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Realistic exact solution for the exterior field of a rotating neutron star
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A new six-parametric, axisymmetric, and asymptotically flat exact solution of Einstein-Maxwell field
equations having reflection symmetry is presented. It has arbitrary physical parameters of mass, angular
momentum, mass-quadrupole moment, current octupole moment, electric charge, and magnetic dipole, so
it can represent the exterior field of a rotating, deformed, magnetized, and charged object; some properties
of the closed-form analytic solution such as its multipolar structure, electromagnetic fields, and
singularities are also presented. In the vacuum case, this analytic solution is matched to some numerical
interior solutions representing neutron stars, calculated by Berti and Stergioulas [E. Berti and N.
Stergioulas, Mon. Not. R. Astron. Soc. 350, 1416 (2004)], imposing that the multipole moments be the
same. As an independent test of accuracy of the solution to describe exterior fields of neutron stars, we
present an extensive comparison of the radii of innermost stable circular orbits (ISCOs) obtained from the
Berti and Stergioulas numerical solutions, the Kerr solution [R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963)],
the Hartle and Thorne solution [J. B. Hartle and K. S. Thorne, Astrophys. J. 153, 807 (1968)], an analytic
series expansion derived by Shibata and Sasaki [M. Shibata and M. Sasaki, Phys. Rev. D 58, 104011
(1998)], and our exact solution. We found that radii of ISCOs from our solution fits better than others with
realistic numerical interior solutions.
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I. INTRODUCTION

Observed pulsars are assumed to be highly deformed
objects due to rotation. The spin frequencies of the 11
nuclear-powered pulsars lie between 230 Hz (e.g. for the
PSR 1845� 19 pulsar) and 641 Hz (e.g. for the PSR B
1937� 21 pulsar [1,2]) and within that range are margin-
ally consistent with a uniform distribution (see [3,4] and
references therein). The fast rotation is very important, not
only in newly born neutron stars which may undergo
secular and dynamical instabilities (see [5] and references
therein) but also in strange stars.

Studying neutron stars (NS) is interesting for several
reasons. The quasistationary evolution of an isolated NS
can be tracked considering equilibrium sequences in which
the rest mass is constant while the angular momentum
varies [6]. Such evolution may be driven by the adiabatic
loss of energy and angular momentum via electromagnetic
or gravitational radiation. On the other hand, the axisym-
metric pulsations of rotating NS can be excited in several
scenarios, like core collapse, crust—and core—quakes or
binary mergers, and could become detectable in either
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gravitational waves or high-energy radiation [7].
Furthermore, the observational detection of such pulsa-
tions will yield valuable information about the equation
of state of relativistic stars and therefore information about
the properties and behavior of the matter at extreme con-
ditions of high density (� 1015 gr=cm3) and temperatures
(around 106 K) [8]. In addition, new aspects of rotating NS
have been revealed in about 1000 pulsars. Some X-ray
pulsars and some �-ray pulsars have been detected in the
past years. Among these new objects, some exhibit quite
different behavior in their pulse periods [9]. The measure-
ment of the period and its time derivative yields evidence
of ultramagnetized stars, possibly representing magnetars
[10].

In the last two decades, great advances have been made
to understand the properties of astrophysical objects like
white dwarfs, black holes, or NSs, in the frame of general
relativity. Particularly, from the numerical approach, sev-
eral physical properties of NS such as energy density,
inertia moments, equatorial radii, and others are known
through the numerical solution of the full Einstein equa-
tions, assuming different equations of state for NS and
applying algorithms, specially the Komatsu-Eriguchi-
Hashisu self-consistent field method [11] and its variants
(e.g. in 2005 by Ghezzi [12]; Gusakov, Yakovlev, and
Gnedin [13]; and Berti, White, Maniopoulou, and Bruni
-1 © 2006 The American Physical Society
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[5]. In 2004 by Berti and Stergioulas [14] and Yoshida and
Eriguchi [15]. In previous years by Stute and Camenzind in
2003 [16]; Manko, Mielke, and Sanabria-Gómez in 2000
[17]; Sibgatullin and Sunyaev [18] in 1998; Bocquet,
Bonazzola, Gourgoulhon, and Novak [19], in 1995; and
by Cook, Shapiro, and Teukolsky in 1994 [6] and 1992 [20]
(and references therein). On the other hand, from the
analytic close approach, to construct axisymmetric sta-
tionary exact solutions of the Einstein-Maxwell equations
with physical parameters defined from the beginning is not
a problem now, because of the development of the power-
ful integral method by Sibgatullin [21,22], which allows
one to do this by considering the choosing of the Ernst’s
potentials on the symmetry axis.

The aim of this paper is to present a new stationary
axially symmetric exact solution to the Einstein-Maxwell
system as a model for the exterior field of a NS, not only for
rapid but also for slow rotation rates. A consistent analytic
closed representation of the exterior space-time around a
rapidly rotating NS is desirable for many reasons, among
them (i) if we have an analytic closed form for the metric,
the computation of the stationary properties of the space-
time is less difficult [for example, geodesics in the exterior
of NS could be studied analytically [23,24]; one also could
find closed-form expressions for the radii and frequencies
of the innermost stable circular orbits (ISCOs) [24,25],
etc.], (ii) it could be useful for studying the dynamical
properties of the space-time, like gravitational wave emis-
sion and chaotic trajectories of particles around it.
Furthermore, having an analytic solution could simplify
the calculation of properties of accretion disks, epicyclic
frequencies [18], and so on.

