�2‘
2

h45ih5‘ih6‘ih�2‘i
2h�2�1i

2h!5‘ihbjP61Qjbi
2h‘jP61j2
h‘jP61j‘


2h‘jP612j3
	23


�
2h1‘i3h41ih46ihabi4h�24i2h‘jQj6
h‘jP61j3


4	61
2	�2‘
2

h45ih5‘ih�2‘i
2h�2�1i

2h!5‘ihbjP61Qjbi
2h‘jP61j2
h‘jP61j‘


2h‘jP61j�2

2h‘jP612j3
	23


�
h1‘i2h41i2h6‘ihabi4h�24i2h‘jQj6
h‘jP61j3


4	61
2	�2‘
2

h45ih5‘ih�2�1i
2h!5‘ihbjP61Qjbi

2h‘jP61j‘

2h‘jP61j�2


2h‘jP612j3
	23


�
h42i4h‘jP61j5i

2	56
	6‘
2�P2
61�

h23ih34ih6‘ih!5‘ih2jP234j5
h‘jP61j‘

2�P2

234�
(5.97)
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The above expression contains both single and double poles. Here we give only the expression for the residues of the
double poles h‘jP61j�1


2 and h‘jP61j�2

2,
C�r;4:d�
61 � h‘d‘i	d‘@‘
I

�4:d� (5.98)

I �4:d� � �
4h1‘i3h41ih46ihabi4h�14i2h‘jQj6
h‘jP61j3


4	16
	1�1
	�1‘


h45ih5‘ih6‘ih�1‘i2h�1�2i
2h!5‘ihbjP61Qjbi2h‘jP61j2
h‘jP61j‘
h‘jP61j�1


2h‘jP612j3
	23


�
2h1‘i2h41i2habi4h�14i2h‘jQj6
h‘jP61j3


4	1�1
	61
	�1‘


h45ih5‘ih�1‘i
2h�1�2i

2h!5‘ihbjP61Qjbi
2h‘jP61j2
h‘jP61j‘
h‘jP61j�1


2h‘jP612j3
	23


�
2h1‘i3h46i2habi4h�14i2h‘jQj6
h‘jP61j3


4	16
	6�1
	�1‘


h45ih5‘ih6‘ih�1‘i
2h�1�2i

2h!5‘ihbjP61Qjbi
2h‘jP61j2
h‘jP61j‘
h‘jP61j�1


2h‘jP612j3
	23


�
h1‘i4h46i2habi4h�14i2h‘jQj6
h‘jP61j3


4	16
2	�1‘
2

h45ih5‘ih6‘ih�1‘i2h�1�2i
2h!5‘ihbjP61Qjbi2h‘jP61j2
h‘jP61j‘
2h‘jP61j�1


2h‘jP612j3
	23


�
2h1‘i3h41ih46ihabi4h�14i2h‘jQj6
h‘jP61j3


4	61
2	�1‘

2

h45ih5‘ih�1‘i2h�1�2i
2h!5‘ihbjP61Qjbi2h‘jP61j2
h‘jP61j‘
2h‘jP61j�1


2h‘jP612j3
	23


�
h1‘i2h41i2h6‘ihabi4h�14i2h‘jQj6
h‘jP61j3


4	61
2	�1‘

2

h45ih5‘ih�1‘i
2h�1�2i

2h!5‘ihbjP61Qjbi
2h‘jP61j2
h‘jP61j‘


2h‘jP61j�1

2h‘jP612j3
	23


� f�1 $ �2g (5.99)

The sum of residue of the double poles reads,

C�r;4:d�
61 � �

4h41ihabi4h�14i2	16
	1�1
h�1jP61j�1


h45ih�1; �2i
2hbjP61Qjbi2	23
�P2

61�
P2	P61j�1
; L

II:C61
1 ; LII:C61

2 


�
2h41i2habi4	1�1
	61
h�14i2h�1jP61j�1


h45ih�1�2i
2hbjP61Qjbi

2	23
�P2
61�

P2	P61j�1
;M
II:C61
1 ;MII:C61

2 


�
2h46i2habi4h�14i2	16
	6�1
h�1jP61j�1


h45ih�1�2i
2hbjP61Qjbi2	23
�P2

61�
P2	P61j�1; L

II:C61
1 ; LII:C61

2 


�
h46i2habi4h�14i2	16
2h�1jP61j�1


2

h45ih�1�2i
2hbjP61Qjbi

2	23
�P2
61�

2 P2	P61j�1; N
II:C61
1 ; NII:C61

2 


�
2h41ih46ihabi4h�14i2	61
2h�1jP61j�1


2

h45ih�1�2i
2hbjP61Qjbi2	23
�P2

61�
2 P2	P61j�1; L

II:C61
1 ; OII:C61

2 


�
h41i2habi4h�14i2	61
2h�1jP61j�1


2

h45ih�1�2i
2hbjP61Qjbi

2	23
�P2
61�

2 P2	P61j�1
; O
II:C61
1 ; OII:C61

2 
 � f�1 $ �2g (5.100)

LII:C61
1 �fj1i;j1i;j1i;Qj6
;P61j3
;P61j3
;P61j3
;P61j3
g LII:C61

2 �fj5i;j6i;j�1i;j�1i;j�1i;j!5i;P61j2
;P612j3
g

MII:C61
1 �fj1i;j1i;Qj6
;P61j3
;P61j3
;P61j3
;P61j3
g MII:C61

2 �fj5i;j�1i;j�1i;j�1i;j!5i;P61j2
;P612j3
g

NII:C61
1 �fj1i;j1i;j1i;j1i;Qj6
;P61j3
;P61j3
;P61j3
;P61j3
g NII:C61

2 �fj5i;j6i;j�1i;j�1i;j�1i;j�1i;j!5i;P61j2
;P612j3
g

OII:C61
1 �fj1i;j1i;j6i;Qj6
;P61j3
;P61j3
;P61j3
;P61j3
g OII:C61

2 �fj5i;j�1i;j�1i;j�1i;j�1i;j!5i;P61j2
;P612j3
g

(5.101)

since we used j‘
 � P61j�1i.
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The term C�r;5�61 .—
(i) t-integrated formula:

