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Post-Minkowski action for point particles and a helically symmetric binary solution
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Two Fokker actions and corresponding equations of motion are obtained for two point particles in a
post-Minkowski framework, in which the field of each particle is given by the half-retarded � half-
advanced solution to the linearized Einstein equations. The first action is parametrization invariant, the
second a generalization of the affinely parametrized quadratic action for a relativistic particle. Expressions
for a conserved 4-momentum and angular momentum tensor are obtained in terms of the particles’
trajectories in this post-Minkowski approximation. A formal solution to the equations of motion is found
for a binary system with circular orbits. For a bound system of this kind, the post-Minkowski solution is a
toy model that omits nonlinear terms of relevant post-Newtonian order; and we also obtain a Fokker action
that is accurate to first post-Newtonian order, by adding to the post-Minkowski action a term cubic in the
particle masses. Curiously, the conserved energy and angular momentum associated with the Fokker
action are each finite and well-defined for this bound 2-particle system despite the fact that the total energy
and angular momentum of the radiation field diverge. Corresponding solutions and conserved quantities
are found for two scalar charges (for electromagnetic charges we exhibit the solution found by Schild). For
a broad class of parametrization-invariant Fokker actions and for the affinely parametrized action, binary
systems with circular orbits satisfy the relation dE � �dL (a form of the first law of thermodynamics),
relating the energy, angular velocity and angular momentum of nearby equilibrium configurations.
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I. INTRODUCTION

In constructing numerical initial data for compact binary
systems, it may be useful to find exact solutions to the
Einstein equations with helical symmetry, solutions that
are stationary in a corotating frame [1–10]. In the case of
two charged particles, an exact solution of this kind was
found by Schild [11]: The force on each particle is asso-
ciated with the half-retarded plus half-advanced field of the
other. (An earlier but less explicit version is given by
Schönberg [12].) We obtain here an analogous solution
for point masses in a post-Minkowski framework.

A time-symmetric interaction allows one to derive the
equations of motion for point-particles from a single action
integral that is written solely in terms of the dynamical
variables of each particle (without mediating field varia-
bles). This kind of action at a distance theory has been
formulated by Fokker and by Wheeler and Feynman; for
their treatments of the electromagnetic field, see [13,14].
We exhibit an analogous Fokker action for linearized
gravity. The equations of motion are those of a post-
Minkowski approximation, in which, as in the electromag-
netic case, each particle moves in the half-advanced plus
half-retarded field of the other.

A Fokker action is not a true action: Its variation leads to
equations in which the endpoints of the action integral
explicitly appear in integrals that should yield the field of
each particle. Only by taking a limit of the varied action as
the endpoints go to infinity does one recover the correct
equations of motion. Invariance of the Fokker action under
Poincaré transformations nevertheless leads to expressions
for a conserved energy and angular momentum of a
06=73(10)=104039(28) 104039
n-particle system. For helically symmetric binary systems
(in, e.g., models with scalar, electromagnetic, or gravita-
tional interactions), the energy and angular momentum of
the field is infinite, because the particles have radiated for
infinite time in past and future. The conserved energy-
momentum and angular momentum associated with the
Fokker action, however, are finite. For circular orbits of
particles of massm and �m, we find the surprising result that
the form of this energy,

E �
m
�
�

�m
��
; (1)
is identical for scalar, electromagnetic, and linearized
gravitational interactions, described by a parametrization-
invariant Fokker action. The angular momentum is in each
case proportional to the value of the interaction field dotted
on each free index into the helical Killing vector. We show
that nearby circular orbits satisfy the familiar first law,
dE � �dL.

Although one can construct formal solutions to the post-
Minkowski equations in which the source is gravitationally
bound, care is needed in their interpretation. A conceptual
problem is related to the fact that, at zeroth order in the
perturbed metric, particles move on geodesics of flat space,
not in bound orbits. Because the matter density vanishes at
zeroth order, the stress-energy tensor T�� � �u�u� has at
first order the form �T�� � ����u�u�, where u� is the
zeroth-order velocity field describing straight line motion.
If one then finds the metric from the perturbed equation
-1 © 2006 The American Physical Society
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0 � �2��G�� � 8�T���

� ��h�� � 1
2�

��h� � 16�����u�u�; (2)

the perturbed metric will not yield perturbed bound
trajectories.

A resolution to this problem is to look at families of
solutions, g���s�, T���s� that describe finite fluid masses
in bound orbits for all nonzero values of s, despite the fact
that s � 0 is flat space. An example can be easily under-
stood by first looking at Newtonian gravity, with a family
of solutions corresponding to the scaling v� �, m=r� �2

of the post-Newtonian approximation: That is, consider a
family of solutions for two point masses m � m�1�s and
�m � �m�1�s in circular orbits of radii a and �a (independent

of s), with speeds given approximately by v�1�
���
s
p

and
�v�1�

���
s
p

. At s � 0, the solution is flat space with no matter.
For each nonzero s the solution describes masses in circu-
lar orbit, and as s! 0, the period of the orbit increases
without bound. An exact solution is given for each mass by
equations in which the perturbed particle trajectory is
found self-consistently. That is, with � � s��1�, the
center-of-mass trajectories r and �r satisfy

r2��1��r� � 4� �m�1���r� �r�t��; �r � �r�;

�r2 ���1���r� � 4�m�1����r� r�t��; ��r � � �r �� :
(3)

Here ��r� is the potential at r due to the mass �m. Because
v! 0 as s! 0, the orbit remains close to a straight line
for increasingly long times, but for each finite s the orbit is
circular.

In general relativity, one can presumably construct a
similar family of solutions with bound orbits whose
energy-momentum tensor, T���s� � ��s�u��s�u��s� �
p�s��g���s� � u��s�u��s��, and metric g���s� are point-
wise continuous in the parameter s and for which one has
flat, empty space at s � 0,

g���0� � ���; ��0� � p�0� � 0:

The equations for the first-order metric in a radiation
gauge,

�2G�1��� 	 ��h�� �
1
2����h � �16�T�1���; (4)

have as their source T�1��� a stress-energy tensor constructed
from the perturbed velocity field and density and from the
unperturbed metric. With the masses shrinking to zero as
s! 0, the motion of each mass is given to linear order by
the linear field of the other: The self-force at linear order
serves only to renormalize the mass.

The resulting ‘‘post-Minkowski’’ solution in which two
masses move in bound orbit, each responding to the linear
field of the other has the following features:
(i) I
t is correct to Newtonian order.
104039
(ii) T
-2
he radiation field of the linearized metric is cor-
rect to lowest nonvanishing post-Newtonian order
(2 1=2 post-Newtonian order).
(iii) T
he orbit is not correct to first post-Newtonian
order.
Using the linearized metric leads to equations of motion
that are missing a term quadratic in the particle masses that
enters the first post-Newtonian equations. In this sense, the
first post-Minkowski approximation for bound orbits is a
toy model, keeping terms of all orders in v but discarding
nonlinear terms in h�� that, for bound states, give correc-
tions of order v2 to the orbit.

Following recent codes that obtain helically symmetric
solutions to nonlinear wave equations [15,16], Uryu
[15,17] has obtained a neutron star code that solves the
full Einstein-perfect fluid equations on an asymptotically
flat initial hypersurface S, obtaining a solution with exact
helical symmetry in the near zone. By solving the full
Einstein equation, one expects more accurately to enforce
the balance of gravity and centripetal acceleration in cir-
cular motion. The error associated with ignoring the radial
motion associated with radiation reaction, however, re-
mains. In future work, we anticipate using the point-
particle model developed here to estimate the accuracy of
such helically symmetric initial data sets and correspond-
ing quasiequilibrium sequences, by comparing outgoing
point-particle solution (in a post-Minkowski framework) to
helically symmetric models and sequences. A further prob-
lem is related to the fact that the codes mentioned above
typically diverge when helical symmetry is enforced in a
region larger than the near zone (beyond one wavelength).
Extending the present work to second order in the post-
Minkowski approximation may be useful in developing
codes with larger domains of convergence. Finally, exis-
tence of helically symmetric binaries is unproved and the
second-order (nonlinear) extension may also help in under-
standing existence and asymptotic behavior of models of
helically symmetric binaries.

In Sec. II, we review Fokker actions, obtaining the
equations of motion and the form of the conserved 4-
momentum and corresponding angular momentum. In
Sec. III A, we introduce a parametrization-invariant
Fokker action that describes point particles in the first
post-Minkowski approximation. The formalism of the pre-
vious section is used to obtain equations of motion and
conserved quantities; derivations of the explicit forms of
the conserved quantities are relegated to Appendix D 3.
Section III B then introduces the Fokker analog of the
quadratic action,

R
d	 m2 _x� _x�, for affinely parametrized

particles, again obtaining equations of motion, momentum,
and angular momentum. In Sec. III C and III D we consider
two particles of masses m and �m in circular orbit, finding
the equations governing the orbit, and computing the sys-
tem’s energy and angular momentum. The corresponding
conserved quantities for scalar and electromagnetic inter-
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actions are summarized. Section IV is devoted to proving
the relation dE � �dL for a class of parametrization-
invariant Fokker actions and the affinely parametrized
action. In Sec. V we introduce two forms of a post-
Newtonian correction term to make the post-Minkowski
action accurate to first post-Newtonian order. We obtain
the corresponding corrections to the conserved momentum
and angular momentum. Section VI displays the results of
a numerical solution to the post-Minkowski equations of
motion, with and without the added post-Newtonian term.
Section VII discusses features of conserved quantities
associated with Fokker actions, proposing, in particular,
an explanation for their finite behavior when the field
energy is infinite. A description of interacting scalar
charges and many of the details of our calculations are
presented in appendices.
II. ACTION AT A DISTANCE THEORY

An action-at-a-distance theory of interacting classical
point charges was formulated by Fokker and by Wheeler
and Feynman. [13,14]. In these treatments, one obtains the
equations of motion by varying an action integral that is a
function only of the trajectories (world lines) of the
charges. The price one pays for eliminating the electro-
magnetic field is that the action integral is not a genuine
action: One must vary an integral I that involves only a
finite segment of each particle’s trajectory, and the equa-
tions of motion emerge from the limit of �I as the trajec-
tories are extended to infinity. In other words, the limit
must be taken after the variation of the action integral. In
addition, the action is not an integral over a single parame-
ter time, but instead involves integrals over parameter
times associated with each particle.1 We will call an action
integral having these properties a Fokker action.

