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Origin of black string instability
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It is argued that many nonextremal black branes exhibit a classical Gregory-Laflamme (GL) instability.
Why does the universal instability exist? To find an answer to this question and explore other possible
instabilities, we study stability of black strings for all possible types of gravitational perturbation. The
perturbations are classified into tensor-, vector-, and scalar-types, according to their behavior on the
spherical section of the background metric. The vector and scalar perturbations have exceptional multi-
pole moments, and we have paid particular attention to them. It is shown that for each type of
perturbations there is no normalizable negative (unstable) modes, apart from the exceptional mode known
as s-wave perturbation which is exactly the GL mode. We discuss the origin of instability and comment on
the implication for the correlated-stability conjecture.
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1The stability argument in Ref. [24] is sometimes applied to
black strings, using Wick rotation. The proof of stability for
higher multipole moments assumes that all eigenvalues are real
under the periodic Euclidean time. In general, this assumption
I. INTRODUCTION

Stability of a given spacetime is a crucial issue from
many standpoints. In general relativity, a stable spacetime
will be realized by a dynamical evolution starting from a
generic set of initial data on a Cauchy surface. However
stability in general relativity is frequently subtle issue, and
because of that it becomes important and interesting in its
own right. From a string theory perspective, it is interesting
to know what spacetimes are appropriate backgrounds for
studying string propagation and its dynamics. Besides,
information of gravitational dynamics and properties are
useful to understand Yang-Mills theory by means of gauge/
gravity dualities, and vice versa [1–8]. In this respect,
instability on the gravitational side is an indicator of inter-
esting gauge theory dynamics, such as phase transition and
so on [9].

The fundamental generic instability is Gregory-
Laflamme (GL) instability [10], which is accompanied
by a uniformly smeared horizon. The fundamental phe-
nomena is however one of long-standing puzzles in gravity.
For example, (i) what is the necessary and sufficient con-
dition for the onset of a dynamical instability of a horizon?
(ii) Why is a uniform horizon unstable? The first question
was addressed by a so-called correlated-stability conjec-
ture (CSC) [11,12]. Namely, the onset of the dynamical
instability of black brane will be the same as the onset of
(local) thermodynamic instability. The second question is
more fundamental and naive. The origin of the instability
might have deep connection with quantum aspect of grav-
ity, since the onset of instability is predictable by black
hole thermodynamics due to CSC. Here we would like to
pursue the question from classical aspect of gravity. (See
[13] for fluid analogy of GL phenomena.)

First of all, we do not know full dynamics of unstable
black objects in higher dimensions [14]. In particular, as
far as the present author knows, a complete analysis of
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(in)stability has not been carried out. (A numerical inves-
tigation for the 5-dimensional black string in the brane-
world model with AdS bulk was performed in [15].) In
fact, even for the higher dimensional Schwarzschild black
holes (BHs), its dynamical stability was established in
recent years by Kodama and Ishibashi (KI) [16–18]. The
instability found by Gregory and Laflamme is the s-wave
mode, and the perturbation is ‘‘minimum’’ deformation of
horizon. For perturbations with higher multipole moments,
similar instability might persist. An interesting point is that
existence of instability implies existence of a critical static
mode and the mode could be continued to a state with
nonperturbatively deformed horizon [19–23], so that any
extra instability implies extra static sequence of solutions.
Besides, they will have physical meaning in Euclidean
space [24–27].1 In addition to the stability issue of un-
charged black branes, complete stability of BPS state with
respect to all possible types of perturbations, which should
include breaking of supersymmetry, remains an open ques-
tion, although there is partial evidence for it [28–30].

In order to promote greater understanding of the nature
of black string/brane, it is inevitable to investigate the
stability with respect to all the types of perturbations.
Following to the general gauge-invariant formalism for
higher dimensional maximally symmetric BHs by KI, we
develop a general perturbation theory of black string and
tackle the stability problem. (See also [31,32] for the basic
work related to the gauge-invariant formalism of maxi-
mally symmetric spacetimes.) In this approach, the pertur-
bation variables are classified into three types, those of
tensor, vector and scalar modes, according to the type of
for eigenvalues and boundary conditions is crucial for stability
argument, and we should not naively apply the argument to
discuss the stability of black strings.
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harmonic tensor used to expand the perturbation variables.
Contrary to the perturbations for the maximally symmetric
BHs, vector and scalar-type perturbations will not have
simple master variables due to extra physical degrees of
freedom. We study stability of these perturbation variables.

The paper is organized as follows. In the next section
we first classify perturbations into tensor, vector, and
scalar-types with respect to the maximally symmetric
n-dimensional spacetimes. Then for each type of perturba-
tions, we express the Einstein equations in terms of them.
In Sec. III, we study stability of tensor and vector pertur-
bations and found that there is no instability in these
perturbations. In Sec. IV, the stability analysis of scalar
perturbation will be carried out. The unstable GL mode is
an exceptional mode in the present perturbation scheme
and we discuss that there is no other unstable mode in the
black string perturbations. The origin of such an excep-
tional mode will be clarified in comparison with the per-
turbations for the maximally symmetric BHs. Section V is
devoted to summary and discussion. Throughout this paper
we follow the notation in Refs. [16–18].
2We have decomposed the metric into 2� n� 1 space with
employing the gauge fixing. More general formulation will be
possible by decomposing the metric into m� n space [31],
where m is m 	 3 depending on the translationally invariant
spatial dimensions of black brane. By employing such decom-
position, we can use many covariant formulas for the higher
dimensional maximally symmetric BHs in [16] without signifi-
cant changes, although such fully gauge-invariant equations give
more messy equations of motion for each variable. In this
picture, it is easy to count a number of physical degrees of
freedom for each type of perturbation. The physical degrees of
freedom for tensor and vector Fa [see Eq. (14)], are 1� 
Tij�
and �m� 1� � 
Vi�, respectively, taking into account the number
of constraint equations for vector perturbation. Here 
Tij� �
�n� 1��n� 2�=2 and 
Vi� � �n� 1� are the number of degrees
of freedom for the respective harmonics. The physical degrees of
freedom for scalar perturbation, F and Fba , are �m2 �m�
2�=2� �m� 1� � m�m� 1�=2, subtracting the number of con-
straint equations for scalar perturbation. The total gravitational
degrees of freedom are �n�m��m� n� 3�=2.
II. GENERAL PERTURBATION THEORY