C�r;5�61 � �
2h‘d‘i	‘d‘
h1‘i3h41i2h4‘i2h‘jP61j3


4	16
	1‘
2

h45ih5‘ih6‘ih!5‘ih‘jP61Qj‘ih‘jP61j2
h‘jP61j‘

4h‘jP612j3
	23


�
4h‘d‘i	‘d‘
h1‘i4h41ih46ih4‘i2h‘jP61j3


4	16
2	1‘
2

h45ih5‘ih6‘i2h!5‘ih‘jP61Qj‘ih‘jP61j2
h‘jP61j‘
4h‘jP612j3
	23
	61


�
2h‘d‘i	‘d‘
h1‘i3h46i2h4‘i2h‘jP61j3


4	16
	6‘
2

h45ih5‘ih6‘ih!5‘ih‘jP61Qj‘ih‘jP61j2
h‘jP61j‘
4h‘jP612j3
	23


�
2h‘d‘i	‘d‘
h1‘ih42i4h‘jP61j5


3	6‘
2�P2
61�

h23ih34ih6‘ih!5‘ih2jP234j5
h‘jP61j‘
4	16
�P2
234�

(5.102)

(ii) full derivative:

C�r;5�61 � h‘d‘i	d‘@‘
I �5� (5.103)

I �5� � �
2h41i2h4‘i2h‘jP61j3


4	6‘

h45ih5‘ih6‘ih!5‘ih‘jP61Qj‘ih‘jP61j2
h‘jP61j‘
h‘jP612j3
	23


�
2h41i2h4‘i2h‘jP61j3


4	61
	6‘
2

h45ih5‘ih!5‘ih‘jP61Qj‘ih‘jP61j2
h‘jP61j‘
2h‘jP612j3
	16
	23


�
2h1‘i2h46i2h4‘i2h‘jP61j3


4	6‘
3

3h45ih5‘ih6‘ih!5‘ih‘jP61Qj‘ih‘jP61j2
h‘jP61j‘
3h‘jP612j3
	23


�
2h41i2h4‘i2h6‘ih‘jP61j3


4	61
2	6‘
3

3h45ih5‘ih!5‘ih‘jP61Qj‘ih‘jP61j2
h‘jP61j‘

3h‘jP612j3
	16
2	23


�
2h42i4h‘jP61j5


3	6‘
3�P2
61�

3h23ih34ih6‘ih!5‘ih2jP234j5
h‘jP61j‘

3	16
2�P2

234�
(5.104)

Finally, the coefficient of the bubble I2:2;6 can be written as a sum of the residues of all the poles, by adding Eqs. (5.87),
(5.90), (5.93), (5.96), (5.100), and (5.104):

c2:2;6 �
X10

j�1

lim
‘!‘j
h‘‘ji

X5

i�1

I �i� � C�4:d�
61 ; (5.105)

where the single poles are

j‘ji � j4i; j5i; j6i; P612j3
; j!5i; P61j2
; j�1i; j�2i; P61j�1
; P61j�2
; �j � 1; . . . ; 10�: (5.106)

2. 3-mass-triangle contribution from C61

C�3m�61 � C�3m;1�61 � C�3m;2�61 � C�3m;3�61 (5.107)

The term C�3m;1�61 .—
(i) after t-integration:

C�3m;1�61 �
2h42i2	23


h45i

h‘d‘i	‘d‘
h‘1i2h‘4i2h‘jQj6
h‘jP61j3

2

h‘jQj‘
h‘jP61j‘
h‘jP61Qj‘ih‘5ih‘6ih‘!5ih‘jP61j2
h‘jP612j3

(5.108)

(ii) triangle coefficient:

C�3m;1�61 �
2h42i2	23


h45i
CII

3 	La; L
II
b ; P61; Q
 (5.109)
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La � fj1i; j1i; j4i; j4i; Qj6
; P61j3
; P61j3
g LII
b � fj5i; j6i; j!5i; P61j2
; P612j3
; j�ig (5.110)

The term C�3m;2�61 .—
(i) after t-integration:

C�3m;2�61 � �
4h41ih42i

h45i

h‘d‘i	‘d‘
h‘1i2h‘4i2h‘jQj1
h‘jQj6
h‘jP61j3

3

h‘jQj‘
h‘jP61j‘
h‘jP61Qj‘i
2h‘5ih‘6ih‘!5ih‘jP61j2
h‘jP612j3


�
4h42ih46i

h45i

�
h‘d‘i	‘d‘
h‘1i2h‘4i2h‘jQj6
2h‘jP61j3


3

h‘jQj‘
h‘jP61j‘
h‘jP61Qj‘i2h‘5ih‘6ih‘!5ih‘jP61j2
h‘jP612j3

(5.111)

(ii) triangle coefficient:

C�3m;2�61 � �
4h41ih42i

h45i
CIII

3 	La; L
III
b;1; L

III
b;2; P61; Q
 �

4h42ih46i

h45i
CIII

3 	Ma; L
III
b;1; L

III
b;2; P61; Q
 (5.112)

La � fj1i; j1i; j4i; j4i; Qj1
; Qj6
; P61j3
; P61j3
; P61j3
g

Ma � fj1i; j1i; j4i; j4i; Qj6
; Qj6
; P61j3
; P61j3
; P61j3
g

LIII
b;1 � fj5i; j6i; j!5i; P61j2
; P612j3
; j�i; j�2i; j�2ig

LIII
b;2 � fj5i; j6i; j!5i; P61j2
; P612j3
; j�i; j�1i; j�1ig

(5.113)

The term C�3m;3�61 .—
(i) after t-integration:

C�3m;3�61 �
2h41i2

h45i	23


h‘d‘i	‘d‘
h‘1i2h‘4i2h‘jQj1
2h‘jQj6
h‘jP61j3

4

h‘jQj‘
h‘jP61j‘
h‘jP61Qj‘i
3h‘5ih‘6ih‘!5ih‘jP61j2
h‘jP612j3


�
4h41ih46i

h45i	23


h‘d‘i	‘d‘
h‘1i2h‘4i2h‘jQj1
h‘jQj6
2h‘jP61j3

4

h‘jQj‘
h‘jP61j‘
h‘jP61Qj‘i
3h‘5ih‘6ih‘!5ih‘jP61j2
h‘jP612j3


�
2h46i2

h45i	23


h‘d‘i	‘d‘
h‘1i2h‘4i2h‘jQj6
3h‘jP61j3

4

h‘jQj‘
h‘jP61j‘
h‘jP61Qj‘i
3h‘5ih‘6ih‘!5ih‘jP61j2
h‘jP612j3


(5.114)