In Dettman and Schild [18], a derivation of the equation
of motion, as well as expressions for the conserved quan-
tities, the energy-momentum and the angular momentum,
1For parametrization-invariant actions, one can choose to param
interaction terms involve double integrals over the parameter time o
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is presented for a generic Fokker action that may include
self-action terms and variable mass parameters.

In this paper, we obtain a similar action for two self-
gravitating point particles, in a post-Minkowski approxi-
mation. We describe the particles by their constant masses
m, �m and by their trajectories written in terms of position
vectors x��	�, �x�� �	� on a flat background spacetime, with
arbitrary parameter times 	 and �	. In this approximation,
the motion of each particle is determined by a gravitational
interaction with the other particle, and there is no self-
interaction term (any contribution from gravitational self-
energy is accounted for in the mass of each particle). The
two-particle system is then described by a Fokker action of
the form

I�	1; 	2; �	1; �	2� � �m
Z 	2

	1

d	�� _x� _x��1=2

� �m
Z �	2

�	1

d �	�� _�x� _�x��1=2

�
Z 	2

	1

d	
Z �	2

�	1

d �	��x� �x; _x; _�x�; (5)

where the Fokker analog � of an interaction Lagrangian
has the property,

��x� �x; _x; _�x� � �� �x� x; _�x; _x�; (6)

and where

_x � :�
dx�

d	
and _�x� :�

d �x�

d �	
: (7)

For given values of 	, �	, ��	; �	� is a scalar constructed only
from ���, x��	�, _x��	�, �x�� �	�, _�x�� �	�. It follows that � and
I are Poincaré invariant—invariant under simultaneous
Poincaré transformations of the particles’ paths.

As noted earlier, to obtain the equations of motion, one
must compute the variation of the action integral before
taking the limit as 	1, �	1 ! �1 and 	2, �	2 !1.

The variation of the action integral (5) is given by
�I�	1; 	2; �	1; �	2� �

�
m _x�

�� _x� _x��1=2
�
Z �	2

�	1

d �	
@�

@ _x�

�
�x�

��������
	2

	1

�
Z 	2

	1

d	�x�
�
�
d
d	

m _x�
�� _x� _x��1=2

�
Z �	2

�	1

d �	
�
@�

@R�
�
d
d	

@�

@ _x�

��

�

�
�m _�x�

�� _�x� _�x��1=2
�
Z 	2

	1

d	
@�

@ _�x�

�
� �x�

��������
�	2

�	1

�
Z �	2

�	1

d �	� �x�
�
�
d
d �	

�m _�x�
�� _�x� _�x��1=2

�
Z 	2

	1

d	
�
@�

@ �R�
�
d
d �	

@�

@ _�x�

��
;

(8)

where R� :� x� � �x� �: � �R�.
Requiring that the limit of the variation vanish when �x�j
1 � 0 and � �x�j
1 � 0,

lim�I :� lim
�	1; 	2� ! ��1;�1�

� �	1; �	2� ! ��1;�1�

�I � 0; (9)
etrize the trajectory of each particle by Minkowski time, but
f each particle.

-3
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yields the equation of motion for each particle,

d
d	

m _x�
�� _x� _x��1=2

�
Z 1
�1

d �	
�
@�

@R�
�
d
d	

@�

@ _x�

�
(10)

d
d �	

�m _�x�
�� _�x� _�x��1=2

�
Z 1
�1

d	
�
@�

@ �R�
�
d
d �	

@�

@ _�x�

�
: (11)

The action integral I, with finite values of 	i, �	i, is
invariant under Poincaré transformations of the paths that
leave the path parameters fixed. Invariance of I under the
infinitesimal spacetime translation of each path by a con-
104039
stant vector a�,

�x� � � �x� � a�; (12)

implies conservation of 4-momentum: That is, assuming
the equations of motion, (10) and (11), and substituting
Eq. (12) in Eq. (8), we obtain

�I
�a�

� P��	2; �	2� � P��	1; �	1�; (13)

where
P��	; �	� �
�

m _x�
�� _x� _x��1=2

�
Z 1
�1

d �	
@�

@ _x�

�
�	� �

�
�m _�x�

�� _�x� _�x��1=2
�
Z 1
�1

d	
@�

@ _�x�

�
� �	� �

�Z 1
	

Z �	

�1
�
Z 	

�1

Z 1
�	

�
@�

@R�
d	d �	:

(14)

Translation invariance, �I � 0, implies that P� is independent of 	 and �	.
Similarly, invariance of I under an infinitesimal Lorentz transformation of each path,

�x� � ���x� and � �x� � ��� �x�; (15)

where ��� � ���� is a constant antisymmetric tensor, implies conservation of angular momentum. Again assuming the
equations of motion, (10) and (11), and substituting Eq. (15) in Eq. (8), we have

2
�I

����
� L���	2; �	2� � L���	1; �	1�; (16)

where

L���	; �	� �
�m�x� _x�� x� _x��

�� _x� _x��1=2
�
Z 1
�1

d �	
�
x�
@�

@ _x�
� x�

@�

@ _x�

��
�	��

�
�m� �x� _�x�� �x� _�x��

�� _�x� _�x��1=2
�
Z 1
�1

d	
�

�x�
@�

@ _�x�
� �x�

@�

@ _�x�

��
� �	�

�

�Z 1
	

Z �	

�1
�
Z 	

�1

Z 1
�	

���
x�

@�

@R�
� x�

@�

@R�

�
�

�
_x�
@�

@ _x�
� _x�

@�

@ _x�

��
d	d �	 (17)
Here, Lorenz invariance implies

���
�
x�

@�

@R�
� �x�

@�

@ �R�
� _x�

@�

@ _x�
� _�x�

@�

@ _�x�

�
� 0: (18)

Finally, �I � 0 implies that L�� is independent of 	 and �	.
With a definition

w :� R�R� � �x� �x�2; (19)

an interaction � that depends on the positions only through
w, � � ��w; _x; _�x�, is a restricted form of interactions that
satisfies the property (6). For such an interaction term,
since @�=@R� � 2R�@�=@w, the last line of Eq. (17) is
written

2
�Z 1

	

Z �	

�1
�
Z 	

�1

Z 1
�	

��
@�

@w
�x� �x� � x� �x��

�
1

2

�
_x�
@�

@ _x�
� _x�

@�

@ _x�

��
d	d �	: (20)
III. ACTION AT A DISTANCE THEORY FOR
POST-MINKOWSKIAN GRAVITY

As usual in a linearized framework, all tensor indices
will be raised and lowered by the flat metric ��� of the
background spacetime.
A. Fokker actions for point-particles in
post-Minkowskian gravity

Havas and Goldberg [19] derived equations of motion
for point particles in general relativity by expanding the
metric and demanding that the covariant conservation law
for the stress-energy tensor be satisfied to first order in the
perturbation, with a time-symmetric, half-advanced �
half-retarded field for the first-order metric. They found a
Fokker action, an action integral I for which lim�I � 0 [in
the sense of Eq. (9)] gives the equation of motion to the
-4
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same order. In our notation, their interaction term is

��w; _x; _�x� � 2m �m��w�
� _x� _�x��2 � 1

2 _x� _x� � 1
2

_�x� _�x� � 1
2

�� _x� _x��1=2�� _�x� _�x��1=2
:

(21)

Ramond [20] subsequently formulated a general action-
at-a-distance theory that is invariant under reparametriza-
tion and includes tensorial interactions. Following
Ramond’s argument, we find that the following interaction
term is reparametrization invariant:

��w; _x; _�x� � 2m �m��w�
� _x� _�x��2 � 1

2 _x� _x� _�x� _�x�

�� _x� _x��1=2�� _�x� _�x��1=2
; (22)

When parameters 	 and �	 are chosen to satisfy _x� _x� � �1
and _�x� _�x� � �1, as in the Havas-Goldberg treatment, the
equations of motion agree with theirs. Because _x� is nor-
malized with respect to ���, not ��� � h��, the Havas-
Goldberg 	 is not an affine parameter.

We can see as follows how, starting from the post-
Minkowski equations of motion, one arrives at an interac-
tion term with � given by Eq. (22). The derivation also
shows why one obtains a Fokker action, not a true action.

To linear order, the metric g�� is a sum of the flat metric,
���, and a perturbation ~h��,

g�� � ��� � ~h��: (23)

where the perturbed metric ~h�� is a sum of the half-
advanced � half-retarded field of each particle. As men-
tioned earlier, in the post-Minkowski treatment of point
particles, the effect on the motion of particle m from the
field of m itself is simply a mass renormalization. That is,
the motion of m is described to linear order in ~h�� by the
linearized geodesic equation with ~h�� replaced by the
value at the position of m of the half-advanced � half-
retarded field h�� of �m alone: When 	 is an affine parame-
ter (proper time with respect to the perturbed metric), the
geodesic equation to linear order in h�� has the form

���� � h��� �x
� � C��� _x� _x� � 0

where C��� :� 1
2�r�h�� �r�h�� �r�h���:

(24)

Equivalently,

d
d	
����� � h��� _x�� �

1

2
r�h�� _x� _x� � 0: (25)

To linear order in h::, the expression ���� � h��� �x� in
Eq. (24) can be replaced by �x� � ��� �x�, because _x� is
already order h::. The form given in Eq. (25), however,
conforms to that of the action integrals below. For 	 a
generic time parameter, the geodesic equation has the
104039
form given in Eq. (32). This can be directly shown from
(25), but we derive it below from the action for a point
particle, written to linear order in h��.