Some analytic models for NS have been constructed and
studied. Since the seminal works of Hartle [26] and Hartle-
Thorne [27], the analytic structure of the space-time out-
side a slowly rotating NS was generally associated with the
Kerr solution because of its simplicity and accuracy with
numerical data obtained from numerical interior solutions.
Nevertheless, Kerr solution does not present an accurate fit
with the expected values of some of the physical properties
of realistic stars in the regime of rapid rotation rates (like
the radii of ISCOs—see [6,14,16] and the mass-
quadrupole moment [28]). Sibgatullin and Sunyaev [18]
adjusted the free parameters of the exact solution by
Manko, Martin, Ruiz, Sibgatullin, and Zaripov in [29]
with the numerical data for the ISCO and the gravitational
redshift of Cook, Shapiro, and Teukolsky [6]. They ana-
lyzed the effects of the mass-quadrupole moment of a
rapidly rotating NS on the energy release in the equatorial
layer on the surface of the accreting star and in the accre-
tion disk, using the normal sequences of equations of state
(EOS) A [30], AU [31], and FPS [32].

In 2000, Manko, Mielke, and Sanabria-Gómez [17]
derived the charged, magnetized generalization with arbi-
trary quadripolar deformation of the Tomimatsu-Sato � �
104038
2 solution [33] written in rational functions and claimed
this solution as a possible model to describe the exterior
field of a rotating NS. Then, Stute and Camenzind [16]
decided to study that solution to describe the gravitational
field of a rapidly rotating NS. They matched the solution by
Manko et al. with the numerical interior solutions from
Cook et al [6] by a similar procedure to the one used in
[18], concluding that the accuracy of that solution is high in
the case of the redshift but poor describing the radius of the
marginally stable orbit (the matching was made using
noninvariant’s local properties of the solution, as it was
pointed out in [14]). However, they considered that Manko
et al. solution was a great improvement compared with the
Hartle and Thorne solution in the regime of fast rotation.

Recently, the full Einstein equations were solved in a
numerical approach by Berti and Stergioulas (B&S) [14] to
determine the NS space-time along sequences of constant
rest mass for selected EOS (denoted as EOS A [30], EOS
AU [31], EOS FPS [32], EOS L [34], and EOS APRb [35]).
They matched the Manko et al. solution [17] to the nu-
merical solutions imposing the condition that the mass-
quadrupole moment of the numerical and analytic space-
times be the same, concluding that the matching condition
can be satisfied only for very rapidly rotating stars. This
affirmation was based on the fact that this exact solution
does not reduce continuously to the Schwarzschild one
when the rotation vanishes and, according to [14], the
mass-quadrupole moment in the nonrotating limit (angular
moment equal zero) is very large for this limit, i.e., Q �
�m�m2 � b2�2=�4�m2 � b2��, wherem is the mass and b is
a parameter related with the arbitrary mass-quadrupole
moment, respectively. For that reason, it is not possible
that the solution by Manko et al. can describe NSs in the
regime of slow rotations. Besides, for intermediate rotation
rates, B&S suggested that the approximated exterior ana-
lytic solution by Hartle and Thorne [27], valid up to second
order in the rotation rate, could be used.

Following their own suggestion, in 2005 Berti et al. [5]
compared the Hartle-Thorne [27] slow-rotation approxi-
mation keeping terms up to second order in the stellar
angular velocity, and the Manko et al. solution [17] again
with their numerical solutions to the full Einstein’s equa-
tions. Using the same matching procedure presented in
[14], they found that the Hartle-Thorne approximation
offers very good predictions for the co-rotating R� and
counterrotantig R� ISCO radii, with R� accurate better
than 1% even for the fastest millisecond pulsars. At these
rotational rates the accuracy on the mass-quadrupole mo-
ment is �20%, and better for longer periods.

In spite of the fact that the rich phenomenology observed
from pulsars motivates the study of the interior and exterior
electromagnetic fields of rotating NS, we use the same
procedure exposed in [14], i.e., the matching of the multi-
pole moments in the vacuum case, because of the limited
information available about electromagnetic properties in
-2
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numerical interior solutions to the Einstein-Maxwell sys-
tem. However, considering that the study of electromag-
netic fields in strongly curved space-times has been the
subject of past and recent interest, we also present the
closed-form and some properties of the electromagnetic
field of our solution.

This paper is presented in the following order: In Sec. II,
we present the six-parametric solution including issues
about its construction. In Sec. III, we summarize the prop-
erties of this solution through its multipolar structure,
limiting cases, electromagnetic fields, and singularities.
In Sec. IV, we match our analytic solution with the interior
numerical solutions by Berti and Stergioulas and present
comparisons of the radii of ISCOs of several numerical and
exact solutions. Finally, concluding remarks about the
paper are given in Sec. V.