(ii) triangle coefficient:

C�3m;3�61 �
2h41i2

h45i	23

CIV

3 	La; L
IV
b;1; L

IV
b;2; P61; Q
 �

4h41ih46i

h45i	23

CIV

3 	Ma; LIV
b;1; L

IV
b;2; P61; Q


�
2h46i2

h45i	23

CIV

3 	Na; L
IV
b;1; L

IV
b;2; P61; Q
 (5.115)

La � fj1i; j1i; j4i; j4i; Qj1
; Qj1
; Qj6
; P61j3
; P61j3
; P61j3
; P61j3
g

Ma � fj1i; j1i; j4i; j4i; Qj1
; Qj6
; Qj6
; P61j3
; P61j3
; P61j3
; P61j3
g

Na � fj1i; j1i; j4i; j4i; Qj6
; Qj6
; Qj6
; P61j3
; P61j3
; P61j3
; P61j3
g

LIV
b;1 � fj5i; j6i; j!5i; P61j2
; P612j3
; j�i; j�2i; j�2i; j�2ig

LIV
b;2 � fj5i; j6i; j!5i; P61j2
; P612j3
; j�i; j�1i; j�1i; j�1ig

(5.116)

Finally, the coefficient of the three-mass triangle I3:2:2;2 is given by the sum of (5.109), (5.112), and (5.115):

c3:2:2;2 � C�1;3m;1�61 � C�1;3m;2�61 � C�1;3m;3�61 : (5.117)
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VI. CONCLUSIONS

In this work we completed the cut-constructible part of
Ascalar for the one-loop six-gluon amplitude in QCD. This
completes the calculation of the cut-constructible compo-
nent of the one-loop six-gluon amplitude in QCD as whole.

The method we adopted from [12] relies on the combi-
nation of ideas belonging to generalized unitarity, to build
the cuts out of tree-level amplitudes, and complex spinor
algebra, to carry on the phase space integration. This
method was already successfully applied in the computa-
tion of the AN�1 partner of the six-gluon amplitude. For
the current task, we extended its features nontrivially to
deal with the more general features of amplitudes belong-
ing to less supersymmetric theories, such as QCD.

The background knowledge of two properties of one-
loop amplitudes, namely supersymmetric decomposition,
and integral reduction to a linear combination of analyti-
cally known scalar functions, associated to two-, three-,
and four-point topologies, allowed us to concentrate
mainly on the phase space integration.

By exploiting the finiteness of the amplitude, we chose
an integral basis involving only boxes, three-mass tri-
angles, and bubbles. Therefore, the problem of computing
the (cut-constructible part of the) amplitude was shifted to
the calculation of the corresponding coefficients—or
rather to their extraction from the cut integrals.

Our goal was to reduce the complexity of the calculation
as much as possible to trivial spinor algebra manipulations,
and to minimize the number of actual integrations to be
finally performed.

The coefficients of the box functions could be computed
via the quadruple-cut method without any integration
whatsoever. Indeed, these have all appeared previously in
the literature.

The known analytic properties of the bubble and three-
mass triangle functions enabled us to distinguish unequivo-
cally among them. To be more explicit, their branch cuts
represented a specific signature to identify the coefficients
of bubbles and three-mass triangles separately. The former
multiply a term that after the integration would have gen-
erated a rational term; the latter multiply a term that after
the integration would have generated logarithms with
square roots in the arguments.

After this a priori analysis on the properties of the
expected results, we could apply our optimized algorithm
for the phase space integration. We wrote the ‘‘twistor-
motivated’’ Lorentz invariant phase space measure and the
cut integrands in spinorial formalism, with the loop mo-
mentum written in its two components of opposite helicity,
namely, holomorphic and an antiholomorphic spinor vari-
ables. We used trivial spinor algebra to disentangle the
dependence on the two variables and to write the inte-
grands as a spinor derivative with respect to one of the
two integration variables. We found that the expression of
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the result, at that stage of the calculation, contained only
four classes of integrands.

The integration was finally performed by combining the
holomorphic anomaly, which is an adaptation of the
Cauchy residue theorem, and Feynman parametrization.
That required the development of a technique for dealing
with spinorial integrands carrying multiple poles, which
constitutes the novel and the most powerful feature of our
algorithm.

In view of the recent progress in understanding the
recursive behavior of scattering amplitudes, the results
here obtained can, in principle, be used to drive the recur-
sion relations for constructing the leftover rational piece of
the six-gluon amplitude [13]. Moreover, due to its poly-
logarithmic structure, the amplitude we computed could
represent a bootstrap point for the calculation of one-loop
amplitudes with more external legs and different helicity
configuration, once the one-loop recursive behavior is fully
sorted out.

The numerical implementation of the results here pre-
sented, and their crosschecks, is left to future work.

The method we have developed may be used to compute
the cut-constructible part of a generic one-loop n-point
amplitude with different particle content.
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APPENDIX A: TREE-LEVEL AMPLITUDES

MHV tree amplitudes with fermions and scalars may be
derived from supersymmetric Ward identities [34,63] ap-
plied to the Parke-Taylor formula [33]. See [23] for a
review.

Here we summarize some NMHV tree-level amplitudes
which are useful for our calculations. A similar list was
given in Appendix B of [12]. However there is a technical
point in these results, so we recall them again.