As our background spacetimes, we consider the D �
�n� 3�-dimensional metric of the form

d �s2
D � �gABdx

AdxB � gabdy
adyb � r2d�2

n � dz
2; (1)

where gab is the Lorentzian metric of the two-dimensional
orbit spacetime, and d�2

n � �ij�y�dyidyj is the metric of
the n-dimensional maximally symmetric space Kn with
sectional curvature K � 0, �1. Throughout this paper, we
use the notation a, b � 0, 1 i; j � 2; � � � ; n� 1, and
�;� � � � � 0; � � � ; n� 1. The covariant derivative with
respect to the metric gab and �ij are defined as Da and
D̂i, respectively. In the followings, we develop a general
perturbation scheme for black objects with codimension
one. The perturbation will be specialized to the black string
perturbations in the next section (See footnote 2 for more
general perturbations.)

Most general metric perturbations �gAB for this back-
ground spacetimes are

ds2 � �gAB � �gAB�dx
AdxB: (2)

Utilizing gauge degrees of freedom, xA ! x0A �
xA � �A�x��, we can eliminate perturbations in z direction
at any times, taking a Gaussian normal coordinates:

ds2 � �g�� � �g���dx
�dx� � dz2: (3)

This gauge fixing is however not complete. There are two
types of residual gauge degrees of freedom. The corre-
sponding infinitesimal coordinate transformations are

�z � P�x��; �� � �z@�P�x��; (4)

and
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�z � 0; �� � Q��x��: (5)

The first one corresponds to shifting z � const surface. The
second is the gauge transformation transverse to a z �
const surface, and hereafter we call this ‘‘transverse’’
gauge degrees of freedom.

Because the background spacetimes are translationally
invariant along z direction, we can take arbitrary hypersur-
face of

z � const � zc (6)

to study the perturbations without loss of generality. This
approach is a sort of an effective theory approach. In this
approach, the residual gauge P is fixed once we take a z �
const surface, on which we will study perturbations.

At this point, if we consider only homogeneous pertur-
bations along the z direction, the general perturbations (3)
is the same as the gravitational perturbations of maximally
symmetric black holes in higher dimensions studied by
Kodama and Ishibashi. Their perturbation theory is most
generic and based on gauge-invariant scheme, yielding
master variables for each type of perturbations. Fol-
lowing to their perturbation theory, we develop trans-
versely gauge-invariant perturbation theory, so that pertur-
bation variables independent of the residual gauge (5) are
introduced. A point is that the general perturbation pro-
vides transparent perturbation scheme, which can be di-
rectly compared with the perturbations of maximally
symmetric black holes.2

A. Tensor-type perturbations

We begin by considering tensor perturbations, which are
given by

�gab � 0; �gai � 0; �gij � 2r2HTTij;

�g�z � 0;
(7)
-2



ORIGIN OF BLACK STRING INSTABILITY PHYSICAL REVIEW D 73, 104034 (2006)
where HT is a function of ft; r; zg, and the harmonics
tensors Tij are defined as solutions to the eigenvalue prob-
lem on the n-sphere;

��̂n � k2
T�Tij � 0; Tii � 0; D̂jT

j
i � 0: (8)

Here, D̂j is the covariant derivative with respect to the

metric �ij and �̂n � �ijD̂iD̂j. In these equations we have
omitted the indexes labeling the harmonics and the sum-
mation over them. For K � 1, the positive eigenvalue k2

T
for a discrete set, k2

T � l�l� n� 1� � 2, l � 1; 2; � � � .
The tensor perturbations are essentially transversely

gauge invariant. Following [16–18,31], we introduce a
new variable � � rn=2HT . The master equation follows
from the vacuum Einstein equations (B13),�
��

1

r2

�
k2
T � 2nK �

n� 4

2
r�r

�
n2 � 10n� 8

4
�Dr�2

��
���;zz � 0; (9)

where � � DaDa denotes D’Alembertian operator in the
two-dimensional orbit space. We remind that there is no
tensor-type harmonics on a 2-sphere, so that the tensor
perturbations only exist for n 	 3.

B. Vector-type perturbations

Perturbations of the vector type can be expanded in
terms of vector-type harmonic tensors Vi satisfying

��̂n � k2
V�Vi � 0; D̂jV

j � 0: (10)

As in the case of tensor-type harmonics, the eigenvalues k2
V

are positive definite. For K � 1 the eigenvalues form a
discrete spectrum given by

k2
V � l�l� n� 1� � 1; l � 1; 2; � � � : �K � 1� (11)

In terms of vector harmonics, metric perturbations are
expanded as

�gab � 0; �gai � rfaVi;

�gij � 2r2HTVij; �g�z � 0;
(12)

where Vij and Vj satisfy

V ij � �
1

2kV
�D̂iVj � D̂jVi�; Vi

i � 0;

D̂jV
j
i �

k2
V � �n� 1�K

2kV
Vi:

(13)

Note that Vij also satisfy 
�̂� k2
V � �n� 1�K�Vij � 0.