II. SIX-PARAMETER SOLUTION

In order to construct a realistic exact solution to the
Einstein-Maxwell equations, we must consider some
physical assumptions. In Newtonian theory of gravitation
all equilibrium states of isolated self-gravitating fluids (i.e.
stellar models) must have reflection symmetry through a
plane which is perpendicular to the rotation axis of the star
[36]; according to that idea, it has been conjectured that
stationary general relativistic stellar models must have
reflection symmetry as well [37]. For the stationary axi-
symmetric case a simple form of the metric was given by
Papapetrou [38], that is

ds2 � �f�dt�!d��2 � f�1�e2��d�2 � dz2�

� �2d�2	; (1)

where f, !, and � are functions of the quasicylindrical
Weyl coordinates ��; z�.

Using the above line element, the Einstein-Maxwell
equations can be reformulated, via Ernst’s procedure
[39], in terms of two complex potentials E and � as
follows:

�ReE � j�j2�r2E � �rE � 2�
r�� � rE;

�ReE � j�j2�r2� � �rE � 2�
r�� � r�:
(2)

In this paper, we solve the Ernst’s equations (2) with the
aid of Sibgatullin’s method [21,22], according to which the
complex potentials E and � can be calculated from speci-
fied axis data e�z� :� E�z; � � 0� and f�z� :� ��z; � �
0�, by the integrals

E �z; �� �
1

�

Z 1

�1

e�������d����������������
1� �2
p ;

��z; �� �
1

�

Z 1

�1

f�������d����������������
1� �2
p :

(3)

The unknown function ���� must satisfy the singular
integral equation
104038
�
Z 1

�1

�����e��� � ~e�	� � 2f���~f�	�	d�

��� 
�
���������������
1� �2
p � 0; (4)

and the normalizing conditionZ 1

�1

����d����������������
1� �2
p � �; (5)

where � � z� i��, 	 � z� i�
, � and z being the
Weyl-Papapetrou quasicylindrical coordinates, �, 
 2
��1; 1	, ~e�	� :� e� �	�, ~f�	� :� f� �	� and the overbar
stands for complex conjugation.

With the purpose to construct reflectionally symmetric
solutions, the Ernst’s potentials on the symmetry axis e�z�
and f�z� must satisfy the following conditions:

e�z� �e��z� � 1 and f�z� � � �f��z�e�z�; (6)

when the electromagnetic potentials are even functions of z
[40]. One choice of Ernst’s potentials satisfying the above
considerations is [41]

e�z� �
z3 � z2�m� ia� � kz� is

z3 � z2�m� ia� � kz� is
;

f�z� �
qz2 � i�z

z3 � z2�m� ia� � kz� is
;

(7)

where m denotes the gravitational mass of the source, a its
specific angular momentum, q its electric charge, and k, s,
and � parameters related with the mass-quadrupole mo-
ment, the current octupole and the dipolar magnetic mo-
ment, respectively, (see Sec. III A). We have included the
parameter s following the suggestion given in [16] regard-
ing the Manko et al. solution, whose accuracy is not good
for the radius of the marginally stable orbit, which is more
sensitive to higher multipole moments of the space-time. It
seems to show that higher multipole moments ought to be
included, especially for rapid rotation and stiffer equation
of state, to improve the freedom to fit the exterior gravita-
tional field of neutron stars with numerical interior solu-
tions. Moreover, this parameter could aid us to understand
the influence of the differential rotation in the dynamics
properties of the surrounding space-time.

The potentials (7) can be written in an alternative way;
we mean

e�z� � 1�
X3

i�3

ei
z� �i

; f�z� �
X3

i�3

fi
z� �i

;

with

ej � ��1�j
2m�2

j

��j � �k���j � �i�
;

fj � ��1�j�1
i��j � q�2

j

��j � �k���j � �i�
; i; k � j:

Then, using (2) and (7), following a similar procedure to
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PACHÓN, RUEDA, AND SANABRIA-GÓMEZ PHYSICAL REVIEW D 73, 104038 (2006)
the one used in [42], where the general formulas for the N-soliton case were presented, we obtain the Ernst potentials and
the metric functions in whole space-time:

E �
A� B
A� B

; � �
C

A� B
; f �

A �A� B �B� C �C

�A� B�� �A� �B�
;

e2� �
A �A� B �B� C �C

K �K
Q6
n�1 rn

; ! �
Im��A� B� �H � � �A� �B�G� C �I	

A �A� B �B� C �C
;

(8)

where

A �
X

1�i<j<k�6

aijkrirjrk; B �
X

1�i<j�6

bijrirj; C �
X

1�i<j�6

cijrirj;

H � zA� ��1 � �2 � �3�B�
X

1�i<j<k�6

hijkrirjrk �
X

1�i<j�6

��i � �j�bijrirj;

G � ���1 � �2 � �3�A� zB�
X

1�i<j�6

gijrirj �
X

1�i<j<k�6

��i � �j � �k�aijkrirjrk;