Each unitarity cut integral has two terms, from the two
possible helicity assignments for the internal propagators.
-34
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It is found that to simplify results, we would like the
expressions for the tree amplitudes in each of these two
terms to be related in a simple, symmetric way. For ex-
ample, if we derive them by on-shell recursion relations
105004
[35,36,64,65], we should take the same reference momenta
for each pair at every step. Under this convention we have
the following results, where a � 2 is for scalars and a � 1
is for fermions.
A�4�F=S; 5
�; 6�; 1�; 2�; 3�F=S� �

h3j1� 2j6
3

	61
	12
h34ih45iP2
345h5j6� 1j2


�
�
h4j1� 2j6


h3j1� 2j6


�
a

�
h1j5� 6j4
3

	23
	34
h56ih61iP2
561h5j6� 1j2


�
h1j5� 6j3


h1j5� 6j4


�
a

(A1)

A�4�F=S; 5
�; 6�; 1�; 2�; 3�F=S� �

h4j1� 2j6
4

	61
	12
h34ih45iP2
345h5j6� 1j2
h3j1� 2j6


�
h3j1� 2j6


h4j1� 2j6


�
a

�
h1j5� 6j3
4

	23
	34
h56ih61iP2
561h5j6� 1j2
h1j5� 6j4


�
�
h1j5� 6j4


h1j5� 6j3


�
a

(A2)

A�1�F=S; 2
�; 3�; 4�; 5�; 6�F=S� �

	34
4h56i4

	23
	34
h56ih61iP2
234h1jP234j4
h5jP234j2


�
�
h51i

h56i

�
a

�
h2jP456j4


4

h12ih23i	45
	56
h3jP456j6
h1jP456j4
P
2
456

�
�
h21i	64


h2jP456j4


�
a

�
h5jP345j1


4

h34ih45i	61
	12
P2
345h5jP345j2
h3jP345j6


�
h5jP345j6


h5jP345j1


�
a

(A3)

A�1�F=S; 2
�; 3�; 4�; 5�; 6�F=S� �

	34
4h51i4

	23
	34
h56ih61iP2
234h1jP234j4
h5jP234j2


�
h56i

h51i

�
a

�
h12i4	46
4

h12ih23i	45
	56
h3jP456j6
h1jP456j4
P
2
456

�
h2jP456j4


h21i	64


�
a

�
h5jP345j6


4

h34ih45i	61
	12
P2
345h5jP345j2
h3jP345j6


�
�
h5jP345j1


h5jP345j6


�
a

(A4)

A�1�F=S; 2
�; 3�; 4�; 5�; 6�F=S� �

h4jP123j3

4

	12
	23
h45ih56iP2
123h4jP123j1
h6jP123j3


�
	13
h46i

h4jP123j3


�
a

�
h12i4	35
4

h61ih12i	34
	45
h2jP612j5
h6jP612j3
P2
612

�
h26i

h21i

�
a

�
	56
4h42i4

h23ih34i	56
	61
P2
234h4jP234j1
h2jP234j5


�
�
	51


	56


�
a

(A5)

A�1�F=S; 2
�; 3�; 4�; 5�; 6�F=S� �

	13
4h46i4

	12
	23
h45ih56iP2
123h4jP123j1
h6jP123j3


�
�
h4jP123j3


	13
h46i

�
a

�
h62i4	35
4

h61ih12i	34
	45
h2jP612j5
h6jP612j3
P
2
612

�
�
h21i

h26i

�
a

�
	51
4h42i4

h23ih34i	56
	61
P2
234h4jP234j1
h2jP234j5


�
	56


	51


�
a

(A6)

Comparing each pair (A1)–(A6), we see the pattern relating the amplitudes with opposite helicities for the fermions or
scalars. In fact, this is also the reason why a factor of 2 appears in each cut in our scalar loops.

The expression (A3) is different from the one given in [12]. The reason is that we have used (2,3) as reference momenta
in the recursion relations to derive the formula in [12] but used (3,4) as reference momenta here to match the ones used in
(A4).
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Finally, we list here the all-gluon tree amplitudes in each of the three helicity configurations; these may be used to check
the relation (2.3).

A�1�; 2�; 3�; 4�; 5�; 6�� �
1

h5jP234j2


�
h1jP234j4


3

	23
	34
h56ih61iP2
234

�
h3jP345j6


3

	61
	12
h34ih45iP2
345

�

A�1�; 2�; 3�; 4�; 5�; 6�� �
h13i4	46
4

	45
	56
h12ih23iP2
123h3jP123j6
h1jP123j4


�
h35i4	62
4

	61
	12
h34ih45iP2
345h5jP345j2
h3jP345j6


�
h51i4	24
4

	23
	34
h56ih61iP2
561h1jP561j4
h5jP561j2


A�1�; 2�; 3�; 4�; 5�; 6�� �
h24i4	56
3

h23ih34i	61
P2
234h4jP234j1
h2jP234j5


�
h4jP123j3


4

	12
	23
h45ih56iP2
123h4jP123j1
h6jP123j3


�
h12i3	35
4

h61i	34
	45
P2
345h2jP345j5
h6jP345j3


(A7)
12There is a subtle point in this expression: we have assumed
that there is no pole h‘ai. If this pole exists, it is easy to see that
a1 � 0 at pole j‘i � jai and the z-integration diverges. We have
APPENDIX B: FEYNMAN PARAMETRIZATION
AND ITS INTEGRATION

Here we demonstrate in detail how to integrate terms of
types (3) and (4) in the categorization (2.11). These are the
integrands that give precisely the logarithmic contributions
and require a Feynman parameter.

We define certain functions that we find useful. Where
these appear in the paper with a tilde, this means to take the
complex conjugate. We also use �1;2 to denote the two
solutions of the equation h‘jPQj‘i � 0 with the proper P,
Q momenta, both in this and the following appendix.

1. Type (3)

Let us start from the following integral:

T3 �
Z
h‘d‘i	‘d‘


F���ha‘i

h‘jPcutja
n�1

1

h‘jPcutj‘
h‘jPaj‘

:

(B1)

Here we have multiplied numerator and denominator by a
factor of ha‘i. To do the integration, first we introduce a
Feynman parameter to rewrite T3 as

T3 �
Z 1

0
dz
Z
h‘d‘i	‘d‘


F���ha‘i

h‘jPcutja

n�1

1

h‘jPj‘
2
;

P � zPcut � �1� z�Pa:

(B2)

Next we use (2.14) to write the integrand as a derivative:

T3�
Z 1

0
dz
Z
h‘d‘i	d‘@‘


�
F���ha‘i	~�‘


h‘jPcutja
n�1

1

h‘jPj‘
h‘jPj~�


�
;

(B3)

where ~� is an arbitrary but fixed spinor of negative chi-
rality. A convenient choice is j~�
 � jPjai.11 With this
11There is one subtlety in the choice of ~�. In (B3) we must
avoid choosing j�
 � ja
. The reason is that the starting point
(B1) already has a pole from the factor 	‘a
. In fact, if we choose
j�
 � ja
, then the integral

R
1
0 dz will diverge.
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choice we find that

T3 �
Z 1

0
dz
Z
h‘d‘i	d‘@‘


�
�
F���hajPcutj‘


h‘jPcutja
n�1

�
1

h‘jPj‘
�zP2
cut � �1� z�hajPcutja
�

�
: (B4)

Now we read out the residues of the poles. There are two
kinds of poles: single poles from F��� (as explained in
Sec. II) and the multiple pole from h‘jPcutja
. For residues
from a single pole, the z-integration takes the form

Z1 �
Z 1

0
dz

1

�a1 � b1z��c1 � d1z�

�
1

a1d1 � b1c1
log

�
a1�c1 � d1�

c1�a1 � b1�

�
; (B5)

where a1, b1, c1, d1 are rational functions (for example,
a1 � h‘jPaj‘
).