In the deDonder (harmonic) gauge, r�h�� � 0, h�� is
given by

��h�� �
1
2���h� � �16� �T��; (26)

where the stress-energy tensor �T�� of �m is defined by

�T ���x� � �m
Z 1
�1

d �	��x� �x� �	��
_�x� _�x�

�� _�x� _�x��1=2
: (27)

Here r� is the covariant derivative operator of the flat
metric ���, and � � r�r

� is the corresponding flat
D’Alembertian. Using the half-retarded � half-advanced
Green function, G�x; �x� � ��w� [a solution to �G�x; �x� �
�4���x� �x�], the solution to Eq. (26) is written,

h���x� � 4 �m
Z 1
�1

d �	��w�
_�x� _�x� � 1

2 ���� _�x� _�x�

�� _�x� _�x��1=2
: (28)

The trajectory of the second particle, � �m; �x�� �	��, is simi-
larly a geodesic of a background spacetime with metric
g�� � ��� � �h��, given by Eq. (25) or (32), with barred
and unbarred quantities exchanged. The source for �h�� is
the particle �m; x��	��:

�h ��� �x� � 4m
Z 1
�1

d	��w�
_x� _x� � 1

2�
�� _x� _x�

�� _x� _x��1=2
: (29)

(Note: We use a bar to label the perturbed field acting on
particle �m; �h�� is not the trace-reversed form of h��.)

To find an interaction term that reproduces the equations
of motion, we begin with an action Im for the first particle
in the field of the second, a linearized geodesic equation on
a background spacetime with metric g�� � ��� � h��.
The action Im is then the action for geodesic motion,

�m
Z 	2

	1

d	��g�� _x� _x��1=2

� �m
Z 	2

	1

d	������ � h��� _x� _x��1=2;

written to linear order in h��:

Im � �m
Z 	2

	1

d	�� _x� _x��1=2

�
1

2
m
Z 	2

	1

d	h��
_x� _x�

�� _x� _x��1=2
: (30)

The action Im is invariant under time reparametrization.
From its variation, �Im � 0, we can directly compute the
linearized geodesic equation with arbitrary parameter 	:
-5
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�Im � m
�
��� � h�� �

1

2
���h��

_x� _x�

�� _x� _x��1=2

�
_x�

�� _x� _x��1=2
�x�

��������
	2

	1

�m
Z 	2

	1

d	
�
d
d	

��
��� � h�� �

1

2
���h��

_x� _x�

�� _x� _x��1=2

�
_x�

�� _x� _x��1=2

�
�

1

2
r�h��

_x� _x�

�� _x� _x��1=2

�
�x�: (31)

Then, requiring �Im � 0 for variations �x� with fixed endpoints yields the equation of motion, we have

d
d	

��
��� � h�� �

1

2
���h��

_x� _x�

�� _x� _x��1=2

�
_x�

�� _x� _x��1=2

�
�

1

2
r�h��

_x� _x�

�� _x� _x��1=2
: (32)

If in the action Im of Eq. (30) we substitute Eq. (28), we obtain

Im � �m
Z 	2

	1

d	�� _x� _x��1=2 � 2m �m
Z 	2

	1

d	
Z 1
�1

d �	��w�
� _x� _�x��2 � 1

2 _x� _x� _�x� _�x�

�� _x� _x��1=2�� _�x� _�x��1=2
: (33)

To obtain an action whose variations with respect to both x� and �x� yield the equations of motion for each particle, one
cannot simply add a kinetic term for �m and a second interaction term in which the barred and unbarred quantities are
interchanged, because the new interaction term would involve x� and alter the equations of motion of the first particle.
(Roughly speaking, one would be double-counting the gravitational binding energy.) Instead, one observes that the
interaction term becomes symmetric under interchange of the two particlesm, x��	� and �m, �x�� �	� if, in the infinite integral,
we make the replacements �1 ! �	1 and 1 ! �	2. The resulting action integral, symmetric under interchange of two
particles, has the form of Eq. (5), with interaction term (22)

I � �m
Z 	2

	1

d	�� _x� _x��1=2 � �m
Z �	2

�	1

d �	�� _�x� _�x��1=2 � 2m �m
Z 	2

	1

d	
Z �	2

�	1

d �	��w�
� _x� _�x��2 � 1

2 _x� _x� _�x� _�x�

�� _x� _x��1=2�� _�x� _�x��1=2
: (34)
The price for this symmetry is that a variation of I yields
equations of motion in which the integrals giving h�� and
�h�� extend only from �	1 to �	2 (or 	1 to 	2). It is for this
reason that action-at-a-distance theories require a Fokker
action, whose equations of motion are given by lim�I � 0.

As mentioned, the above theory is invariant under rep-
arametrization of 	 and �	. The obvious choice of a
proper-time parametrization, with ��� _x� _x� � �1 and
���� _�x� _�x� � �1, simplifies computations of physical
quantities.

B. A Fokker action for the affinely parametrized
equations

One can, of course, specialize the parametrization-
invariant action to affinely parametrized trajectories, but
affine parametrization also allows a generalization to in-
teracting particles of the quadratic action for geodesic
motion, 1

2m
R
	2
	1
d	 _x� _x�. To construct an action integral I

with quadratic kinetic term, for which lim�I � 0 reprodu-
ces the affinely parametrized equation of motion, Eq. (25),
and its barred $ unbarred form, we modify the kinetic
terms in the action integral of Eq. (5), writing
104039
I�	1; 	2; �	1; �	2� �
1

2
m
Z 	2

	1

d	 _x� _x� �
1

2
�m
Z �	2

�	1

d �	 _�x� _�x�

�
Z 	2

	1

d	
Z �	2

�	1

d �	��w; _x; _�x�; (35)

and we take as the interaction term

��w; _x; _�x� � 2m �m��w��� _x� _�x��2 � 1
2 _x� _x� _�x� _�x��: (36)

Affine parametrization, the requirement

���� � h��� _x� _x� � constant;

���� � �h��� _�x
� _�x� � constant;

(37)

is enforced by the equations of motion.
Formulas for the equation of motion Eqs. (10) and (11),

the 4-momentum Eq. (14) and the angular momentum
tensor Eq. (17) are changed as a result of this modification
of the kinetic terms in Eq. (35). The variation of our kinetic
terms

1

2
m�

Z 	2

	1

d	 _x� _x� � m _x��x
�j
	2
	1 �

Z 	2

	1

d	m �x��x
�;

(38)
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1

2
�m�

Z �	2

�	1

d �	 _�x� _�x� � �m _�x�� �x�j �	2
�	1
�
Z �	2

�	1

d �	 �m ��x�� �x�;

(39)

results in the following form for the equation of motion,

m �x� �
Z 1
�1

d �	
�
@�

@R�
�
d
d	

@�

@ _x�

�

� �
d
d	
�h�� _x�� �

1

2
r�h�� _x� _x�; (40)
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�m��x� �
Z 1
�1

d	
�
@�

@ �R�
�
d
d �	

@�

@ _�x�

�

� �
d
d	
� �h�� _�x�� �

1

2
r� �h�� _�x� _�x�; (41)

in agreement with the linearized geodesic Eq. (25).
The 4-momentum is given by
P��	; �	� �
�
m _x� �

Z 1
�1

d �	
@�

@ _x�

�
�	� �

�
�m _�x� �

Z 1
�1

d	
@�

@ _�x�

�
� �	� �

�Z 1
	

Z �	

�1
�
Z 	

�1

Z 1
�	

�
@�

@R�
d	d �	; (42)

and the angular momentum by

L���	; �	� �
�
m�x� _x�� x� _x���

Z 1
�1

d �	
�
x�
@�

@ _x�
� x�

@�

@ _x�

��
�	��

�
�m� �x� _�x�� �x� _�x���

Z 1
�1

d	
�

�x�
@�

@ _�x�
� �x�

@�

@ _�x�

��
� �	�

� 2
�Z 1

	

Z �	

�1
�
Z 	

�1

Z 1
�	

��
@�

@w
�x� �x�� x� �x���

1

2

�
_x�
@�

@ _x�
� _x�

@�

@ _x�

��
d	d �	; (43)
These expressions for momentum and angular momentum
are formally identical to Eqs. (14) and (17) if one sets
(� ��� _x� _x�) to 1. This is misleading: In the present
section, _x� is a unit vector not of the Minkowski metric
but of the perturbed metric ��� � h��, and the altered
form of � compensates for the altered normalization,
leading to identical Newtonian limits of the two
expressions.

C. Circular orbits

We consider now a system of two point particles in
circular orbit, for which the gravitational field seen by
each particle is the linearized half-advanced � half-
retarded field of the other. This is a gravitational analog
of a solution obtained by Schild [11] for two point charges.
In the gravitational context, however, linearized gravity is a
toy model for bound systems: Discarded nonlinear terms
are of the same post-Newtonian order as linear terms that
are kept, and hence of the same magnitude as terms of the
next post-Minkowskian order.