I � �f1 � f2 � f3��A� B� � ��1 � �2 � �3 � z�C�
X

1�i<j<k�6

pijkrirjrk �
X6

i�1

piri �
X

1�i<j�6

�pij � ��i � �j�cij	rirj;

with

ri �
�������������������������������
�2 � �z� �i�2

q
; aijk � ��1�i�j�1�ijk�ljmn; bij � ��1�i�j
ijHljmnp;

cij � ��1�i�j
ij�f��l��mjnp � f��m��njpl � f��n��pjlm � f��p��ljmn	;

hijk � ��1�i�j�k�ijk�e
1�23jlmn � e
2�31jlmn � e
3�12jlmn�;

gij � ��1�i�j
ij��l�mjnp � �m�njpl � �n�pjlm � �p�ljmn�;

pi � ��1�iDi�f��l�Hmjnps � f��m�Hnjpsl � f��n�Hpjslm � f��p�Hsjlmn � f��s�Hljmnp	;

pij � ��1�i�j
ij�e


1�23jlmnp � e



2�31jlmnp � e



3�12jlmnp�;

pijk � ��1�i�j�1�ijk�e
1�23jlmn � e
2�31jlmn � e
3�12jlmn�;

and


ij � ��i � �j�DiDj; �ijk � ��i � �j���i � �k���j � �k�DiDjDk; Di �
1

��i � �1���i � �2���i � �3�
;

�ljmn � H3��l��12jmn �H3��m��12jnl �H3��n��12jlm; �lmjnp � Hl��n�Hm��p� �Hl��p�Hm��n�;

Hl��n� �

2
Q
p�n
��p � �
l �Q3

k�l��


l � �



k�
Q3
k�1��



l � �k�

� 2
X3

k�1

f
l fk
��
l � �k���n � �k�

; �lmjnps � �lmjnp � �lmjps ��lmjsn;

hljmnp � H3��l��12jmnp; Hljmnp � hljmnp � hmjnpl � hnjplm � hpjlmn;

�lmjnps � f��n��lmjps � f��p��lmjsn � f��s��lmjnp;

�lmjnprs � f��n��lmjprs � f��p��lmjrsn � f��r��lmjsnp � f��s��lmjnpr;
�’s being the roots of the Sibgatullin’s equation [22]

e�z� � ~e�z� � 2~f�z�f�z� � 0: (9)

III. PROPERTIES OF THE SOLUTION

A. Multipolar structure

This solution describes the exterior gravitational field of
a reflectionally symmetric source. The first four relativistic
104038
mass multipolar moments and first two electromagnetic
multipolar moments are arbitrary. The multipolar moments
are calculated using the Fodor-Hoenselaers-Perjés proce-
dure [43] following the parametrization given in (7), which
has the advantage that the real parameters m correspond to
the total mass M, a to the total angular moment per unit
mass (a � J=m, J being the total angular moment) and q
to the total electric charge Q; while k, s, and � represent
the mass-quadrupole moment M2, current octupole S3, and
-4
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magnetic dipole B through the following formulas:

M2 � mk�ma2; S3 � 2imak� iam3 � ims;

B � i�� iaq:
(10)

The solution also has electric charge quadrupole moment
Q2, which is not independent because it depends on the
other multipoles, given by the formula

Q 2 � �a�� a2q� kq; (11)

and permits that the solution has electric field even when q
vanish (induced electric field by rotation [44]).

For NSs the mass-quadrupole moment is, surprisingly,
approximated by the simple quadratic relation [28]

M2 
 �c�M;EOS�
J2

M
; (12)

where the constant c � c�M;EOS� depends only on the
mass M and the equation of state for the interior of the NS.
So, the formulas (7) are successful to fit M2 of the exact
solution with data of numerical solutions because of the
form of M2 and the freedom to set the numerical value of
the real parameter k. In addition, the absence of the grav-
itomagnetic parameter (monopole of angular momentum)
leads one to achieve the asymptotic flatness condition of
the solution, necessary to describe a compact object.

B. Limiting cases

The electrovacuum exact solution presented in this pa-
per belongs to the extended N-soliton solution of the
Einstein-Maxwell equations derived by Manko et al.
[45], as the particular case of N � 3. On the other hand,
in the vacuum case �q � � � 0�, our exact solution re-
duces to the reflection symmetric exact solution represent-
ing superposition of three Kerr particles, derived and
applied in [46,47] to solve the problem of equilibrium of
three aligned rotating bodies in the frame of exact solutions
of the Einstein equations.