12 This is always a logarithmic function.
Furthermore, since it is rational, it does not have any square
root which is the signature of three-mass triangle and four-
mass box functions. Thus it contributes only to one-mass,
two-mass and three-mass box functions.

Now we discuss the residue from the multiple pole
h‘jPcutja
n�1. One important feature of the form (B4) is
the factor hajPcutj‘


13: it is zero precisely at the location of
no general argument why this is true, except to notice that there
is a factor 1

	‘a
 from the antiholomorphic part. It may be that for
tree-level amplitudes, the two factors h‘ai and 	‘a
 have the
property that if one exists as a pole, then the other cannot.

13Notice that since F��� is a function of � only, the factor
hajPcutj‘
 cannot be canceled.
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the pole from h‘jPcutja
. In other words, there is no residue
contribution from the multiple pole h‘jPcutja
 at all.14

2. Type (4)

The integral of type (4) is given by

T4 �
Z
h‘d‘i	‘d‘


F���

h‘jPcutQj‘i
n�1

1

h‘jPcutj‘
h‘jQj‘


�
Z 1

0
dz
Z
h‘d‘i	‘d‘


F���

h‘jPcutQj‘in�1

1

h‘jRj‘
2
;

R � zQ� �1� z�Pcut: (B6)

Similarly as for type (3), we arrive at

T4 �
Z 1

0
dz
Z
h‘d‘i	d‘@‘


�
F���

h‘jPcutQj‘in�1

�
h�jRj‘


h‘�iR2h‘jRj‘


�
; (B7)

where we have chosen the auxiliary spinor j~�
 � jRj�i.
Again we have two kinds of poles: the single poles from

F��� and multiple poles from the factor h‘jPcutQj‘i
n�1.

Let us discuss them one by one.

a. The contribution from single poles

The z-dependence comes from the momentum vector R,
defined in (B6) and appearing in the last factor of (B7). It
may be expressed as

Z2 �
Z 1

0
dz

�zc1 � c2�

�a0z
2 � a1z� a2��zb1 � b2�

; (B8)

where we have defined

a0 � �Q� Pcut�
2; a1 � 2Pcut � �Q� Pcut�;

a2 � P2
cut; b1 � h‘j�Q� Pcut�j‘
;

b2 � h‘jPcutj‘
; c1 � h�j�Q� Pcut�j‘
;

c2 � h�jPcutj‘
:

(B9)

To understand the various contributions, we split the inte-
gral as follows:
14If for some reason we have other multiple poles, we must be
careful because in this case, the z-integration may give a rational
contribution. Fortunately, in our decomposition no other multiple
poles show up.
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Z2 �
Z 1

0
dz

�zc1 � c2�

�a0z
2 � a1z� a2��zb1 � b2�

�
Z 1

0
dz
�

b1��b2c1 � b1c2�

�a2b2
1 � a1b1b2 � a0b2

2�

1

�zb1 � b2�

�
�b2c1 � b1c2�

2�a2b
2
1 � a1b1b2 � a0b

2
2�

�2za0 � a1�

�a0z
2 � a1z� a2�

�
�2a2b1c1 � a1b2c1 � a1b1c2 � 2a0b2c2�

2�a2b2
1 � a1b1b2 � a0b2

2�

�
1

�a0z
2 � a1z� a2�

�
: (B10)

Among these three terms, the first two will give logarith-
mic functions with rational parameters, so these contribute
to one-mass, two-mass and three-mass box functions. The
third term will be

Z 1

0
dz

1

�a0z
2�a1z�a2�

�
1����
�
p log

�
2a0z�a1�

����
�
p

2a0z�a1�
����
�
p

���������1

0
;

��a2
1�4a0a2; (B11)

where � is not a complete square, so this is not a rational
function. In fact, the � is the characteristic signature
(Gram determinant) which identifies the contribution
with a particular three-mass triangle or four-mass box
function. Specifically, expression (B11) is the same as
(2.6).

The above splitting of Z2 makes sense if and only if
a2b

2
1 � a1b1b2 � a0b

2
2 � 0. From (B9) we find that

a2b2
1 � a1b1b2 � a0b2

2� �h‘jPcutQj‘i	‘jPcutQj‘


2a2b1c1 � a1b2c1 � a1b1c2 � 2a0b2c2

� �h‘jPcutQ�QPcutj�i	‘jPcutQj‘
 (B12)

We see that (a2b
2
1 � a1b1b2 � a0b

2
2) is zero exactly for the

pole h‘jPQj‘i, so our manipulation is safe for single poles
other than this one.

For future use, we define the following function:

R1	‘;�;Pcut;Q
�
�2a2b1c1�a1b2c1�a1b1c2�2a0b2c2�

2�a2b
2
1�a1b1b2�a0b

2
2�

�
h‘jPcutQ�QPcutj�i

2h‘jPcutQj‘i
: (B13)
b. The contribution from poles in h‘jPQj‘i

For the poles in h‘jPcutQj‘in�1, things become much
more complicated. There are two facts we need to take into
account. The first is that, as seen in (B12),

a2b2
1 � a1b1b2 � a0b2

2 � 0; (B14)

so we need to be careful when we do the splitting. The
second is that the residue will have terms like
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h�jRj�1;2
h�jRj�1;2

m�1

R2h�1;2jRj�1;2

m

with m ranging from 1 to (n� 1), where �1;2 are the two
solutions for the poles in h‘jPcutQj‘in�1. In other words,
we have more patterns for the z-integration.