We introduce a basis ft�;$�; 
̂�; z�g of unit vectors of
the flat metric ���. A particle in circular orbit in the z � 0
plane with constant orbital radius a has cylindrical coor-
dinates ft;$ � a;
; z � 0g and position vector

x� � tt� � a$�: (44)

Its spacetime trajectory is tangent to the helical Killing
vector

k� � t� ��
�; (45)

where 
� � $
̂� is a rotational Killing vector of the
flat metric ��� and � is the particle’s constant angular
velocity. With � :� dt=d	 and v :� a�, the particle’s 4-
velocity and acceleration are given by

_x � � �k� � ��t� � v
̂�� (46)

and

�x � � ��2v�$�: (47)

The second particle �m has a circular orbit of radius �a
about the same origin with coordinates f�t; �$ � �a; �
; �z �
0g and position vector

�x � � �tt� � �a �$�: (48)

The particle trajectory is again tangent to the helical
Killing vector

�k � � t� �� �
�; (49)

with �
� the value of the vector field 
� at the position of
the second particle. With �� � d�t=d �	 and �v :� �a�, the
acceleration and 4-velocity of the second particle are given
by

_�x � � �� �k� � ���t� � �v �̂

�
� (50)

and

��x � � � ��2 �v� �$�: (51)

For the parametrization-invariant formulation, it is con-
venient to parametrize the trajectories by proper time with
respect to the flat metric ���; their tangent vectors are then
unit vectors of ���,

��� _x� _x� � �1; ���� _�x� _�x� � �1: (52)

The quantities �, v, �� and �v obey the familiar relations
-7



φret
m

m

R φ
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� � �1� v2��1=2; �� � �1� �v2��1=2: (53)

For the affinely parametrized formulation, a correct
Newtonian limit is reproduced when a normalization
with the perturbed metric (Sec. III B) is used:

���� � h��� _x� _x� � �1; � ���� � �h��� _�x� _�x� � �1;

(54)

which yield relations

� � �1� v2 � h��k
�k���1=2;

�� � �1� �v2 � �h�� �k� �k���1=2:
(55)

With the first particle, m, at 
 � 0 for t � 0, its trajec-
tory has coordinates


 � �t; t � �	; (56)

and the trajectory of �m then has coordinates

�
 � ����t; �t � �� �	��=�: (57)

The positions of both particles are specified by a single
parameter, and it is natural to choose a descriptor � of their
relative motion, defined by

� :� �
�
 � �� �� �	��	�; (58)

where we pick 	 � �	 � 0 when 
 � �
 � 0.
A vector R� :� x� � �x� becomes

R� �
1

�
���� ��t� � �v� �v cos��$� � �v sin�
̂��

(59)

�
1

�
���� ��t� � � �v� v cos�� �$� � v sin� �̂


�
�: (60)

The half-retarded � half-advanced Green function
��w� � ���x� �x�2� has support on the two events that
correspond to the roots of

w��� :� �x� �x�2

�
1

�2 ����� ��
2 � v2 � �v2 � 2v �v cos�� � 0:

(61)

These roots are given by

� � �
 ’; (62)

with ’ the positive root of

’2 � v2 � �v2 � 2v �v cos’: (63)

Here ’� � is the angle between m and the retarded
position of �m, and Eq. (63) has a simple geometrical mean-
ing, illustrated in Fig. 1

’� � � �
ret �
;

JOHN L. FRIEDMAN AND KOJI URYŪ
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in which R is the distance from m to the retarded position
of �m. That is, using the geometric relation

R2 � a2 � �a2 � 2a �a cos� �
ret �
�

�
1

�2 �v
2 � �v2 � 2v �v cos’�; (64)

noting that R � �tret � t, and using Eqs. (56) and (57), we
have

’ � �
ret � ��
 � ���tret � t� � �R: (65)

Then ’2 � �2R2 and Eq. (63) is immediate from (64).
Analogously, the root � � �� ’ corresponds to the ad-
vanced position of �m defined by �’� � � �
adv �
.

D. Conserved quantities and angular velocity
of circular orbits

We now rewrite the integrals appearing in Eqs. (10),
(11), (14), and (17) for a parametrization-invariant
action, in terms of the parameter �. To evaluate the inte-
grals, we use formulas obtained in Appendix A 1. The
resulting formulas for affinely parametrized formulations
Eqs. (40)–(43) are quite similar to those for the
parametrization-invariant formulations. However, the fact
that the action appropriate to an initial choice of affine
parameters is not a special case of the parametrization-
invariant action leads to definitions of a conserved energy
that are not identical in the two formulations.

1. Parametrization-invariant model

For circular orbits, only the radial component of the
equations of motion is nontrivial, and it has the form,
-8



POST-MINKOWSKI ACTION FOR POINT PARTICLES . . . PHYSICAL REVIEW D 73, 104039 (2006)
�m�2v� �
Z 1
�1

d�
�
@�

@w
2

���2 �v� �v cos�� �
�
��
@�

@ _x�

̂�

�
(66)

� 4m �m�2 ��
Z 1
�1

d�
�

1

�2 �
0�w��v� �v cos�� ~���; v; �v�

� ��w�
�
�1� v �v cos�� �v cos��

1

2
v�1� �v2� �

1

2

v

1� v2
~���; v; �v�

��
; (67)

� �m ��2 �v� �
Z 1
�1

d�
�
@�

@w
2

��2 � �v� v cos�� �
��
�
@�

@ _�x�
�̂
�

�
(68)

� 4m �m� ��2
Z 1
�1

d�
�

1

�2 �
0�w�� �v� v cos�� ~���; v; �v�

� ��w�
�
�1� v �v cos��v cos��

1

2
�v�1� v2� �

1

2

�v

1� �v2
~���; v; �v�

��
; (69)

where Eqs. (A10) and (A11) in Appendix A 1 are used. We have introduced here a function ~���; v; �v�, defined by

~���; v; �v� :�
1

�2 ��2

�
� _x� _�x��2 �

1

2
_x� _x� _�x� _�x�

�
� �1� v �v cos��2 �

1

2
�1� v2��1� �v2�: (70)

Since the center-of-mass frame is chosen, the only nonzero components of the 4-momentum and the angular momentum
are E :� �P��	; �	�t� � �P0�	; �	� and L :� L12�	; �	�. Taking �	; �	� � �0; 0�, we have

E � P0�0; 0� �
�
m _x0 �

1

���

Z 1
�1

d�
@�

@ _x0

�
�0� �

�
�m _�x0 �

1

��

Z 1
�1

d�
@�

@ _�x0

�
�0� �

1

� ���2

Z 1
�1

d��
@�

@w
2�x0 � �x0�

� m��
4m �m� ��

�

Z 1
�1

d���w�
�
�1� v �v cos�� �

1

2
�1� �v2� �

1

2

1

1� v2
~���; v; �v�

�

� �m ���
4m �m� ��

�

Z 1
�1

d���w�
�
�1� v �v cos�� �

1

2
�1� v2� �

1

2

1

1� �v2
~���; v; �v�

�

�
4m �m� ��

�3

Z 1
�1

d��0�w����� �� ~���; v; �v�; (71)

L � L12�0; 0�

�

�
m�x1 _x2 � x2 _x1� �

1

���

Z 1
�1

d�
�
x1
@�

@ _x2 � x2
@�

@ _x1

��
�0� �

�
�m� �x1

_�x2 � �x2
_�x1� �

1

��

Z 1
�1

d�
�

�x1
@�

@ _�x2 � �x2
@�

@ _�x1

��
�0�

�
2

� ���2

Z 1
�1

d��
�
@�

@w
�x2 �x1 � x1 �x2� �

1

2

�
_x2
@�

@ _x1 � _x1
@�

@ _x2

��
(72)

�
m�v2

�
�

4m �m� ��v �v

�2

Z 1
�1

d���w�
�
�1� v �v cos�� cos��

1

2

v
�v
�1� �v2� �

1

2

v
�v

1

1� v2
~���; v; �v�

�

�
�m �� �v2

�
�

4m �m� ��v �v

�2

Z 1
�1

d���w�
�
�1� v �v cos�� cos��

1

2

�v
v
�1� v2� �

1

2

�v
v

1

1� �v2
~���; v; �v�

�

�
4m �m� ��v �v

�2

Z 1
�1

d�
�

1

�2 �
0�w�� sin� ~���; v; �v� � ��w��1� v �v cos��� sin�

�
; (73)

where we have used a formula, Eq. (A5), derived in Appendix A 1.
Formulas for integrations involving a �-function are summarized in Appendix A 2. First we define a function ��’;v; �v�,

related to ~� by an integration:
104039-9
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��’; v; �v� �
1

�2

Z 1
�1

d���w� ~���; v; �v� �
�1� v �v cos’�2 � 1

2 �1� v
2��1� �v2�

’� v �v sin’
: (74)

Using this relation, we can evaluate the integrals appearing in the equations of motion (67) and (69), obtaining an algebraic
relation for the radius of each orbit (or, equivalently, for the velocities v � a� and �v � �a�) in terms of the angular
velocity �:

�m�2v� � 4m �m�2 ���2 1

�’� v �v sin’�2

�
�1� v �v cos’� �v�’ cos’� v2 sin’� �

1

2
v�1� �v2��’� v �v sin’�

�
1

2

�
�v sin’�’� v �v sin’� � �1� v �v cos’��v� �v cos’� �

v

1� v2 �’� v �v sin’�2
�

��’; v; �v�
�
; (75)

� �m ��2 �v� � 4m �m� ��2�2 1

�’� v �v sin’�2

�
�1� v �v cos’�v�’ cos’� �v2 sin’� �

1

2
�v�1� v2��’� v �v sin’�

�
1

2

�
v sin’�’� v �v sin’� � �1� v �v cos’�� �v� v cos’� �

�v

1� �v2 �’� v �v sin’�2
�

��’; v; �v�
�
: (76)

The expression for the angular momentum (73) is integrated by substituting the equations of motion Eqs. (67) and (69)
into (73),

L �
4m �m� ��v �v

�2

Z 1
�1

d���w��1� v �v cos��� sin�

�
4m �m� ��

�4

Z 1
�1

d��0�w� ~���; v; �v��v2 � �v2 � 2v �v cos�� v �v� sin�� (77)

� �
2m �m� ��

�2

Z 1
�1

d��2w�0�w� � ��w�� ~���; v; �v� (78)

�
2m �m� ��

�2

Z 1
�1

d���w� ~���; v; �v� � 2m �m� ����’;v; �v�: (79)

Explicitly,

L � 2m �m� ��
�1� v �v cos’�2 � 1

2 �1� v
2��1� �v2�

’� v �v sin’
; (80)

with ’ given by Eq. (63).
To compute the energy E, we first compute E��L:

E��L � m��1� v2� �
4m �m� ��

�

Z 1
�1

d���w�� ~���; v; �v� � �1� v �v cos��v �v� sin�� � �m ���1� �v2�

�
4m �m� ��

�3

Z 1
�1

d��0�w������ �� � v �v sin�� ~���; v; �v� (81)

� m��1� v2� � �m ���1� �v2� �
2m �m� ��

�

Z 1
�1

d���w� ~���; v; �v� (82)

� m��1� v2� � �m ���1� �v2� � 2m �m� �����’; v; �v�: (83)
Using the definitions (53) of � and ��, the expression for E
takes the simple form,

E �
m
�
�

�m
��
� m�1� v2�1=2 � �m�1� �v2�1=2: (84)

As noted in the introduction, this expression for E is
identical to the expression for E in the electromagnetic
104039
two-body case derived by Schild [11], and to that for a
scalar field, obtained in Appendix C. To clarify the struc-
ture of relevant equations used in calculations above, their
formal expressions are presented in Appendix D 2.