A special feature of this solution is that in rigid rotation,
i.e., with s � 0, it contains the following well-known
limiting cases:
(1) T
he stationary vacuum case q � 0, � � 0 with
nonvanishing arbitrary deformation parameter k �
�1=4�m2 � a2� represents the Tomimatsu-Sato
� � 2 solution [33] with the mass-quadrupole mo-
ment M2 � �1=4�m3 � J2=m�.
(2) T
he magnetostatic limit q � 0, a � 0 represents the
massive magnetic dipole solution of Bonnor [48].
(3) T
he Kerr-Newmann space-time is obtained with
� � k � 0.
(4) T
he stationary vacuum case q � 0, � � 0 with
nonarbitrary deformation, i.e., with k � 0 repre-
sents the Kerr space-time. It is important to empha-
size that the present six-parametric solution
generalizes the Kerr and Kerr-Newmann solutions,
104038-5
which are the most studied stationary axisymmetric
solutions.
C. Electromagnetic fields

The strong magnetic field is one of the most important
features of NSs and pulsars. The last ones have nonaligned
dipole moment with the rotation axis causing loss of en-
ergy and angular moment, so the star radiates electromag-
netic and gravitational waves away and decreases its
velocity of rotation, configuring a clear example of a non-
stationary and nonaxisymmetric system. On the other
hand, the stationary axisymmetric case is characterized
by the fact that the magnetic dipole moment is aligned
with the axis rotation of the star and the magnetic field is
poloidal (i.e. the magnetic field lying in the meridional
planes [19]). Our exact solution is stationary and axisym-
metric and, therefore, describes this kind of NSs.

For the description of the electromagnetic properties of
the solution, we must calculate the electric and magnetic
fields produced in the surrounding space-time. The reason
to introduce an electric field in the solution, in spite of the
fact of global neutrality of the astrophysical objects, is that
an electric field is induced by the rotation of the magne-
tized objects, as Eq. (11) shows. To have a closed form the
electric and magnetic fields are important, for example, in
order to study the accretion of charged particles around the
NS, to study geodesic motion of test particles around a NS,
and so on. The electric and magnetic fields can be calcu-
lated using the expressions

E� � F��u�; B� � �
1
2���

��F��u�; (13)

where F�� is the electromagnetic field tensor F�� �
2A��;�	, A� � �0; 0; A�;�At� is the electromagnetic four-
potential, ����� is the totally antisymmetric tensor of
positive orientation with norm ���������� � �24 [49]
and u� is a timelike vector (in the case of fluid, this vector
is the four-velocity of the fluid). For a congruence of
observers at rest in the frame of (1), the four-velocity is
defined by the timelike eigenvector

u� � �1=
���
f

p
; 0; 0; 0�; (14)

so the vectorial fields have components in the � and �
directions. The electric field is given by the following
expressions:

E� � �

���
f
p

e2� At;�; Ez � �

���
f
p

e2� At;z; (15)

and the magnetic field by

B� �
f3=2

�e2� ��!At;z � A�;z�;

Bz � �
f3=2

�e2� ��!At;� � A�;��:

(16)
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The At potential is the real part of the electromagnetic
Ernst potential � given by (9), and the potential A� can
be calculated as the real part of the Kinnersley potential
K � A� � iA

0
t [50], which can be obtained using the

Sibgatullin method and can be written as

K � �i
I�f1 � f2�

A� B
: (17)

Thus, the closed-form expressions for the electric and
104038
magnetic fields are

E� �
jKj2

Q6
n�1 rnRe�

C;��C ln�A�B�;�
A�B 	

jA� Bj
��������������������������������������
jAj2 � jBj2 � jCj2

p ;(18a)

Ez �
jKj2

Q6
n�1 rnRe�

C;z�C ln�A�B�;z
A�B 	

jA� Bj
��������������������������������������
jAj2 � jBj2 � jCj2

p ;(18b)
B� �
Im��A�B� �H� � �A� �B�G�C �I	

�jA�Bj2
Ez�

jKj2
Q6
n�1 rn

�������������������������������������
jAj2� jBj2� jCj2

p
�jA�Bj3

Im
�
�f1� f2��I;z� I ln�A�B�;z

A�B

�
; (19a)

Bz ��
Im��A�B� �H� � �A� �B�G�C �I	

�jA�Bj2
Ez�

jKj2
Q6
n�1 rn

�������������������������������������
jAj2� jBj2� jCj2

p
�jA�Bj3

Im
�
�f1� f2��I;�� I ln�A�B�;�

A�B

�
: (19b)
(a)

(b)

FIG. 1. (a) Magnetic field force lines and (b) isopotential lines
of the induced electric field for m � 1:742M�, a � 1:009 Km,
k � �0:336 Km2, s � 0:212 Km3, q � 0 Km, b � 10 Km2.
In order to show that our solution has the appropriate
features of realistic NSs, we have to use typical values of
NS for their physical parameters, like mass, rotation, de-
formation, charge, and magnetic dipole moment. NSs are
compact objects that possess strong magnetic fields (B�
1012T); nevertheless, in our solution the parameter related
with the magnetic field is the magnetic dipole moment �.
In [17] Manko et al. showed how the magnetic dipole
moment of their exterior solution depends on the values
of the parameters of the interior solution, such as the matter
density, the current function, and the stellar radius. They
obtained the above result by comparison between their
magnetic potential A� at infinite and the Ferraro’s potential
[51]; this became a test for the weak field because the
Ferraro’s solution is an approximate one that takes into
account deformation only at first order around the spherical
symmetry [19]. According to this, we must use typical
values given for realistic interior solutions. Bocquet et al.
[19] calculated interior solutions for the Einstein-Maxwell
system using the typical value of 1032 Am2 for the mag-
netic dipolar moment of the NS in the system of interna-
tional units. In natural units (c � G � �0 � "0 � 1),
which have been used in our paper, the magnetic dipole
moment has an order of

�natural �
10�6

����������
�0G
p

c2 �S:I:; (20)

resulting in a typical value for the � parameter of our
solution of order 101 Km2.