The special mode k2
V � �n� 1�K is known as the excep-

tional mode for the vector perturbations, since Vij vanishes
for this mode.

For k2
V � �n� 1�K > 0, transversely gauge-invariant

quantity is
104034
Fa�t; r; z� � fa � rDa

�
HT

kV

�
: (14)

The vacuum Einstein equations, �Rij � 0 and �Rai � 0,
reduces to

Da�rn�1Fa� � �rn
@2

@z2

�
HT

kV

�
; (15)

Da�rn�1F�1�� �mVrn�1�abFb � �rn�1�abfb;zz: (16)

where mV � k2
V � �n� 1�K, and we have introduced

F�1� � r�abDa

�
Fb
r

�
: (17)

The Einstein equation �Riz � 0 gives a nonvanishing
equation, but it is not an independent equation.
Combining these two equation, we obtain an equation for
Fa,

�adDd

�
rn�2Db

�
�bcFc
r

��
� rn�2Da

�
1

rn
Dc
�
rn�1Fc

��

�mVr
n�1Fa � �rn�1Fa;zz: (18)

Therefore our stability problem is reduced to solve the
equation of motion (EOM) for the vector Fa. The vector
(14) has been constructed to be invariant under the gauge
transformation which is independent of z. Thus any solu-
tions of the evolution Eq. (18) have physical meaning.

Here we note that for the zero mode @z@zFa � 0 the
divergenceless condition (15) holds for the vector Fa. From
this condition, a master variable can be introduced, and the
second Eq. (16) with employing the master variable re-
duces the Regge-Wheeler equation for n � 2, K � 1. By
contrast with the zero mode, the KK modes have one extra
physical degree of freedom. The two physical modes are
governed by Eq. (18), which will give coupled second
order differential equations.

The exceptional mode k2
V � �n� 1�K, corresponding to

K � 1 and ‘ � 1, receives special consideration. In this
case the perturbations variable HT does not exist because
Vij vanishes, and correspondingly, Eq. (15) does not exist.
Fa is not invariant under the transverse gauge transforma-
tion, and it has only one physical degree. TakingHT � 0 in
(14), the single physical mode which is invariant under the
transverse gauge is given by (17). For the zero mode, the
equation for F�1� is Da�rn�1F�1�� � 0, and its solution is
F�1� � const=r�n�1�. This solution corresponds to adding a
rotation to the background solution, although it is not a
dynamical freedom. For the massive spectrum of this ex-
ceptional mode, the transversely gauge-invariant equation
-3
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is from (16)

Dc
�

1

rn�2 Dc�r
n�1F�1��

�
� �

1

r
F�1�;zz : �K � 1; ‘ � 1�:

(19)

C. Scalar-type perturbations

Scalar perturbations are given by

�gab � fabS; �gai � rfaSi;

�gij � 2r2�HL�ijS�HTSij�; �g�z � 0;
(20)

where the scalar harmonics S, the associated scalar har-
monic vector Si, and the traceless tensor Sij are defined by

��̂n � k
2
S�S � 0; Si � �

1

kS
D̂iS;

Sij �
1

k2
S

D̂iD̂jS�
1

n
�ijS;

(21)

with the eigenvalues k2
S given by k2

S � l�l� n� 1� for
K � 1. By definition, Si and Sij have the following prop-
104034
erty:

D̂ iSi � kSS; Si
i � 0;

D̂iSij �
n� 1

n
k2
S � nK
kS

Si:
(22)

We introduce F�t; r; z� and Fab�t; r; z� defined by

F � HL �
1

n
HT �

1

r
DarXa;

Fab � fab �DaXb �DbXa;
(23)

where Xa �
r
kS
�fa �

r
kS
DaHT�. By using these expansions,

we have calculated Einstein equations for the scalar per-
turbations, which are summarized in the Appendix C.

Let us first consider the equations for the generic modes
k2
S�k

2
S � nK� � 0. The equations directly obtained from

the Einstein equations contain such as fab;zz and HL;zz as
we see in Eqs. (C3) and (C4). Eliminating such terms by
utilizing (C1) and (C2), we obtain the following perturba-
tion equations for Fab and F:
DaDbFab ��Fcc � n
Dar
r
�DaF

c
c � 2DbFab� �

�
R�2�ab � 2�n� 1�

DaDbr
r
� �n2 � 3n� 2�

DarDbr

r2

�
Fab �

k2
S

r2 F
c
c � 2�F

� 
4k2
S � 2�n� 1��n� 2�K � 4�n� 1��n� 2��Dr�2�

F

r2 � 2�n� 1�F;zz � 0; (24)

�Fab �
Dcr
r
�nDcFab � 4D�aFb�c� � 2R�2�c�aF

c
b� � 2R�2�acbdF

cd �
k2
S

r2 Fab � 2�n� 2�
�
Fc�aDb�Dcr

r
�
Fc�aDb�rDcr

r2

�

�
8

r
D�arDb�F� 4�n� 2�

�
DaDbr
r
�
DarDbr

r2

�
F�

gab
n� 1

�
DcDdFcd ��Fcc �

n
r
Dcr�DcF

d
d � 2DdFcd�

�

�
R�2�cd � n�n� 1�

DcrDdr

r2

�
Fcd �

k2
S

r2 F
c
c � 2n�F�

2n�n� 1�

r
DcrDcF� 2�n� 1�

k2
S � nK

r2 F
�
� Fab;zz � 0; (25)

where (ab) is a notation for the totally symmetric parts of tensors [33]. For the zero mode, (C1) and (C2) work as
‘‘constraint’’ equations. In the present case, they constitute @2

zXa, which is given by (C11).
Additional EOMs are obtained from �RAz � 0. From (C6) and (C7), we get