Now we discuss the residues in detail for the cases n �
2, 3, 4, which are the only ones needed in this paper.
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The case of n � 2.—In this case, it is a single pole.
Using (B14) we can solve for a0:

a0 �
a1b1b2 � a2b2

1

b2
2

:

Therefore we can split the integral as follows:
Z 1

0
dz

�zc1 � c2�

�a0z
2 � a1z� a2��zb1 � b2�

�
Z 1

0
dz

b2
2�zc1 � c2�

�a1b2z� a2b2 � a2b1z��zb1 � b2�
2

�
Z 1

0
dz
�
�a2b2c1 � a2b1c2 � a1b2c2�

b2�2a2b1 � a1b2�

b2
2

�b1z� b2��a1b2z� a2b2 � a2b1z�

�
b2�b2c1 � b1c2�

�2a2b1 � a1b2�

1

�b2 � zb1�
2

�

� �
Z 1

0
dz
b2�b2c1 � b1c2�

�2a2b1 � a1b2�

1

�b2 � zb1�
2

�
Z 1

0
dz
�a2b2c1 � a2b1c2 � a1b2c2�

b2�2a2b1 � a1b2�

1

a0z2 � a1z� a2

: (B15)
Of these two terms, the first one gives a rational function
while the second one gives a logarithmic function.
However, we can see that

b2c1 � c2b1 � �h‘�i	‘jPcutQj‘
;

so that, at our pole,

b2c1 � c2b1 � 0; (B16)

and hence the first term vanishes. We can solve (B16) for
c1 and simplify the coefficient:

R2	‘; �; Pcut
 �
�a2b2c1 � a2b1c2 � a1b2c2�

b2�2a2b1 � a1b2�
�
c2

b2

�
h�jPcutj‘

h‘jPcutj‘


: (B17)

Unlike the function R1 defined in (B13) in whichQ appears
explicitly, R2 does not involve Q. However, in the formula
for the coefficient, R2 will depend on Q through ‘ when
evaluated at �1;2, the solutions of h‘jPcutQj‘i � 0.

The case of n � 3.—For the case n � 3 we have a
double pole. Using our residue formula (2.19) we find
that the new z-integral may be expressed as

Z3 �
Z 1

0
dz

�zc1 � c2��zd1 � d2�

�a0z2 � a1z� a2��zb1 � b2�
2 ;
where ai, bi, ci are the same as in (B9), and

d1 � h�j�Q� Pcut�j‘
; d2 � h�jPcutj‘
: (B18)

By calculations similar to those in the case of n � 2, we
reach

Z3 �
Z 1

0
dz

b2
2�zc1 � c2��zd1 � d2�

�a1b2z� a2b1z� a2b2��zb1 � b2�
3

�
c1��b2d1 � b1d2�

b1�b1 � b2��2a2b1 � a1b2�

�
c1�a2b2d1 � a2b1d2 � a1b2d2�

b2b1�2a2b1 � a1b2�

�
Z 1

0

b2
2

�b1z� b2��a1b2z� a2b2 � a2b1z�
; (B19)

where we have used the condition (B16) to simplify the
result. We see that

�b2d1 � b1d2 � h‘�i	‘jPQj‘
;

so that at our pole

�b2d1 � b1d2 � 0; (B20)

so the rational contribution is zero. The relevant nonzero
coefficient is given by
R3	‘; �; �; Pcut
 �
c1�a2b2d1 � a2b1d2 � a1b2d2�

b2b1�2a2b1 � a1b2�
� �

h�j�Q� Pcut�j‘
h�jPcut�PcutQ�QPcut�j‘


h‘j�Q� Pcut�j‘
�2P
2
cuth‘jQj‘
 � 2Pcut �Qh‘jPcutj‘
�

: (B21)
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Using the results (B16) and (B20), this can be simplified to
the formula

R3	‘; �; �; Pcut
 �
c2d2

b2
2

�
h�jPcutj‘
h�jPcutj‘


h‘jPcutj‘
2
: (B22)

The case of n � 4.—For n � 4 we have a triple pole; the
new z-integration pattern is given by

Z4 �
Z 1

0
dz

�zc1 � c2��zd1 � d2�
2

�a0z
2 � a1z� a2��zb1 � b2�

3 ;

where ai, bi, ci, di are given above in (B9) and (B18).
Now we perform similar manipulations as in the case

n � 3. Using the three zero-conditions (B14), (B16), and
(B20), we find once again that the rational contribution is
zero and we are left with

Z4 � R4

Z 1

0
dz

1

a0z2 � a1z� a2

;

where

R4	‘; �; �; Pcut
 �
c2d2

2

b3
2

�
h�jPcutj‘
h�jPcutj‘
2

h‘jPcutj‘
3
: (B23)

For general situations, it can be done by a similar way.
Observing above patterns for R2, R3, R4 we conjecture that
for the pattern

Zn�1 �
Z 1

0
dz

Qn
i�1h�ijRj‘


R2h‘jRj‘
n
; (B24)

the contribution of poles of the solution h‘jPcutQj‘i � 0 to
three-mass triangles or four-mass boxes will be given by

Rn�1	‘; f�1; . . . ; �ng; Pcut
 �

Qn
i�1h�ijPcutj‘

h‘jPcutj‘


n : (B25)
APPENDIX C: COEFFICIENTS OF THREE-MASS
TRIANGLES

In this appendix we discuss the presentation of coeffi-
cients of three-mass triangles. After the t-integration and
splitting we end up with an integral of the form

S3 �
Z
h‘d‘i	‘d‘


1

h‘jPj‘
h‘jQj‘


�

QN
i�1h‘aii

h‘jPQj‘i�N�m�=2 Qm
j�1h‘bji

; (C1)

where the factor h‘jPQj‘i is special to this case (here P is
the Pcut in Appendix B, but for simplicity we write P in this
part).