In Fig. 1 we have plotted the force lines of the magnetic
field and the isopotential lines of the induced electric field
(At � constant) for one possible model of NS (M� �
1:476 63 Km). The increase of the separation between
consecutive force lines indicates, as is usual, that the
electric field and the magnetic one decrease while the
distance increases. As we expected, in absence of mono-
pole electric charge distribution, the electric field is quad-
rupolar. In addition, the same figure shows that the
-6



FIG. 2. Stationary limit surfaces for m � 2:388M� �
3:526 Km, a � 2:264 Km, k � �1:808 Km2, s � 2:498 Km3.
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axistationary properties of the magnetic field appear:
aligned magnetic dipole moment and dipolar structure
(poloidal field).

D. Singularities

The singularities are solutions of the equation

A� B � 0; (21)

i.e., denominator of the Ernst potentials given by (8) equals
zero. In Fig. 2 we have plotted the typical shapes of sta-
tionary limit surfaces (f � 0) for specific sets of realistic
parameters given in Ref. [14]. The location of ring singu-
larity appears with dots. The ring singularity lies on the
stationary limit surface, which is a characteristic of the
stationary vacuum solutions.

For all stellar models there are no ring singularities
outside of infinite redshift surfaces; therefore, the solution
can represent the exterior field of compact objects. In
addition, we show in this section, with an approximate
calculation via Komar masses, that the ring singularities
of solution are massless. The geometrical structure of the
exact solution implies that one could consider it as super-
position of subextreme and hyperextreme objects. The
Komar mass Mi of a subextreme part can be calculated
using the Tomimatsu formula [52]

Mi �
1

4

Z �>

�<
!�i��;zdz; (22)

where � is the imaginary part of the Ernst potential ", and
!i is the constant value of the metric coefficient ! on the
segment ��<;�>	 of the z axis.

In the case of a hyperextreme part, the Komar mass
cannot be evaluated using the formula (22), and one
more general integral expression should be used [53]:

Mi �
1

4

�Z zu

zl
���lnf�;��!�;z 	���0

dz

�
Z �0

0
���lnf�;z�!�;� 	z�zud�

�
Z �0

0
���lnf�;z�!�;� 	z�zld�

�
; (23)

where the integration is carried out over the surface of a
cylinder enclosing the cut which joins the points �i and ��i;
zu and zl denote locations on the symmetry axis of the
centers of upper and lower bases; and �0 is the radius of the
bases. We will illustrate the procedure followed using the
set of parameters showed in Fig. 2. First, we shall calculate
the mass of the NS via Komar masses and then we will
compare the obtained result with the mass monopole m, to
deduce that the mass of the ring singularity is equal to zero.
For the set of parameters showed in Fig. 2, the roots of the
Sibgatullin equation (9) are �1 � 0:792, �2 � 2:245,
�3 � �0:792, �4 � �2:245, �5 � �1:406i, �6 � ��5,
producing four subextreme parts and one hyperextreme
104038
part. Using the formula (22), the mass of the subextreme
contribution is ms � 1:523 Km and using the formula
(23), the mass of the hyperextreme contribution is mh �
2:003 Km, then ms �mh � 3:526 Km � m. We made the
above calculations for all data for all EOS used from
Ref. [14] and the results were always the same. As can
be seen, the calculations were made in a numerical way for
the different stellar models; it brings us to give only
approximate values for the mass of ring singularity. For
that reason, the ring singularity arises with a mass equal to
zero with precision up to 10�4, with no dependence of the
equation of state used.

IV. TEST OF ACCURACY OF THE SIX-
PARAMETER ANALYTIC MODEL

In order to demonstrate that our solution can represent
the exterior gravitational field of a realistic NS, we have to
do comparisons with results obtained from numerical in-
terior solutions and with other possible analytic models.
We have chosen the Kerr solution, the expressions derived
by Shibata and Sasaki (S&S) in Ref. [25] and the Hartle-
Thorne solution (H&T) truncated to second order of the
expansion parameter � � �=�
 (see Refs. [5,24]). For the
comparison with numerical models, we have chosen the
solutions by B&S Ref. [14]; the comparison procedure was
taken from there, that is, we compared an invariant quan-
tity of the space-time, the multipolar moments, and another
quantity which depends on the coordinates. The depending
coordinates quantity could be the gravitational redshift or
the radii of the innermost stable circular orbits. For this
work we have chosen to compare the radii of the ISCO
because it is related to several astrophysical properties of
rapidly rotating NSs, e.g. the accretion disk cannot be
longer than the radii of the ISCO, and this sets an upper
limit to the Keplerian frequency of particles orbiting a star.