The corresponding expressions for angular momentum
are each proportional to the potential dotted on each free
index with the helical symmetry vector k�. For a scalar
-10
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interaction, massesm and �m have scalar charges q and �q. A
scalar field  at m due to �q satisfies

� � �4� �q
Z
d �	�4�x� �x� �	��; (85)

with the corresponding definition of � . Similarly, for an
electromagnetic interaction with charges e and �e, the vec-
tor potential A� at m due to �e satisfies (in the Lorentz
gauge)
104039
�A� � �4� �e
Z
d �	 �u�� �	��

4�x� �x� �	��: (86)

With  , A� and h�� evaluated at x, � , �A� and �h��
evaluated at �x, the angular momentum L has the following
forms for scalar, electromagnetic, and post-Minkowskian
gravitational interactions:
Scalar charges q and �q: L � �
q
�
 � �

�q
��

� �
q2

� ��
1

’� v �v cos’
(87)

Electromagnetic charges e and � �e: L � �
e
�
A�k

� � �
�e

�
�A� �k� � e �e

1� v �v cos’
’� v �v cos’

; (88)

Post-Minkowski masses m and �m: L �
m�
2�

h��k
�k� �

�m ��
2�

�h�� �k� �k�: (89)

2. Equations of motion, energy and angular momentum for the affinely parametrized model

The analogous computations for the affinely parametrized formulation are outlined here. Performing the integrals in the
radial components of the equations of motions (40) and (41), we obtain

�m�2v� � 4m �m�2 ���2 1

�’� v �v sin’�2

�
�1� v �v cos’� �v�’ cos’� v2 sin’� �

1

2
v�1� �v2��’� v �v sin’�

�
1

2
� �v sin’�’� v �v sin’� � �1� v �v cos’��v� �v cos’����’;v; �v�

�
; (90)

� �m ��2 �v� � 4m �m� ��2�2 1

�’� v �v sin’�2

�
�1� v �v cos’�v�’ cos’� �v2 sin’� �

1

2
�v�1� v2��’� v �v sin’�

�
1

2
�v sin’�’� v �v sin’� � �1� v �v cos’�� �v� v cos’����’;v; �v�

�
: (91)
The angular momentum turns out to have the same form
as in the parametrization-invariant formulation,

L � 2m �m� ����’; v; �v�

� 2m �m� ��
�1� v �v cos’�2 � 1

2 �1� v
2��1� �v2�

’� v �v sin’
:

(92)

We find, however, that the form of E��L differs from the
corresponding Eq. (83):

E��L � m��1� v2� � �m ���1� �v2�

� 6m �m� �����’; v; �v�: (93)

The normalizations (54) have the explicit form

���� � h��� _x� _x� � ��2�1� v2� � 4 �m�2 �����’;v; �v�

� �1; (94)
� ���� � �h��� _�x
� _�x� � � ��2�1� �v2� � 4m� ��2���’;v; �v�

� �1: (95)

Substituting these in Eq. (93), the expression for the energy
becomes

E �
m
�
�

�m
��
� 4m �m� �����’;v; �v�

� m��1� v2� � �m ���1� �v2� � 4m �m� �����’; v; �v�:

(96)

As implied by Eqs. (92) and (93), the form of E differs
from the energy (84) of the parametrization-invariant ac-
tion. Both, of course, agree in the Newtonian limit.

IV. FIRST LAW OF THERMODYNAMICS FOR
BINARIES DESCRIBED BY FOKKER ACTIONS

The first law of thermodynamics governs nearby equi-
libria of conservative systems. For binary systems with
circular orbits, an equilibrium solution is a solution that
-11
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is stationary in a rotating frame, a solution with a helical
symmetry vector k�. When internal degrees of freedom
(e.g., baryon number, entropy, vorticity) are fixed, the first
law relates the change of energy to the change of angular
momentum in the manner [5]

�E � ��L: (97)

In the present context, however, the presence of a radiation
field whose energy is infinite makes the relation suspect;
and the lack of a true action means that the simple
Hamiltonian proof for point particles with a Newtonian
potential does not hold. But the relation (97) is true, and its
proof is an extension of the Hamiltonian proof that uses the
parametrization invariance of the relativistic Fokker action.

Proposition—Consider a parametrization-invariant
Fokker action of the form (5). Suppose there is a family
of solutions x��s; 	�, �x��s; �	� for which the particles move
in circular orbits with angular velocity ��s�, with space-
time trajectories along the helical vector field k��s� �
t� ���s�
�. Then �E � ��L, where �Q :� dQ

ds js�0.
Parametrization invariance and constraints—As a pre-

requisite to the proof, we begin with a brief discussion of
parametrization invariance of an Fokker action of the form
(5) and the constraints that follow from it. These are
analogs of the Hamiltonian constraint (vanishing of the
super-Hamiltonian) associated with a true parametrization-
invariant action. A parametrization 	! f�	� maps the
path x��	� to the path X� � x� � f. Similarly, �	! �f� �	�
maps �x� to �X� � �x� � �f. Invariance of the action,

I � �
Z 	2

	1

d	m�� _x� _x��1=2 �
Z �	2

�	1

d �	 �m�� _�x� _�x��1=2

�
Z 	2

	1

d	
Z �	2

�	1

d �	��x� �x; _x; _�x�;

under reparametrization follows from the scaling

��X� �X; _X�; _�X��j	0; �	0
� _f�	0�

_�f� �	0�

���x� �x; _x�; _�x��jf�	0�; �f� �	0�
:

(98)

For f�	� � k	, �f� �	� � �	, we have

��X� �X; _X�; _�X��j	0=k; �	0
� ��x� �x; k _x�; _�x��j	0; �	0

� k��x� �x; _x�; _�x��j	0; �	0
:

Then the relation,

d
dk
�k��x� �x; _x; _�x��

��������k�1
�

d
dk
���x� �x; k _x; _�x��

��������k�1
;

and its barred $ unbarred counterpart imply

� � _x�
@�

@ _x�
; � � _�x�

@�

@ _�x�
: (99)
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Proof of proposition—The equations of motion involve
the potentials

Um �
Z 1
�1

d �	�; U �m �
Z 1
�1

d	�: (100)

That is, with 1-particle Lagrangians Lm and L �m defined by

Lm � �m�� _x� _x��
1=2 �Um;

L �m � � �m�� _�x� _�x��1=2 �U �m;
(101)

Equations (10) and (11) are the equations of motion for the
actions

Im �
Z
d	Lm; I �m �

Z
d �	L �m; (102)

namely,

d
d	

�
@Lm

@ _x�

�
�
@Lm

@x�
� 0;

d
d �	

�
@L �m

@ _�x�

�
�
@L �m

@ �x�
� 0:

(103)

The one-particle 4-momentum p� associated with the
action Im is

p� �
@Lm

@ _x�
�

m _x�
�� _x� _x��1=2

�
@Um

@ _x�
: (104)

Because Lm and _x� have the same reparametrization scal-
ing, namely

L m ! _fLm; _x� ! _f _x�; (105)

the momentum p� is independent of the choice of
parameter.

Let t be a choice of Minkowski time, t� the correspond-
ing Killing vector (@t), and 
� a rotational Killing vector
orthogonal to t�. The 1-particle energies associated with Im
and I �m are

Em � �t
�p� � �

@Lm

@ _t
�

m _t

�� _x� _x��
1=2
�
@Um

@ _t
; (106)

E �m � �t� �p� � �
@L �m

@ _�t
�

�m _�t

�� _�x� _�x��1=2
�
@U �m

@ _�t
; (107)

and the 1-particle angular momenta are

Lm � 
�p� �
@Lm

@ _

; L �m � 
� �p� �

@L �m

@ _�

: (108)

We first use the scaling relation and the equations of
motion to show that these 1-particle momenta and angular
momenta satisfy �Em � ��Lm, �E �m � ��L �m. The scal-
ing of Lm and L �m (parametrization invariance of Im)
implies

L m � _x�
@Lm

@ _x�
; L �m � _�x�

@L �m

@ _�x�
: (109)

(In other words, the 1-particle super-Hamiltonians vanish:
-12
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H m :� _x�p� �Lm � 0, �H �m :� _�x� �p� �L �m � 0.)
Then

Em �
_xa

_t
@Lm

@ _xa
�

Lm

_t
� va

@Lm

@ _xa
�

Lm

_t
: (110)

(Note that Lm= _t is the form of the Lagrangian appropriate
to Minkowski time:

R
dtLm= _t �

R
d	Lm.) Consider now

a family of solutions to the equation of motion for m with
circular orbits, each solution stationary in a comoving
frame. Neighboring orbits satisfy

�Em � �va
@Lm

@ _xa
� va�

@Lm

@ _xa
� �va

@Lm

@ _xa
� �xa

@Lm

@xa
1
_t

� va�
@Lm

@ _xa
� ��Lm; (111)

where the equilibrium condition @Lm
@$ � 0 was used to infer

�xa @Lm
@xa � 0.