@2
z

�
DbFab � n

Dcr
r
Fac � 2n

Dar
r
F�DbDaXb ��Xa � n

Dcr
r

�
2
Dar
r
Xc �DaXc �DcXa

�
�
k2
S

r2 Xa

�

� k2
Sr

2Da

�
1

r4

�
Fcc
2
� �n� 2�F

��
� 0; (26)

F;zz �
2

rn�2

Dar
r
Db�r

n�2Fba� �
DaDb�rn�2Fba�

2rn�2 � �n� 2�
�

�r
r
� �n� 1�

�Dr�2

r2

�
F� n

Dar
r
Da

�
Fcc
2
� nF

�

�

�
�n� 1�

�Dr�2

r2 �
�r
r
�
k2
S � �n� 1�K

r2

��
Fcc
2
� �n� 2�F

�
��

�
Fcc
2
� �n� 1�F

�
� 0; (27)
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where (C11) is used to calculate Xa;zz. Finally, �Rzz � 0
gives Eq. (C5);

@2
z�f

c
c � 2nHL� � 0: (28)

Substituting (C8) and (C9) into this equation, we obtain an
equation which does not contain z-derivatives, in contrast
to the above four equations. These five equations are the
basic equations for ‘ 	 2 modes. We will analyze these in
the next section.

For the exceptional mode k2
S�k

2
S � nK� � 0, we need

special consideration for the metric perturbations since
some harmonic functions vanish in this case. For k2

S �
nK, which corresponds to ‘ � 1, Eq. (C2) does not exist
since Sij vanishes andHT is not defined. For k2

S � 0, which
corresponds to ‘ � 0, both Eqs. (C1) and (C2) do not
appear since HT and fa do not exist. In the followings
we will consider these two exceptional modes separately.
104034
1. ‘ � 1

For ‘ � 1 (k2
S � nK), the metric perturbation HT and

hence Eq. (C2) does not exist. In this case, Eq. (23) is
replaced by just setting HT � 0. The transverse gauge
transformation of F and Fab becomes

�F � �
r
kS

�
k2
S

nr2 L�D
arDa

�
L
r

��
;

�Fab � �Da

�
r2

kS
Db

�
L
r

��
�Db

�
r2

kS
Da

�
L
r

��
;

(29)

and they are no longer transversely gauge invariant. We
will use this gauge degree of freedom when we explicitly
solve this mode.

Equations for F and Fab are obtained as follows. From
Eqs. (C5)–(C7)
@2
z

�
2F�DcXc � �n� 2�

Dcr
r
Xc

�
� 0;

(30a)

@2
z

�
Fcc � �n� 2�DcX

c � n2 D
cr
r
Xc

�
� 0;

(30b)

@2
z

�
DbFab � n

Dcr
r
Fac � n2 DarDcr

r2 Xc � n
Dar
r
DbXb ��Xa �DbDaXb �

�
kS
r

�
2
Xa � n

Dcr
r
�DaXc �DcXa�

�
� 0:

(30c)
Here Xa is given by (C1):

Xa;zz � �
1

rn�2 Db�rn�2Fba� � rDa

�
Fcc
r

�
� 2�n� 1�DaF:

(31)

Utilizing this Xa, Eqs. (C4) [or (C8)] and (C10) can be
written in terms of F and Fab. These five equations are the
basic equations for ‘ � 1 mode.

2. ‘ � 0

For the s-wave (‘ � 0) perturbation, HT and fa do not
exist since Si and Sij cannot be defined for this mode.
Hence Fab and F are given by Fab � fab and F � HL. The
equations for these variables are given by (C3) and (C4).
[or equivalently, (C8) and (C10)]. Other complementary
equations are from �Raz � 0 and �Rzz � 0, i.e., Eqs. (C5)
and (C6),

@2
z�F

c
c � 2nF� � 0;

@2
z

�
DcFca � n

Dcr
r
Fca � 2n

Dar
r
F
�
� 0:

The variables Fab and F are gauge dependent, and their
four components are reduced to two physical degrees of
freedom by fixing transverse gauge (on z � const). For
example, the harmonic gauge condition, �rAhAB � 0, is a
useful gauge fixing, which gives

DcFac � n
Dcr
r
Fac � 2n

Dcr
r
F � 0: (32)

We will use this gauge fixing later.