We matched the exact solution with the numerical in-
terior solutions imposing the condition that the first four
mass and current multipole moments, i.e. mass, angular
moment, mass-quadrupole, and current octupole, of the
-7



PACHÓN, RUEDA, AND SANABRIA-GÓMEZ PHYSICAL REVIEW D 73, 104038 (2006)
exact solution and the numerical ones have the same value.
In B&S, sources possessing electric charge or magnetic
dipolar moment were not considered, so in this work the
comparison of the solutions was developed in the vacuum
case.

The numerical solutions were calculated for five interior
numerical solutions for the gravitational field of a NS, each
numerical solution is described by a different equation of
state. The EOSs used were denoted as A [30], AU [31],
FPS [32], L [34], APRb [35] (see B&S [14] and Cook et al.
[6] for details). These numerical solutions were calculated
for three different sequences of constant rest mass:
(i) F
irst sequence.—The sequence corresponding to a
canonical neutron star having gravitational mass
M � 1:4M� in the nonrotating limit.
(ii) S
econd sequence.—The sequence terminating at
the maximum-mass model in the nonrotating limit
(maximum-mass normal sequence).
(iii) T
hird sequence.—A supramassive sequence, i.e., a
sequence which does not terminate at a nonrotating
model.
In order to distinguish when a neutron star is rapidly
rotating or not, we shall use the dimensionless parameter
j, defined by j � J=M2; as it was used by Sibgatullin and
Sunyaev [18], Stute and Camenzind [16], and B&S [14]. In
spite the fact that j is not a direct quantitative measure of
the magnitude of the rotation rate of the stars, it gives us a
measure of the angular momentum which relates propor-
tionally to the angular velocity.

To clarify the meaning of the value of the j parameter let
us consider an example. For the recently discovered pulsar
[2] which frequency is 716 Hz, the value of j depends on
the EOS and the sequence of mass considered. Using the
values reported in B&S for stars with similar frequency, we
find that j value must be around 0:42< j< 0:68. For
example, for the EOS FPS in the first sequence of mass
and assuming m� 1:430M� and J� 2:961 Km2, the
value of j must be very close to 0.67, and for the second
sequence assumingm� 1:831M� and J� 3:185 Km2, the
value of j must be very close to 0.43. Although it is clear
that we can not present a reliable classification for rapidly
rotating neutron stars based on j, we shall assume that a NS
is considered rapidly rotating when j > 0:35.

A. Innermost stable circular orbits

It is well known that not all orbits around relativistic
stars are stable. For nonrotating stars, the ISCO is located
at a circumferential radius of RISCO � 6M (see Ref. [54]
for a complete treatment of circular orbits in stationary
axisymmetric space-times). Depending on the EOS and the
mass of the star, the ISCO can be located outside the stellar
surface. The rotation introduces a preferred direction in the
� coordinate, so ISCOs around a rotating star belong to
two families: the co-rotating one and the counterrotating
one.
104038
A circular orbit in the equatorial plane is one for which
� � const. The equation for geodesic motion along the
radial coordinate � reads

�g��

�
d�
d


�
2
� 1�

E2g�� � 2ELgt� � L2gtt
g2
t� � gttg��

� V���;

(24)

where E and L are the conserved energy and angular
momentum per unit mass, determined by the conditions
V � dV=d� � 0. Geodesics become marginally stable
when d2V=d�2 � 0, so it is

!0!00f5��2f� f0�� �!02f4�2f2 � ��f02 � f00f��2	

�!0f2
������������������������������������������������
!02f4 � f0��2f� f0��

q
�2f2 � 2f02�2

� f��4f0 � f00�� � ��2f� f0��f3f0f2 � 4f02f�

� f03�2 � f2�f00��!00f
������������������������������������������������
!02f4 � f0��2f� f0��

q
	g � 0;

(25)

for co-rotating orbits (R�), where 0 indicates a partial
derivative with respect to �. For the case of Hartle-
Thorne’s solution, the radii of the ISCO for co-rotating
orbits (R�) was derived by Abramowicz et al. in [24]:

RH&T
ISCO � 6m

�
1�

������
8

27

s
j�

�
251 647

2592
� 240 ln

3

2

�
j2

�

�
9325

96
� 240 ln

3

2

�
q
�
; (26)

where q is the dimensionless quadrupole defined as q �
Q=m3, where Q is the quadrupole moment of the mass
distribution.