The total energy E of Eq. (14) is not, however, the sum
of the 1-particle energies: Em � E �m does not include the
field energy and is not, in general, conserved. Instead, the
total energy has the form

E � �P�t�

� Em � E �m �
Z 	

�1
d	t�r�Um �

Z �	

�1
d	t� �r�U �m:

(112)

The total angular momentum is similarly

L � P�
�

� Lm � L �m �
Z 	

�1
d	
�r�Um �

Z �	

�1
d �	
� �r�U �m;

(113)

where we have used the notation


�r�Um :�
@Um

@

�
@Um

@x�
@x�

@

�
@Um

@ _x�
@ _x�

@


� 
� @Um

@x�
� _
� @Um

@ _x�
: (114)

[See also Eq. (D23) of Appendix D.]
To recover the first law, one uses the fact that E and L are

independent of 	 and �	, setting 	 and �	 to�1 to eliminate
the final term:

�E���L� lim
	; �	!�1

��E���L�

� lim
	; �	!�1

�
�Em���Lm��E �m���L �m

�
Z 	

�1
d	k�r��Um�

Z �	

�1
d �	k� �r��U �m

�

� 0: � (115)

Note that the Killing symmetry, k�r�Um � 0, does not in
itself imply k�r��Um � 0, because �k� � 
��� � 0.
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First law for affinely parametrized action—The first law
also holds for the affinely parametrized action (35). The
proof is similar to that for the parametrization-invariant
action, with one-particle Lagrangians now defined by

L m �
m
2

_x� _x� �Um; L �m �
�m
2

_�x� _�x� �U �m;

(116)

with the affinely parametrized � replacing the
parametrization-invariant � in the definition of Um and
U �m. Note that affine parametrization is equivalent to the
conditions

2Lm � �m; 2L �m � � �m; (117)

while the fact that Lm and L �m are quadratic in the veloc-
ities _x and _�x implies

2Lm � p� _x�; 2L �m � �p� _�x�: (118)

The first of these relations, (117), together with the equi-
librium condition @Lm=@$ � 0, implies

�Lm �
@Lm

@ _x�
� _x� � p�� _x�: (119)

From the second relation, (118), we have 0 � ��m �
��p� _x�� � �p� _x� � p�� _x�, whence, by (119),

_x ��p� � 0: (120)

Again writing Em � �pt, _xa � utva, we have

�Em � va�pa � ��Lm: (121)

Finally, the relation

�E � ��L (122)

follows as before from Eqs. (112)–(115), which hold as
written.
V. ACTION ACCURATE TO FIRST
POST-NEWTONIAN ORDER

In a first post-Newtonian approximation, the equations
of motion have corrections of order v2=c2 to their
Newtonian terms. As we noted above, the first post-
Minkowski approximation, by including only terms linear
in m and �m, fails to be accurate to first post-Newtonian
order. The omitted terms in the equation of motion are
quadratic in the masses m and �m, and they arise from a
single term in the post-Newtonian Lagrangian, namely

LPN � �
m �m�m� �m�

2R2 (123)

We can make the Fokker action accurate to first post-
Newtonian order by adding any term that agrees to this
order with (123), and we have tried two alternatives: A
simplest parametrization-invariant choice of �PN that re-
produces (123) is
-13
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FIG. 2 (color online). The velocity v of a circular orbit versus
the radius r, written in the dimensionless form r=M, for particles
of equal mass M :� m� �m, where the r is either the proper
circumferential radius C=2� or the radial parameter a. The
motion is governed by the uncorrected parametrization-invariant
post-Minkowski action (PM inv.), the affine parametrized action
(PM affine) or the parametrization-invariant post-Minkowski
action with a covariant post-Newtonian correction term (126)
(PM� SPN). For the parametrization-invariant case both C=2�
and a are shown.
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�PN � ���t� �t�
m �m�m� �m�

2R2 � _x� _x� _�x� _�x��1=2; (124)

with value for a circular orbit given by

�PN � ����� ��
�3

2

m �m�m� �m�

v2 � �v2 � 2v �v cos�
: (125)

A choice that is special-relativistically covariant (and pa-
rametrization invariant) is

�SPN � ���w�
m �m�m� �m�

2

� _x� _x� _�x� _�x��3=4

�R� _x�R� _�x��1=2
: (126)

The corresponding corrections ePN and eSPN to the con-
served energy and the corresponding corrections ‘PN and
‘SPN to the angular momentum are given by

ePN �
1
2�‘PN; (127)

‘PN � �
m �m�m� �m��

� ���v� �v�2
; (128)

eSPN �
1
2�‘SPN; (129)

‘SPN � �
m �m�m� �m��

�� ���3=2

1

�’� v �v sin’�2
: (130)

The derivation of Eqs. (127)–(130) and corrections to
the equations of motion are given in Appendix B.
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FIG. 3 (color online). The corresponding relation between �
and v for the orbits of Fig. 2, with � written in the dimensionless
form �M. The dashed curve (PM� SPN) shows the small
correction to the solid curve (PM inv.) that arises from adding
the post-Newtonian correction term (126) to the post-Minkowski
action.
VI. NUMERICAL SOLUTION OF ORBITAL
EQUATIONS

We have numerically solved the orbital equations,
Eqs. (75) and (76) for the parametrization-invariant model,
and Eqs. (90) and (91) for the affinely parametrized model,
finding a��� for equal-mass particles. Figures 2 and 3
show the relations for the post-Minkowski action.

As v increases, relativistic beaming decreases the
strength of the gravitational field due to �m at the position
of m, and vice-versa. In the case of scalar and electro-
magnetically bound charges, the smaller field leads to a
sharply smaller radius for a given velocity v; and the same
effect implies a larger value of � at fixed v. Gravity,
however, has the competing effect that, at small radius
the field is stronger than the Newtonian field. In the exact
theory, the result is that, for circular orbits about a fixed
mass, the relativistic relation between �, r (and a velocity
defined by v 	 �r) is identical to the Newtonian relation,
when r is taken to be the circumferential radius. In the
post-Minkowski models, as Figs. 2 and 3, the outcome
depends on which post-Minkowski action one chooses.
For the parametrization-invariant action, relativistic beam-
ing dominates, giving a smaller radius for the same value of
v and a correspondingly larger value of � at fixed v. The
affine action, in contrast, gives a larger value of r at fixed v,
104039
an effect so pronounced for v * 0:3 that r reaches a
minimum value and then increases with increasing v.

We were also surprised by the fact that the nonlinear
term in m and �m that is absent from our first post-
Minkowski action has sign opposite to the Newtonian
potential term. Figures 3 and 4 show only a small correc-
tion due to the post-Newtonian term (denoted PM� SPN
in the graph), and the correction weakens the gravitational
field.
-14
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FIG. 6 (color online). Energy, in dimensionless form E=M, is
plotted against angular velocity, for the models of Fig. 5.
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FIG. 4 (color online). The corresponding relation between �
and jh�� _x� _x�j for the orbits of Fig. 2. The dashed curve (PM�
SPN) shows the first-order post-Newtonian correction that is
nonlinear in m (126) weakens the gravitational field.
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Figures 5 and 6 display the values of the angular mo-
mentum and energy as functions of �, for the
parametrization-invariant post-Minkowski (PM inv.) ac-
tion, the affine parametrized post-Minkowski action (PM
affine), the invariant post-Minkowski action with the spe-
cial relativistically covariant first post-Newtonian correc-
tion (126) (PM� SPN), and the invariant post-Minkowski
action with first post-Newtonian correction (124) (PM�
PN). The values of Newtonian to third post-Newtonian
approximations (0PN–3PN) are also plotted for referen-
ces. Again relativistic beaming appears to dominate the
post-Newtonian correction in the PM� PN and PM�
SPN action, leading to a graph in which the energy and
angular momenta have no minima. Because the relation
0.0 0.1 0.2 0.3

ΩM

0.4

0.8

1.2

1.6

2.0

L
/M

2

PM inv.
PM affine
PM+SPN
PM+PN
0PN - 3PN

FIG. 5 (color online). Angular momentum, in dimensionless
form L=M2, is plotted against angular velocity for 8 cases. In the
key labeling the curves, 0PN–3PN refer to models of equal-mass
point-particles in circular orbit in the Newtonian, first post-
Newtonian, second post-Newtonian, and third post-Newtonian
approximations from the bottom to top.
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dE � �dL can be used to show that the innermost stable
circular orbit (ISCO) is a minimum of E and L, the ISCO
present in the post-Newtonian approximation does not
appear in PM inv., PM� SPN or PM� PN. Interest-
ingly, PM affine model has a simultaneous minima in
E��� and L��� for a sequence of circular solutions.
Because the relation dE � �dL also holds for PM affine
model as shown in Sec. IV, the circular solutions with �M
larger than the value at the minima, �M � 0:0522, are
likely to be dynamically unstable. The values at the turning
point of the other quantities are v � 0:184, E=M �
0:988 744, and L=M2 � 1:027 912 3. Each number above
is given to computational accuracy.

Verification of our numerical solutions can be seen from
Fig. 7, in which 1� dE=�dL is plotted against a measure
� of the resolution of dL. As shown in Sec. IV, the relation
dE � �dL is exact for Fokker actions of the form of PM
10
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-d

E
/Ω
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PM inv.
PM affine
PM+SPN
∆4

FIG. 7 (color online). Accuracy of the relation dE � �dL.
Thin solid lines have an inclination proportional to O��4�, where
� is proportional to dL. dE=�dL is evaluated at v � 0:15 using
the 4th-order accurate finite difference formula (Lagrange for-
mula).
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inv., PM affine PM� SPN and PM� PN, and the numeri-
cal determination finds no discrepancy. (The result of
PM� PN is omitted in Fig. 7 to avoid redundancy.)
2One can similarly construct a path-dependent conserved
‘‘momentum’’ for a single Newtonian particle moving in any
external field by writing

dp=dt � �rU�r�

p �
Z t

t0
dtrU � constant:

Because the integral depends on the path r�t� from t0 to t, one
does not have a first integral of the equation of motion, in the
sense of a conserved quantity that depends only on the position
and velocity of the particle.
VII. DISCUSSION

In the previous section, we discussed numerical results
for the special case of gravitationally interacting particles
in circular orbits. Here we consider a few surprises that
arise in our more general study of Fokker actions.