The first thing is to write it using Feynman parametri-
zation as
105004
S3 �
Z 1

0
dz
Z
h‘d‘i	‘d‘


1

h‘jRj‘
2

�

QN
i�1h‘aii

h‘jPQj‘i�N�m�=2 Qm
j�1h‘bji

;

R � zQ� �1� z�P

�
Z 1

0
dz
Z
h‘d‘i	d‘@‘


	~�‘

h‘jRj‘
h‘jRj~�


�

QN
i�1h‘aii

h‘jPQj‘i�N�m�=2 Qm
j�1h‘bji

;

(C2)

where ~� is an arbitrary auxiliary spinor of negative chi-
rality. In this form we have a pole at jRj~�i, which depends
on z. To simplify calculations, we take j~�
 � jRj�i so that

S3 �
Z 1

0
dz
Z
h‘d‘i	d‘@‘


h�jRj‘


h‘jRj‘
R2h‘�i

�

QN
i�1h‘aii

h‘jPQj‘i�N�m�=2 Qm
j�1h‘bji

: (C3)

The reason for this choice is that now all poles are inde-
pendent of z (notice the extra pole h‘�i); all the
z-dependence is in the first factor.

First, we deal with the single poles at bi, �. For a single
pole, the z-integration pattern is given by Z2 andR1 defined
in Appendix B. Thus we get the following result:

C�sing�
3 � �

Xm�1

p�1

QN
i�1hbpaii

hbpjPQjbpi
�N�m�=2Qm�1

j�1
0hbpbji

� R1	bp; �; P;Q
 (C4)

There are several remarks about these results: (1) the minus
sign appears because we need to take the negative residues
of poles; (2) we have set bm�1 � �; (3) in the denominator,
the prime symbol 0 means that we need to omit the factor
with j � p in the product; (4) the factor R1	bp; �; P;Q
 is
the contribution of the z-integration defined by (B13).

Now we need to deal with the pole from
h‘jPQj‘i�N�m�=2. We proceed case by case. If �N �
m�=2 � 0 there is no such pole. The next case is that �N �
m�=2 � 1, i.e., two single poles. Then we have the follow-
ing result:

S3;1 � �
X
p�1;2

lim
‘!�p

h‘�pi

h‘jPQj‘i

QN
i�1h‘aii

h‘�i
QN�2
j�1 h‘bji

R2	‘; �; P
;

(C5)

where �1;2 are solutions of h‘jPQj‘i � 0 and R2 is defined
by (B17). We will stick to the notation �1;2.

Now we proceed to the case �N �m�=2 � 2, i.e., double
poles. Using

h‘jPQj‘i � h‘�1ih‘�2i
hbjPQjbi

habi2
-39
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where a, b are two spinors used to solve �1, �2 [see also
Eqs. (4.19)], we get the following expression:

S3 �
Z 1

0
dz
Z
h‘d‘i	d‘@‘


h�jRj‘


h‘jRj‘
R2h‘�i

�

QN
i�1h‘aii

h‘�1i
2h‘�2i

2 hbjPQjbi2

habi4
QN�4
j�1 h‘bji

Now using the formula (2.19) for the residue of double
poles, we find (here the limit is more like replacement, but
we use this notation to simplify our discussion)

� lim
‘!�1

h�jRj‘


h‘jRj‘
R2h‘�i

QN
i�1h‘aii

h‘�2i
2 hbjPQjbi2

habi4
QN�4
j�1 h‘bji

�

�XN�1

i�1

hL1iL2ii

h�1L1iih�1L2ii
�

haNjRj�1


h�1jRj�1
h�1aNi

�
� f�1 ! �2; L2 ! L3g; (C6)

with

L1 � fa1; a2; . . . ; aNg;

L2 � fb1; b2; . . . ; bN�4; �; �2; �2; jRj�1
g;

L3 � fb1; b2; . . . ; bN�4; �; �1; �1; jRj�2
g:

(C7)

There are two terms. The first term is the contribution of
double pole �1 and the second term is that of �2. We got
the latter from the former by replacing �1 ! �2 and L2 !
L3. In the first line, the most significant manipulation is
that in the brackets we have separated N terms into two
parts: the first N � 1 terms are independent of R, while the
last term depends on R and thus on z. This will make the
z-integration different as we will see shortly.
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Having residues given by (C6) we need to do the
Feynman parameter integration and read out contribution
to three-mass triangles. This has essentially been done in
Appendix B. Using (B17) and (B22), we get

� lim
‘!�1

QN
i�1h‘aii

h‘�ih‘�2i
2 hbjPQjbi2

habi4
QN�4
j�1 h‘bji

�

�XN�1

i�1

hL1iL2ii

h‘L1iih‘L2ii
R2	‘; �; P


�
1

h‘aNi
R3	‘; �; aN; P


�
� f�1 ! �2; L2 ! L3g (C8)

Now we discuss the last case needed for our calculation,
namely �N �m�=2 � 3. We have

S3 �
Z 1

0
dz
Z
h‘d‘i	d‘@‘


h�jRj‘


h‘jRj‘
R2h‘�i

�

QN
i�1h‘aii

h‘�1i
3h‘�2i

3 hbjPQjbi3

habi6
QN�6
j�1 h‘bji

: (C9)

Here we have two triple poles. Again we need to read out
the negative residue first and then use previous results to
get the coefficients. For a triple pole �1 there are several
parts in the denominator: (1) factors with bi, i �
1; . . . ; N � 6, (2) one factor with �, (3) three factors with
�2, and (4) one factor with jRj�1
. We group the first three
together into the list LIV

b;1 defined below. The reason doing
that is that only the last one has z-dependence. Using this
notation we find that the residue of �1 is given by
�
h�1jRj�1


h�1jRj�1
R
2h�1L

IV
b;1;N�5i

QN
i�1h�1La;ii

h�1�2i
3 hbjPQjbi3

habi6
QN�6
j�1 h�1L

IV
b;1;ji

�XN�2

i�1

hLa;iLIV
b;1;ii

h�1La;iih�1LIV
b;1;ii

hLa;NLa;ii
h�1La;Nih�1La;ii

�
haN�1jRj�1


h�1jRj�1
h�1aN�1i

haNaN�1i

h�1aNih�1aN�1i
�

X
1�i�j�N�2

hLa;iLIV
b;1;ii

h�1La;iih�1L
IV
b;1;ii

hLa;jL
IV
b;1;ji

h�1La;jih�1L
IV
b;1;ji

�
X

1�i�N�2

hLa;iLIV
b;1;ii

h�1La;iih�1L
IV
b;1;ii

hLa;N�1jRj�1


h�1La;N�1ih�1jRj�1

�

�
hLa;N�1jRj�1


h�1La;N�1ih�1jRj�1


�
2
�

(C10)

In this result, we have separated terms having different R factors. From this we can read the coefficient of the three-mass
triangle as