S&S derived a general representation of axisymmetric
vacuum solutions (in the form of a series expansion of the
physical multipole moments of the space-time) and found
some approximate analytic formulas for the location of the
inner stable circular orbit, the angular moment, and energy
of a particle around a relativistic source [25]. In general,
their formulas depend on the mass, angular momentum,
mass-quadrupole, current octupole and mass 24-pole mo-
ments and on upper order multipoles in the rotation pa-
rameter. Including all terms up to orderO�4� in the rotation
parameter, they found the following equation for the cir-
cumferential radius of the co-rotating ISCO (R�):

RS&S
ISCO � 6m�1� 0:544 33j� 0:226 19j2 � 0:179 89q2

� 0:230 02j3 � 0:262 96jq2 � 0:053 17q3

� 0:296 93j4 � 0:445 46j2q2 � 0:062 49q2
2

� 0:015 44q4 � 0:113 10jq3�: (27)

In the previous expression, dimensionless parameters q2 �
�M2=m

3, q3 � �S3=m
4, and q4 � M4=m

5 have been in-
troduced. S&S adopted the approximation, q4 � �4q2

2 be-
cause the numerical calculation of the 24-pole term is very
-8



 12

 13

 14

 15

 16

 17

 18

 19

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

R
 is

co

j

EOS AU, I sequence. Counter-rotating

B & S’ solution
Kerr solution

H & T’ solution
S & S’ expression

Six parametric solution

 6

 7

 8

 9

 10

 11

 12

 13

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

R
 is

co

j

EOS AU, I sequence. Corrotating

B & S’ solution
Kerr solution

H & T’ solution
S & S’ expression

Six parametric solution

(a) (b)

FIG. 4. ISCO for the EOS AU sequence with constant rest mass corresponding to a nonrotating model of 1:578M� for (a) the
counterrotating orbits and (b) the co-rotating orbits.
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FIG. 3. ISCO for the EOS A sequence with constant rest mass corresponding to a maximum-mass model in the nonrotating limit of
1:948M� for (a) the counterrotating orbits and (b) the co-rotating orbits.
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FIG. 5. ISCO for EOS FPS sequence with constant rest mass corresponding to a maximum-mass model in the nonrotating limit of
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REALISTIC EXACT SOLUTION FOR THE EXTERIOR . . . PHYSICAL REVIEW D 73, 104038 (2006)

104038-9



 24

 26

 28

 30

 32

 34

 36

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

R
 is

co

j

EOS L, II sequence. Counter-rotating

B & S’ solution
Kerr solution

H & T’ solution
S & S’ expression

Six parametric solution

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

R
 is

co

j

EOS L, II sequence. Corrotating

B & S’ solution
Kerr solution

H & T’ solution
S & S’ expression

Six parametric solution

(a) (b)

FIG. 6. ISCO for EOS L sequence with constant rest mass corresponding to the maximum-mass model in the nonrotating limit
3:232M� for (a) the counterrotating orbits and (b) the co-rotating orbits.
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hard and difficult. The value of �4 lies between 0 and 2; we
adopted �4 � 1 as it is generally used [25]. In the case of
the Kerr metric, the approximate expression for the loca-
tion of the co-rotating ISCO up to order O�j4� is

RKerr
ISCO � 6M�1� 0:544 33j� 0:046 30j2 � 0:020 163

� 0:011 10j4�: (28)

In all cases, the location of the counterrotating ISCO (R�)
is obtained simply by using the above equation and chang-
ing the sign of all the star’s rotation multipoles. The
obtained results from the direct comparison between the
ISCOs are presented in Figs. 3–7.

We can see that our solution presents a better adjust for
the radii of the ISCO in comparison with the standard
analytic models used in the literature to describe the ex-
terior gravitational field of a rotating neutron star, e.g. the
104038
Kerr solution, Hartle and Thorne’s solution, and the
Shibata and Sasaki expressions. In average, for all cases
the accuracy ofR� is better than 2%, and forR� better than
1%. The fact that the six-parametric solution fits quite well
from the nonrotating limit to the rapidly rotations rates, in
all sequences of mass in the five studied equation of state,
implies that it could be an appropriated analytic closed-
form model for the exterior gravitational field of a neutron
star.

V. CONCLUDING REMARKS

We present a new stationary axisymmetric six-parameter
closed-form analytic solution generalizing to Kerr-
Newmann solution with arbitrary mass-quadrupole mo-
ment, octupole current moment, and electric charge. The
analytic form of its multipolar structure and their electric
and magnetic fields are presented also.
-10
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We calculated some properties of the solution, using
realistic data of interior numerical solutions, in order to
demonstrate that the solution could model the exterior field
of a realistic neutron star. In the electrovacuum case, we
used the magnetic dipolar moment given by Bocquet et al.
in [19]; in the vacuum case, we matched it to highly
accurate numerical solutions by Berti and Stergioulas
[14], imposing that the mass, angular momentum, mass-
quadrupole, and current octupole moment of the numerical
and analytic space-times have the same value. We also
showed that this six-parameter analytic closed-form model
is an appropriated model for the exterior field of a slowly or
rapidly rotating neutron star based on comparisons of the
radii of ISCO obtained with (a) Berti and Stergioulas
numerical solutions (2004) [14], (b) the Kerr solution
(1963) [55], (c) the Hartle and Thorne solution [27], and
(d) an analytic series expansion derived by Shibata and
Sasaki (1998) [25] with our analytic model for all equa-
104038
tions of state given in [14]. However, the solution’s accu-
racy should be tested also outside of the equatorial plane,
and through the calculation of other physical observables,
which is a task for the future.

The exact solution could be used in future studies of
astrophysical plasma, dynamic of geodesics, and accretion
of particles in the surrounding space-time of the neutron
star.
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