Conserved quantities for particles with scalar, electro-
magnetic or gravitational interactions are ordinarily writ-
ten as an integral over the field and its first time derivative
on a spacelike hypersurface, together with sum of terms
involving the position and velocity of each particle at its
position on the hypersurface. In a Fokker formalism, the
integral over the field is replaced by a sum of integrals over
the trajectory of each particle. A striking feature of the
resulting conserved 4-momentum and angular momentum
is that they break up into a sum of quantities that are
separately conserved for each particle, as in Eqs. (112)
and (113) [or (D18) and (D20)]. In these equations, the
separate conservation of each contribution follows from
the fact that the contribution associated with each particle
depends only on the proper time of that particle. How is
this possible, when the field energy measures the interac-
tion between the fields produced by each particle; how is it
consistent with the fact that the total 4-momentum and
angular momentum are, in general, an exhaustive set of
integrals of the motion?

The answer is that the individual integrals that appear in
the sum cannot be written as integrals over a hypersurface
of a density locally constructed from the field and its first
time derivative. They therefore do not represent new inte-
grals of the motion. In fact, their existence is really a trivial
consequence of the equation of motion satisfied by each
particle:

d
d	

�
@Lm

@ _x�

�
�
@Lm

@x�
� 0 (131)

where as before

L m :� �m�� _x� _x��1=2 �Um; Um :�
Z 1
�1

d �	�:

(132)

Integrating the equation of motion from 	1 to 	2, we have

p�j
	2
	1 �

Z 	2

	1

d	
@Um

@x�
� 0; p� :�

@Lm

@ _x�
(133)

implying Pm� is independent of 	, where

Pm��	� :� p��	� �
Z 	

�1
d	
@Um

@x�
(134)

More generally, dotting a vector �� into the equation of
motion (131) yields the identity
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d
d	

�
m _x���

�� _x� _x��1=2
� ��

@Um

@ _x�

�
�

�
��
@Um

@x�
� _��

@Um

@ _x�

�

�
m _x� _��

�� _x� _x��1=2
� 0: (135)

Then, because a Killing vector �� of Minkowski space
satisfies _x� _�� � _x� _x�r��� � 0, the quantity Qm defined
by

Qm �

�
m _x��

�

�� _x� _x��1=2
� ��

@Um

@ _x�

�
�	�

�
Z 	

�1
d	
�
��
@Um

@x�
� _��

@Um

@ _x�

�
(136)

is independent of 	. In particular, for �� � �t� and �� �

�, Qm is the one-particle contribution to the energy and
angular momentum, respectively. The generalization of
these relations to an n-particle action is immediate.

The conserved quantities that arise from a Fokker action
involve integrals along the particle paths whose integrands
are not perfect time derivatives: That is, the integrals are
path dependent.2 Although the total 4-momentum and
angular momentum are also expressed as path-dependent
integrals in the Fokker formalism, they, presumably, differ
from their 1-particle constituents by the fact that they can
be expressed as integrals over a hypersurface of a local
function of the field and its first time derivative (together
with the kinematic momentum of each particle). The parts
of these conserved quantities that directly involve the
fields—the sum of terms involving Um for each m—is
not, however, the full field momentum or angular momen-
tum,

Z
T����dS�: (137)

Instead, only contributions to the field momentum (or
angular momentum) that arise from the product of fields
from different particles are present in the Fokker momen-
tum (angular momentum). Terms quadratic in the field of a
single particle must be absorbed in the renormalized mass.

This analysis leads to a conjecture for why the conserved
Fokker momentum and angular momentum are finite for
bound systems. When terms quadratic in the fields of
-16
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individual particles are subtracted, only a finite remainder
survives.

Finally, we comment on ambiguities associated with the
choice of gauge and with the choice of post-Newtonian
correction terms. Solutions for two-particle circular orbits
presented in this paper are obtained in the deDonder gauge.
A sequence of equal mass solutions terminates near v�
0:40 for the parametrization-invariant action, and near v�
0:32 for the affine action, because in each case the equa-
tions of motion have no solution for v larger than a critical
value v. When post-Newtonian corrections are added to the
parametrization-invariant action, we find solutions only up
to v� 0:19. When one proceeds, for example, to higher
order calculation aiming to identify an ISCO, which may
be expected to appear near these terminal values, a choice
of gauge may be reconsidered with care.

A post-Minkowski action corrected by the terms �SPN or
�PN, does not exactly reproduce the first post-Newtonian
equations of motion, because the post-Minkowski action
contains terms of all post-Newtonian orders in the veloc-
ities. A more systematic approximation to the higher order
post-Minkowski Fokker action may be obtained by deriv-
ing a form of interaction term that agrees with a formal
expansion of the stress-energy tensor (see, for example,
[21]).
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APPENDIX A: FORMULAS FOR INTEGRATION

We present here a formalism for evaluating the integrals
that arise in the equations of motion, and in the expressions
for momentum, energy, and angular momentum of point
particles in circular orbits. This is closely patterned on
formulas used by Schild in [22] in the case of two electri-
cally charged particles.

1. Change of integration variables

We first derive a relation for rewriting integrals with
respect to proper time 	 and �	 as integrals with respect to
the parameter �. From Eq. (58),

d	
d�
� �

1

��
and

d �	
d�
�

1

���
: (A1)

The integral of a function F��� then becomes
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Z 1
�1

d	F��� �
1

��

Z 1
�1

d�F��� and

Z 1
�1

d �	F��� �
1

���

Z 1
�1

d�F���:

(A2)

For a double integral of the kind that appears in the
formulas for the linear momentum and energy, Eq. (14),
and the angular momentum, Eq. (17), we may pick 	 �
�	 � 0. ThenZ 1

0
d	

Z 0

�1
d �	F��� �

1

� ���2

Z 1
0
d


Z 0

�1
d �
F���

�
1
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d�

Z ��
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d
F���

�
1

� ���2

Z 0

�1
d�����F���; (A3)

and

�
Z 0

�1
d	

Z 1
0
d �	F��� � �

1

� ���2

Z 0

�1
d


Z 1
0
d �
F���

� �
1

� ���2

Z 0

�1
d


Z 1
�


d�F���

� �
1

� ���2

Z 1
0
d�

Z 0

��
d
F���

� �
1

� ���2

Z 1
0
d��F���; (A4)

adding the last two equalities, we have�Z 1
0
d	

Z 0

�1
d �	�

Z 0

�1
d	

Z 1
0
d �	
�
F���

� �
1

� ���2

Z 1
�1

d��F���: (A5)

Our next task is to evaluate integrals of the formR
1
�1 d	

_�X� and
R
1
�1 d �	 _X�, where X� and �X� are the

vectors associated with m and �m, respectively. In terms
of components along an orthonormal frame, the vectors
have the form

X� � Xt���t� � X$���$� � X
̂���
̂� � Xz���z�;

(A6)

�X � � �Xt���t� � �X$��� �$� � �X
̂���
̂� � �Xz���z�:

(A7)

The corresponding expressions for the derivatives are
_X � �
dX�

d	
� ���

�
dXt

d�
t� �

dX$

d�
$� �

dX
̂

d�

̂� �

dXz

d�
z� � X
̂$� � X$
̂�

�
; (A8)
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_�X � �
d �X�
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d�
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�
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̂ �$� � �X$ �̂


�
�
; (A9)

where Eq. (A1) is used. Then the integral of _X� with respect to �	, with fixed 	 (and hence fixed 
), is then given by
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Similarly, the integral of _�X� with respect to 	, with fixed �	 (and hence fixed �
) is
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: (A11)
Note that basis vectors $� and 
̂� are functions of 
; and
�$� and �̂


�
are functions of �
.

2. Integral formulas for half-retarded � half-advanced
Green function

Integrals involving the half-retarded � half-advanced
Green function ��w� are derived in this section. As men-
tioned in Sec. III C, the solutions to w��� � 0 are � �
�
 ’. It is assumed that any contribution from � � 
1
vanishes. From Eq. (61), we have�

dw
d�

�
�1

���
’
� 

�2

2

1

’� v �v sin’
; (A12)

and hence
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� fF��� ’� � F��� ’�g: (A13)

For integrals involving a derivative of ��w�,

Z 1
�1

d��0�w�F��� �
Z 1
�1

d�
d��w����
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�
dw
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�
�1
F���
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d
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�
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: (A14)

Using Eq. (A12) and its derivative,

d
d�

�
dw
d�

�
�1

���
’
�

�2

2

1� v �v cos’

�’� v �v sin’�2
; (A15)
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the integral becomes

Z 1
�1

d��0�w�F��� �
�4

4

1

�’� v �v sin’�2

�
dF
d�
��� ’�

�
dF
d�
��� ’� �

1� v �v cos’
’� v �v sin’

��F��� ’� � F��� ’��
�
:

(A16)

Finally, the following relation is useful for computation
of Eq. (78) in Sec. III D:
Z 1
�1

d��0�w�wF��� � �
Z 1
�1

d���w�F���

�
Z 1
�1

d���w�w
d
d�

�
d�
dw

F���
�

� �
Z 1
�1

d���w�F���; (A17)

where, in the second term of the first equality, a derivative
d
d� �

d�
dwF���� is assumed to be nonsingular [has an order

larger than O�w�1�] in the neighborhood of w � 0.