III. STABILITYANALYSIS: TENSOR AND VECTOR

A. Background spacetimes and stability condition

In this section, we discuss about stability of a higher
dimensional black string. As a black string solution, we
consider the following metric form:

gabdx
adxb � �f�r�dt2 �

dr2

f�r�
; (33)

f�r� � K �
�
rh
r

�
n�1

: (34)

Here gab is the Lorentzian metric of the two-dimensional
orbit spacetime, as mentioned in the previous section and
the constant parameter rh defines the horizon radius.
Hereafter, we only focus on the K � 1 case, because our
-5
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interest is in the stability of the black string whose intersect
is the higher dimensionally Schwarzschild black hole.3

If the equations of perturbations are reduced to a 2nd-
order Schrödinger-type differential equation, the analysis
of the stability can be carried out easily. Writing the
Fourier component proportional to e�i!t as �, let us con-
sider the equation of the following form,

!2� �A� �
�
�
@2

@r2



� V�r
�
�
�; (35)

where the operator A is the self-adjoint differential op-
erator and V�r
� is a smooth function of a coordinate r
.
(As we see later, r
 corresponds to the tortoise coordinate,
dr
 � f�1dr.) Then, if the operator A with domain
C10 �r
� is a positive symmetric operator in the L2-Hilbert
space with respect to the inner product

��1;�2�L2 �
Z
dr
�1

y�r
��2�r
�; (36)

the system does not have normalizable negative mode
solutions. Consequently, the amplitude of the solution
remains bounded for all times as long as a smooth initial
data of compact support in r
 is concerned [34,35]. (See
[17] for the argument of initial data.)

We should notice that this stability condition of positive
self-adjointness is not a necessary condition, but is just a
sufficient condition in general. In fact, for some type of
potential which is not positive definite, it is possible to
prove stability of the system by shifting the bottom of
potential. The method is known as S-deformation:
Introducing a new differential operator

D̂ �
d
dr

� S�r
� (37)

with S being some function of r
, the inner product is
evaluated after integration by parts as

��;A��L2 �
Z
dr
�jD̂�j2 � �Vj�j2�;

�V � V �
dS
dr

� S2:

(38)

where the boundary term vanishes for � 2 C10 �r
�.
Therefore the S-deformation shifts the bottom of potential.

B. Tensor perturbations

The master Eq. (9) for the tensor-type perturbation is the
same form of Eq. (35). Fourier-expanding along z direc-
tion, the operator A is given by
3It is interesting to study the stability of the black string in the
other backgrounds, for example, with K � 1 and the cosmologi-
cal constant. However, for such cases, even the stability of the
Schwarzschild black hole has not been established completely
[18].

104034
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� fk2
z � VT: (39)

where r
 �
R
drf�1�r� and kz is the wave number in z

direction which corresponds to the mass spectrum of
Kaluza-Klein (KK) modes on z � zc plane. The mass
spectrum is taken to be k2

z 	 0 without loss of generality.
Otherwise the linear perturbations break down at some z,
even at an initial time. k2

z > 0 is called massive modes, and
k2
z � 0 is zero mode which corresponds to the perturba-

tions of the higher dimensional Schwarzschild black holes.
For the background given by (33), the potential VT is

expressed as

VT�r� �
f

r2

�
n�n� 2�

4
f�

n�n� 1�

�r=rh�
n�1 � k

2
T � �n� 2�

�
:

(40)

Since the spectrum of k2
T satisfies k2

T � �n� 2� �
�l� 1��l� n�> 0, the potential VT is positive definite in
the Schwarzschild wedge. Therefore we conclude that the
black strings are stable with respect to tensor perturbations.

This result is easily understandable. The operator (39) is
nothing but the same one as the higher dimensional
Schwarzschild black holes, except the presence of KK
modes. The massive modes increase the stability of per-
turbations due to its positive contribution. This completely
fits in with our physical intuition, and it might be antici-
pated that other type of perturbations are also stable due to
the massive spectrum of KK modes. However, as we see
below, the master variables of vector and scalar perturba-
tions for the zero mode cannot be used as master variables
for massive modes. The massive modes give new physical
degrees of freedom for vector and scalar perturbations and
the transversely gauge-invariant equations give coupled
second order differential equations. Then the naive expec-
tation like the tensor perturbation does not hold.

C. Vector perturbations

1. Stability of ‘ � 1

The equation for ‘ � 1 is given by (19). By introducing
a new variable F�1� � r�n=2�, we can transform the equa-
tion into the form of (35) with potential

V�1�V �
f

r2

�
r2k2

z �
�n� 2�

4

2�1� n� � �2� 3n�f�

�
:

(41)

However, the form of potential V�1�V is not positive definite.
It becomes negative near the horizon for k2

zr2
h < �n

2 � n�
2�=2, and the stability for such light modes are not obvious.

The positive definiteness of the symmetric operator A
with the potential (41) is shown by the S-deformation. We
find that the following choice
-6
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FIG. 1 (color online). Plot of � as a function of kz for black
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S �
�n� 2�f

2r
(42)

gives positive definite potential �V � k2
zf 	 0. Therefore,

this mode which corresponds to adding a rotation to the
background solution is dynamically stable.

2. Stability of ‘ 	 2

Instead of solving Eq. (18), which gives coupled differ-
ential equations, let us consider Regge-Wheeler gauge by
taking HT � 0 on z � zc surface. In this case, the dynam-
ics of Fa � fa are given by (16), which in general gives
two coupled differential equations. We introduce the fol-
lowing new variables after Fourier-expanding Fa in
z-direction.