�
QN
i�1h�1La;ii

h�1L
IV
b;1;N�5ih�1�2i

3 hbjPQjbi3

habi6
QN�6
j�1 h�1L

IV
b;1;ji

�
R2	�1; LIV

b;1;N�5; P

�XN�2

i�1

hLa;iLIV
b;1;ii

h�1La;iih�1LIV
b;1;ii

hLa;NLa;ii
h�1La;Nih�1La;ii

�
X

1�i�j�N�2

hLa;iLIV
b;1;ii

h�1La;iih�1L
IV
b;1;ii

hLa;jLIV
b;1;ji

h�1La;jih�1L
IV
b;1;ji

�
� R3	�1; L

IV
b;N�5; La;N�1; P


�
hLa;NLa;N�1i

h�1La;N�1ih�1La;Nih�1La;N�1i

�
X

1�i�N�2

hLa;iLIV
b;1;ii

h�1La;N�1ih�1La;iih�1L
IV
b;1;ii

�
�

1

h�1La;N�1i
2 R4	�1; L

IV
b;N�5; La;N�1; P


�
: (C11)
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1. Summary

The reader who wishes to skip the derivations may simply use the formulas given below. Where these functions appear in
the bulk of the paper with a tilde, this means to take the complex conjugate.

We define the following lists.

La � fa1; a2; . . . ; aNg; LI
b � fb1; b2; . . . ; bN; �g; LII

b � fb1; b2; . . . ; bN�2; �g;

LIII
b;1 � fb1; b2; . . . ; bN�4; �; �2; �2g; LIII

b;2 � fb1; b2; . . . ; bN�4; �; �1; �1g;

LIV
b;1 � fb1; b2; . . . ; bN�6; �; �2; �2; �2g; LIV

b;2 � fb1; b2; . . . ; bN�6; �; �1; �1; �1g;

(C12)

where � is an arbitrary auxiliary spinor.
(1) Case one: for the integral

SI
3 �

Z
h‘d‘i	‘d‘


1

h‘jPj‘
h‘jQj‘


QN
i�1h‘aiiQN
j�1h‘bji

;

we have the coefficient

CI
3	La; L

I
b; P;Q
 �

XN�1

p�1

�
QN
i�1hL

I
b;pLa;iiQN�1

j�1
0hLI

b;pL
I
b;ji

R1	L
I
b;p; L

I
b;N�1; P;Q
: (C13)

Although in this paper we have not encountered this situation, we include it for completeness.
(2) Case two: for the integral

S3 �
Z
h‘d‘i	‘d‘


1

h‘jPj‘
h‘jQj‘


QN
i�1h‘aii

h‘jPQj‘i
QN�2
j�1 h‘bji

;

we have the coefficient

CII
3 	La; L

II
b ; P;Q
 �

XN�1

p�1

�
QN
i�1hL

II
b;pLa;ii

hLII
b;pjPQjL

II
b;pi

QN�1
j�1

0hLII
b;pL

II
b;ji

R1	LII
b;p; L

II
b;N�1; P;Q
 �

X
p�1;2

lim
‘!�p

h‘�pi

h‘jPQj‘i

�

QN
i�1h‘La;ii

h‘LII
b;N�1i

QN�2
j�1 h‘L

II
b;ji

R2	‘; L
II
b;N�1; P
: (C14)

(3) Case three: for the integral

S3 �
Z
h‘d‘i	‘d‘


1

h‘jPj‘
h‘jQj‘


QN
i�1h‘aii

h‘jPQj‘i2
QN�4
j�1 h‘bji

;

we have the coefficient

CIII
3 	La; L

III
b;1; L

III
b;2; P;Q
 �

XN�3

p�1

�
QN
i�1hL

III
b;pLa;ii

hLIII
b;pjPQjL

III
b;pi

2QN�3
j�1

0hLIII
b;pL

III
b;ji

R1	LIII
b;1;p; P;Q; L

III
b;1;N�3


�

�
lim
‘!�1

QN
i�1h‘La;ii

h‘LIIIb;1;N�3ih‘�2i
2 hbjPQjbi2

habi4
QN�4
j�1 h‘L

III
b;1;ji

�

�
R2	‘; L

III
b;1;N�3; P


XN�1

i�1

hLa;iL
III
b;1;ii

h�1La;iih�1L
III
b;1;ii

�
1

h�1La;Ni
R3	�1; L

III
b;1;N�3; La;N; P


�

� f�1 ! �2; L
III
b;1 ! LIII

b;2g

�
: (C15)

(4) Case four: for the integral

S3 �
Z
h‘d‘i	‘d‘


1

h‘jPj‘
h‘jQj‘


QN
i�1h‘aii

h‘jPQj‘i3
QN�6
j�1 h‘bji

;
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we have the coefficient

CIV
3 	La; L

IV
b;1; L

IV
b;2; P;Q
 �

XN�5

p�1

�
QN
i�1hL

IV
b;pLa;ii

hLIV
b;pjPQjL

IV
b;pi

3QN�5
j�1

0hLIV
b;pL

IV
b;ji

R1	LIV
b;1;p; P;Q; L

IV
b;1;N�5


�

� QN
i�1h�1La;ii

h�1L
IV
b;1;N�5ih�1�2i

3 hbjPQjbi3

habi6
QN�6
j�1 h�1L

IV
b;1;ji

�
R2	�1; LIV

b;1;N�5; P


�

�XN�2

i�1

hLa;iL
IV
b;1;ii

h�1La;iih�1L
IV
b;1;ii

hLa;NLa;ii
h�1La;Nih�1La;ii

�
X

1�i�j�N�2

hLa;iL
IV
b;1;ii

h�1La;iih�1L
IV
b;1;ii

�
hLa;jLIV

b;1;ji

h�1La;jih�1LIV
b;1;ji

�
�

�
hLa;NLa;N�1i

h�1La;N�1ih�1La;Nih�1La;N�1i

�
X

1�i�N�2

hLa;iL
IV
b;1;ii

h�1La;N�1ih�1La;iih�1LIV
b;1;ii

�
R3	�1; LIV

b;N�5; La;N�1; P


�
1

h�1La;N�1i
2 R4	�1; L

IV
b;N�5; La;N�1; P


�
� f�1 ! �2; L

IV
b;1 ! LIV

b;2g

�
: (C16)
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