APPENDIX B: POST-NEWTONIAN CORRECTIONS
TO E AND L

In presenting relations used to compute corrections from
�PN to E, L, and the equations of motion, we avoid
repetition by omitting barred $ unbarred versions. The
corrections to the parametrization-invariant post-
Minkowski action are calculated, assuming the parametri-
zation (52). We begin with the simpler correction term,
(124). Using the relations from Sec. III C, with R in the
form R2 � 1

�2 �v2 � �v2 � 2v �v cos��, we obtain,
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�PN � ���t� �t�
m �m�m� �m�

2R2 �� _x� _x��1=2�� _�x� _�x��1=2

� ����� ��
�3

2

m �m�m� �m�

v2 � �v2 � 2v �v cos�
: (B1)

Derivatives appearing in the equations of motion and the
conserved quantities have the form

@�PN

@�t� �t�
� �0��� ��

�4

2

m �m�m� �m�

v2 � �v2 � 2v �v cos�
; (B2)

@�PN

@�xa � �xa�
� ���� ���4 m �m�m� �m�

�v2 � �v2 � 2v �v cos��2

� f�v� �v cos��$a � �v sin�
̂ag; (B3)
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�3
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m �m�m� �m��v

v2 � �v2 � 2v �v cos�
; (B4)
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: (B5)
The index a of xa is spatial. The post-Newtonian correction
term to the $-component of the equation of motion is then
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The correction to the angular momentum is
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and the corresponding correction to the energy is
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Finally,
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2� ���v� �v�2
: (B7)
The analogous corrections from the special-relativistically covariant post-Newtonian correction are as follows.
Correction to the equation of motion:
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where � � 
1 for �� �� v �v sin� _ 0, respectively.
Correction to the angular momentum:
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Correction to the energy:
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Finally,
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APPENDIX C: SCALAR INTERACTION

A scalar field is described by a Fokker action of the form (5), with

� � q �q��w��� _x� _x��1=2�� _�x� _�x��1=2: (C1)

The equation of motion for two particles in circular orbit has, for m, the form,
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with the corresponding barred $ unbarred equation for �m.3

The formalism developed earlier quickly leads to expressions for angular momentum and energy:
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Then
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; (C4)
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’� v �v sin’
: (C5)

APPENDIX D: DERIVATIONS OF THE MOMENTUM AND ANGULAR MOMENTUM FORMULAS

In this appendix, we present calculations and useful expressions relating to the momentum and the angular momentum
formulas, for an arbitrary interaction term ��x� �x; _x; _�x�.

1. Derivations of Eqs. (14) and (17)

Dettman and Schild [18] derived the momentum and the angular momentum formulas from Poincaré invariance of the
general Fokker action. We follow their calculation for the case of our action for two point particles to derive Eqs. (14) and
(17), from the varied action (8).

We first rewrite Eq. (8) for �I, substituting the equation of motion for each particle, Eqs. (10) and (11):
3An equivalent solution has been obtained independently by Jean-Philippe Bruneton and Gilles Esposito-Farèse [23].
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where
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d �	
: (D2)

We next restrict the variations of the trajectory of each
particle, �x� and � �x�, to infinitesimal Poincaré transfor-
mations [which we will subsequently take to have the
forms (12) and (15)]. Since the Fokker action, and hence
the interaction �, is Poincaré invariant, the interaction term
� satisfies the identity
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(D3)

Expanding the identity to first order in �x and � �x, we have
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Using this relation, the variation of the action (D1) be-
comes
�I�	1; 	2; �	1; �	2� �

�
m _x�

�� _x� _x��1=2
�
Z 1
�1

d �	
@�

@ _x�

�
�x�

��������
	2

	1

�

�
�m _�x�

�� _�x� _�x��1=2
�
Z 1
�1

d	
@�

@ _�x�

�
� �x�

��������
�	2

�	1

�

�Z 1
�1

d	
Z �	2

�	1

d �	�
Z 	2

	1

d	
Z 1
�1

d �	
��
�x�

@�

@R�
� � _x�

@�

@ _x�

�
: (D5)

The double integral in Eq. (D5) is rearranged to separate the contribution from �	1; �	1� and �	2; �	2� explicitly as follows,
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Finally, the variation �I with respect to an infinitesimal Poincaré transformation takes the form
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To derive the conserved momentum, Eq. (14), a translation by a constant vector (12) is substituted in (D7):
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where we used � _x� � da�=d	 � 0.
The angular momentum similarly corresponds to an infinitesimal rotation (15):
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where � _x� � ��� _x� is used.
An analogous derivation of the momentum and angular

momentum for the affinely parametrized action results in
the replacements

m _x�
�� _x� _x��1=2 ! m _x�;

�m _�x�
�� _�x� _�x��1=2

! �m _�x�; (D10)

in the momentum Eq. (D8), and
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(D11)

in the angular momentum Eq. (D9).
The double integrals in Eqs. (D7)–(D9) have a useful

alternative form:
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The terms depending on the proper time of each path 	 and �	 can be separated by writing the double integral in the above
form, (D12), as seen in Eqs. (D18) and (D20). These are used in the proof of the first law in Sec. IV.

2. Formulas for E, L, and E��L

Next, we derive expressions for the nonzero components of the angular momentum L :� L12�	; �	�, the 4-momentum
E :� �P��	; �	�t�, and a combination E��L for parametrization-invariant action. The formulas for the affinely
parametrized action can be obtained by replacements analogous to Eqs. (D10) and (D11), which are not repeated.

We begin with the angular momentum: Since the basis 
� and �
� at positions of particles fm; xg and f �m; �xg have
components in Cartesian coordinate 
� � ��x2; x1; 0� � ��x2; x1; 0� and �
� � �� �x2; �x1; 0� � �� �x2; �x1; 0�, one has
relations

x1A2 � x2A1 � A�
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�; (D13)

where A� and �A� are vectors at positions m and �m. Applying the relations (D13) to the L12 component of the angular
momentum Eq. (17) yields
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where we define _
� � d
d	


�. From the definition of the linear momentum (14), the energy E � �P�t� has the
corresponding form
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(D15)

The combination E��L then becomes
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One can write the energy (D15) and the angular momentum (D14) in a form related to the one-particle energy and
angular momentum defined in Sec. IV, Eqs. (104) and (106)–(108), together with the relation for the double integral (D12).
Interestingly, the resulting formulas for the energy and angular momentum depend separately on the proper time of each
path, 	 and �	. Using the property
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; (D17)

we can rewrite the energy (D15) in terms of the one-particle potential Um and U �m,
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To relate the angular momentum (D14) to one-particle angular momentum, we notice that the relation (D4), together
with properties (D13) and (D17), implies
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Like the energy, the angular momentum can be written in terms of the potentials Um and U �m,
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The terms in the brackets in the above Eqs. (D18) and (D20) are the one-particle energy and angular momentum; the
contribution from each particle which is moving in the field produced by the other particle (see Sec. IV).

It is also noticeable that the formulas for E, L and E��L, Eqs. (D14)–(D16), can be written in a common form,
because of a property _t� :� dt�=d	 � 0, _k� � � _
� accordingly, and those for corresponding barred quantities. Writing
Q to represent these conserved quantities, E, L, and E��L, and �� for the associated vectors, t�, 
�, and k�, we have
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Also for the expressions in terms of the one-particle potentials, we have
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In Eqs. (112)–(115) in Sec. IV, the integrand of Eq. (D22) is written in a short form defined by
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As seen in the above expression (D22), contributions to the total energy and angular momentum from time 	 and �	 are
separated. It means that each piece conserves independently; E L and E��L, are a sum of two conserved quantities
associated with 	 and �	.

For circular motion, the velocities are given by _x� � �k� and _�x� � � �k�, and the parametrization-invariant interaction
term satisfies Eq. (99) (Euler’s relation for a homogeneous function of degree one in _x� and _�x�); we then have
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Only the radial components of the equations of motion,
(10) and (11), are nontrivial, and they take the form
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In the above we used Eqs. (A10) and (A11) in Appendix A
1, to eliminate the 	 derivative in the �	 integral (and
respectively �	 derivative in the 	 integral), then trans-
formed the integration variable � back to 	 � �	� using (A2).

The radial component of the accelerations �x�$
� �

��2v� and ��x� �$� � � ��2 �v� are related to _x�

� �

�v2=� and _�x� �
� � �� �v2=�, respectively, by
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where _x� �x� � 0 � _�x� ��x� are used. With this relation
104039
(D27), the radial equations of motion (D25) and (D26)
are substituted to further simplify the angular momentum
formula (D14):
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3. Conserved quantities in post-Minkowski gravity in
terms of h�� and �h��

As shown in Sec. III A, the parametrization-invariant
interaction (22) leads to equations of motion, Eqs. (28)
and (29), that describe point particles in a post-Minkowski
approximation with half-advanced � half-retarded fields.

The momentum and angular momentum formulas, in the
form of a sum of one-particle contributions, can be written
in terms of h�� and �h��. We present these formulas valid
for arbitrary particle trajectories m and �m.

We begin by rewriting the variation of I with respect to
an infinitesimal Poincaré transformation, (D5), in terms of
one-particle potentials Um and U �m,
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The conserved momentum and angular momentum are then derived as follows,
-25
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and
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For the interaction of Eq. (22) and corresponding fields
(28) and (29), the one-particle potentials are related to the
fields h�� and �h�� by
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(D33)

and their derivatives with respect to position and velocity
take the form
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Substituting relations (D34) and (D35) in Eqs. (D31) and
(D31), we obtain explicit expressions for the momentum
and angular momentum in terms of h�� and �h��,
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For completeness, we give the corresponding form of the conserved quantity Q associated with a Killing vector �� of
Minkowski space, rewriting Eq. (D22), in terms of h�� and �h��. Applying a property of ��, _x� _�� � _x� _x�r��� � 0, we
have
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For the affinely parametrized interaction (36), we obtain
analogous expressions for momentum and angular momen-
tum in terms of h�� and �h��. Since the form (36) relates to
the solutions
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; (D39)
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the one-particle potentials for the affinely parametrized
interaction are written,
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(D41)
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and their derivatives with respect to the position and to the
velocity become
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Replacements (D10) and (D11) and substitution of
(D42) and (D43) in Eqs. (D31) and (D32) yield for the
momentum and angular momentum the expressions,
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and
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Finally, the charge Q has for the affinely parametrized interaction the form
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