Ft � �r�n=2��t; r�; (43)

Fr � r1�n=2 ��t; r�����������������������
mV � k2

zr2
q : (44)

From (16), � is solved as

� �
Z t

t


�

nmV � �n� 2�k2

zr2��� 2r�mV � k2
zr2��0

2�mV � k
2
zr

2�3=2

�
dt

� h�r�; (45)

and we find an equation for �,�
��

VV
f

�
� � 0;

VV �
f

r2

�
1

1�R2

�
�n� 2� �

3f

1�R2

�

�

�
�1�R2�mV �

1� 2�n� 2�f

�1�R2�

�

�
�n� 2�

4

�
f�3n� 2� � 2�n� 1�

��
; (46)

where R2 � k2
zr2=mV . Here t
 is an initial time and h�r� is

an arbitrary function. The Eq. (16) contains only first time
derivative of Ft, and hence the initial data of Ft can be
specified only by h�r�.4

The potential VV becomes negative near the horizon for
n� 1. However, the positive definiteness of this potential
can be shown by employing the S-deformation. Applying
the S-deformation (42), the last term in the curly brackets
are cancelled out. Using the fact that for K � 1 and ‘ 	 2,
mV is bounded below as mV 	 n� 2, and then the second

ORIGIN OF BLACK STRING INSTABILITY
4There will be another arbitrary function. Substituting the
solution of (46) into the Eq. (15), we can integrate it by z to
get HT at z � zc. Two arbitrary functions of x� appears, but one
of them can be eliminated by (4). The remaining function
corresponds to an ‘‘initial data’’ in the bulk, whose evolution
is stable sine it is homogeneous (zero mode) in z-direction.

104034
term is easily shown to be positive definite. Therefore, we
conclude that the vector perturbations are stable.

IV. SCALAR PERTURBATIONS

A. Gregory-Laflamme mode ‘ � 0

The s-wave (‘ � 0) perturbation is the unstable mode
studied by GL. Here, we discuss this mode in our frame-
work and recover their result. We can use the residual
gauge degrees of freedom (A7) to fix unphysical gauge
modes. After eliminating the terms proportional to
z-derivatives of Ftt and F by using Einstein’s equations,
we can apply the harmonic gauge condition (32) to rewrite
Ftt and F on z � zc in terms of Frt and Frr. Then we finally
obtains a second order ordinary differential equation
(ODE) of Frr (or Frt ) in Fourier space, assuming Frr /
e�t�ikzz. Although it is a second order ODE with respect
to r, the equation in the original space contains higher
derivatives of t and z. (See [36] for more tractable equa-
tion.) From the master equation, the boundary conditions
required for a normalizable mode are

Frr / e�r
�����������
k2
z��2

p
; �r! 1�

Frr /
1

�r� rh�1��=�n�1�
: �r! rh�

(47)

This is a one-parameter shooting problem with shooting
parameter �> 0. We have solved this problem numeri-
cally, searching for the growth rate � for given kz. The
result is shown in Fig. 1, which agrees with the original
analysis [10].5
5The harmonic gauge does not fix the gauge Ta completely.
Besides the static radial gauge transformation, the residual gauge
is Tt / r1�n. Frt depends on this gauge while Frr is free from this
mode.
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Another type of simple master equation can be obtained by taking static limit. To obtain the static mode, we adopt a gauge
fixing

Ftr � 0; �z � zc� (48)

without fixing the pure radial gauge Tr�r�. In Fourier space, we find a master equation�
d2

dr2�
1

R

�
P r

d
dr
�Q

��
Ftt � 0;

P � 2N3�N�N2� 7N� 12�f3� 2�3N2� 6N� 2k2
zr

2�f2�N�3N2�N� 4k2
zr

2�f;

Q�N�N2�2N2� 6N� 3k2
zr

2��N�2N3� 6N2� 3k2
zr

2N� 8k2
zr

2�f2� 2f�2N4� 6N3� 3k2
zr

2N2� 4k2
zr

2N� 2k4
zr

4��;

R� r2f
N2�N�N� 4�f2� 2�N2� 2N� 2k2
zr

2�f�; (49)
whereN � n� 1. Other components Frr andF are given in
terms of Ftt. (Note that another type of master equation was
derived in [37], which is more tractable than the above
equation in practice.) A Neumann condition on the horizon
is obtained by requiring the regularity on the horizon.
Solving this equation is the one-parameter shooting prob-
lem with the shooting parameter kz. Hence we can think of
this equation as a master equation determining the GL
static mode. As is well known, the wave number of this
static mode, which will be denoted kcrit, gives a critical
point at which stability of the s-wave perturbation changes.
For kz < kcrit, the perturbations are unstable, whereas they
becomes stable for kz > kcrit (Fig. 1).

The Eq. (49) has two asymptotic solutions behaving
Ftt / e

�kr, and only the decaying mode is the physical
normalizable solution. Such physical solution can be easily
found by searching a minimum value of Ftt at some fixed
asymptotic point as a function of kz. Figure 2 shows the
result of the shooting problem. As we see, the critical wave
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FIG. 2 (color online). Static mode search. The possible asymp-
totic solutions of Ftt are Ftt / e�kzr. In the figure, we plot Ftt at
some r=rh � 1 with respect to the single shooting parameter kz.
Since the normalizable solution decays exponentially, each
narrow ‘‘throat’’ corresponds to a normalizable mode. The
critical wave numbers agree precisely with the static limit � �
0 in Fig. 1.
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number kcrit can be precisely determined by this method,
and this agrees completely with the analysis of dynamical
perturbations discussed above.

B. ‘ � 1

For the zero mode k2
z � 0, the ‘ � 1 mode has no

physical degrees of freedom. This can be easily observed
from the fact that the master variable of the massless mode
can be reintroduced by recovering the lacked Eq. (C2) as a
gauge condition. However, since such gauge fixing is not
complete, there remain additional residual gauge degrees
of freedom. By using the residual gauge degrees of free-
dom, it is shown that there is no dynamical degrees of
freedom in the vacuum case [16,18]. (More direct counting
of physical degrees of freedom is possible by taking F � 0
gauge fixing.)

For the KK modes, there is no unstable dynamical mode.
This is confirmed directory by solving the EOMs on z �
zc. Let us take the gauge F � 0. This is not a complete
gauge fixing, but Fab does not depend on the residual
gauge. After eliminating all terms proportional to @2

zF by
employing (30a), we can solve the EOMs explicitly after
tedious calculations. One finds that only trivial solutions
are allowed on z � zc in the present case, so that there is no
unstable dynamical degree for the KK modes.6

C. ‘ 	 2

For the generic modes of scalar perturbations, the
Einstein equations consist of five equations, and they
give coupled partial differential equations. We decompose
F and Fba as follows:

F �
1

8rn�2 � � 5p� q�; Ftt �
1

4rn�2 � � p� 5q�;

Frr �
1

4rn�2 � � 3p� 3q�; Frt �
�@tZ

rn�2 : (50)
6Equation (30c) for the KK modes with (31) corresponds to the
constraint Eq. (C1) for the zero mode. Equation (30a) is used to
take the gauge F � 0, and Eq. (30b) works as a constraint
equation.
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Then from the transversely gauge-invariant Eqs. (24) and (25), we obtain

�Z� @2
zZ�

k2
S

r2 Z�
�1� n� �n� 3�f�

r
p�

2�1� n� nf�
r

q�
�nf� 2n� 2�

r
Z0 � 0;

�p� @2
zp�

4

3rf
�Z�

�
k2
S �

4� 4n� �3n� 10�f
3

�
p

r2 � 
2�1� n� � �3n� 2�f�
2q

3r2 �
f
3r

�3n� 4�p0 � 4q0� � 0;

�q� @2
zq�

2
3�1� n� � f�1� 3n��

3rf2
�Z�

f
3r

8p0 � �3n� 8�q0� �

�
�3n2 � 6n� 25�f

6
�

2�n� 1�

3
�
�n� 1�2

2f

�
p

r2

�

�
�3n2 � 9n� 5�f

3
�

2�n� 1�

3
�
�n� 1�2

f
� k2

S

�
q

r2 � 0;

(51)

and  is given by

�n� 1�

2
@2
z �

�1� 5n�
2

@2
zp�

�5� n�
2

@2
zq� �n� 1� �1� 3n�f�

p0

r
� 2�n� 1� f�

q0

r

�
p

r2

�
�n2 � 3n� 4� � �n� 5�f�

�n� 1�2

f

�
�

2q

r2

�
�n2 � 3n� 2� � �2n� 1�f�

�n� 1�2

f

�

�
2k2

S

r2 
2p� q� �
2

f
@2
t 
p� 2q� �

4

f3=2
@2
t @r


���
f

p
Z�: (52)

From other remaining equations, we obtain a nontrivial equation for  .

� � @2
z �

2
1� n� �n� 3�f�

rf2
�Z�

 

r2 
�n� 2�2f� �n� 2��1� n� � k2
S� �

�4� n�f
r

 0 �
8f
r
�2p0 � q0�

�

�
�9n2 � 56n� 71�f� 2�n� 1��5n� 16� �

�n� 1�2

f

�
p

2r2 �

�
�11n� 17�f� �n� 8��n� 1� �

�n� 1�2

f

�
q

r2 � 0:
We first notice that Eq. (51) does not contain  , and  
can be determined by (52) once we solve p, q and Z. Hence
it is sufficient to analyze Eq. (51) for the stability problem.
We begin with a limited case to study the stability. In the
limit kS � 1, the EOMs are

�
��

�
k2
z �

k2
S

r2

��
Z � 0; (53)

�
��

�
k2
z �

k2
S

r2

��
p �

4

3rf
�Z; (54)

�
��

�
k2
z �

k2
S

r2 �
n2

r2f

��
q�
�n� 1�2

2r2f
p

�
2
3�n� 1�� �3n� 1�f�

3rf2
�Z;

(55)

where we have left the terms proportional to 1=f since it
becomes dominant near the horizon. Apparently, Z is
stable due to the positive definite potential. Then, the
104034
stability of p and q is also obvious. Furthermore, we notice
that the same argument holds true for very massive modes
k2
z � r�2

h , without taking the limit kS � 1. Thus the sys-
tem is stable if kS � 1 or k2

z � r�2
h . We note that the

system is stable in the zero-mode limit k2
z ! 0, since in

this limit the perturbations are the same as the
Schwarzschild black holes. Hence on the k2

z–k2
S plane,

there exists stable region. The stable/unstable parameter
region discussed here is summarized in Fig. 3.

For general modes with arbitrary k2
z and k2

S, we per-
formed a numerical search for unstable solution, as we
do in Sec. IVA. Assuming an unstable perturbation /
e�teikzz, we obtain boundary conditions similar to (47).
Then we performed a parameter search in the relevant
region of �kz;�� and no solutions were found, suggesting
that no instability exists for the generic modes. To confirm
this result furthermore, we have also performed a search
for critical static mode: if the system is unstable, a static
mode will exist since the real eigenvalue in the stable
region will cross the zero axis at lease once when it
becomes unstable. Since the horizon boundary conditions
are not the same as those obtained by just taking the static
-9
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limit of dynamical perturbations, this numerical search
works as an independent search of unstable mode.
Redefining @tZ � � , we take static limit of (51). In this
limit fp; qg and � are decoupled, and we can easily per-
formed the search. The differential equations for fp; qg are
a two-parameter shooting problem, and a part of the result
is shown in Fig. 4, which corresponds to Fig. 2. Clearly,
there is no static solution satisfying appropriate boundary
conditions. The same result holds also for � . Therefore we
0  2  4  
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FIG. 4 (color online). Search for critical static mode for ‘ � 2,
3. (See Fig. 2 for ‘ � 1 mode.) This is a two-parameter shooting
problem. The two parameters are the wave number kz and the
derivative of p at the horizon. The figure shows a plot of (p2 �
q2) at some asymptotic region with respect to the two parame-
ters. Possible asymptotic solutions are p, q / e�kzr, and normal-
izable solutions will decay at r� rh. No narrow throat appears
so that there is no normalizable static mode. For other higher
multipoles (‘ 	 2), we obtained the same results.
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conclude that the black strings are stable for all types of
perturbations except the s-wave mode.
V. SUMMARY AND DISCUSSION

In summary, we have studied stability of black strings
with respect to all types of gravitational perturbations.
There are three types of perturbations; tensor, vector,
and scalar perturbations. The vector and scalar perturba-
tions have the exceptional modes of multipole moment
besides the generic modes. For the higher dimensional
Schwarzschild black holes, the exceptional modes are not
dynamical degrees of freedom. However, we have paid
particular attention to the exceptional modes since they
might become dynamical with some instability.

The generic modes of tensor (‘ 	 1) and vector (‘ 	 2)
perturbations have been shown to be stable. The generic
modes of scalar (‘ 	 2) perturbations were studied par-
tially employing numerical investigation, and they have
been shown to be stable. For the exceptional modes, we
have discussed that the vector perturbation of ‘ � 1, which
corresponds to adding a rotation, is stable, and the excep-
tional mode ‘ � 1 of scalar perturbation has no unstable
dynamical degree of freedom. The ‘ � 0 mode of scalar
perturbation is also the exceptional mode, and it is dynami-
cally unstable as discussed by Gregory and Laflamme.
After all, the unstable mode of gravitational perturbations
for black strings is only the ‘ � 0 mode of scalar
perturbation.

The zero mode (k2
z � 0) of the scalar perturbation with

‘ � 0 corresponds to a shift of the mass parameter of the
higher dimensional Schwarzschild black holes (or uniform
black strings), and hence this mode is not allowed as a
consequence of the Birkhoff’s theorem. However, the KK
mode with ‘ � 0 is essentially different from the gravita-
tional perturbations of the Schwarzschild black holes, and
in fact it does not change the mass of the black strings.
Therefore, from the viewpoint of effective theory on a z �
const plane, we understand that the existence of Gregory-
Laflamme instability is directly related to the inapplicabil-
ity of Birkhoff’s theorem.

This observation is useful to consider a possible counter-
example of correlated-stability conjecture (CSC). If we do
not interpret CSC in strong sense, the instability predicted
by CSC is s-wave instability [38]. To have some insight, let
us discuss a black hole obtained by dimensional reduction
of the black string/brane. If the black hole is a hairy black
hole and (generalized) Birkhoff’s theorem cannot be ap-
plied, the s-wave perturbation becomes a dynamical de-
gree of freedom. This s-wave perturbation is homogeneous
(zero-mode) perturbation in the original spacetimes, and it
is not the (massive) perturbation for which CSC concerns.
Then if there is a model in which the homogeneous s-wave
becomes unstable for some parameter region, the model
will be a counterexample of CSC since the instability is
disconnected from CSC. In fact, the recently proposed
-10
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counterexample is based on a hairy black hole [39,40], and
the unstable mechanism is along the line of the above
discussion.

We finally address possible extension of present analy-
sis. First, it is interesting problem to study the stability of
charged black strings, focusing on how a given charge
works to make the string stable near the thermodynami-
cally stable and/or BPS state. It will give us deeper under-
standing of CSC from the perspective of dynamics.
Second, we have analyzed the black object with a single
trivial transverse direction, for simplicity. For black branes
with translationally invariant multiple directions, it will be
possible to expand the perturbation variables by harmonic
tensors associated with the uniform transverse directions.
We would like to discuss these issues somewhere else.
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APPENDIX A: GAUGE TRANSFORMATION

In this appendix we summarize the transverse gauge
transformation (5). The metric perturbation hAB transform
as

�hAB � �rA�B �rB�A (A1)

in terms of the infinitesimal gauge transformation �xA �
�A. The transverse gauge transformation (5) can be decom-
posed into

�hab � �Da�b �Db�a; (A2)

�hai � �r2Da

�
�i
r2

�
� D̂i�a; (A3)

�hij � �D̂i�j � D̂j�i � 2r�ij�aD
ar: (A4)

Since the infinitesimal transformation � has no tensor
component, the expansion coefficient of the tensor pertur-
104034
bation is gauge invariant. Our interest is therefore gauge
transformation of vector and scalar perturbations.

The vector component of the transverse gauge trans-
formation is

�a � 0; �i � rLVi (A5)

for the modes k2
V � �n� 1�K, where L � L�xa� is an

arbitrary function. Then the corresponding expansion co-
efficients of the perturbation transform as

�fa � �rDa

�
L
r

�
; �HT �

kV
r
L: (A6)

As for the scalar perturbation, the gauge transformation
for k2

S�k
2
S � nK� � 0 are given by

�a � TaS; �i � rLSi: (A7)

Under these transformations, the expansion coefficients of
the metric perturbation transform as

�fab � �DaTb �DbTa; �fa � �rDa

�
L
r

�
�
kS
r
Ta;

�HL � �
kS
nr
L�

Dar
r
Ta; �HT �

kS
r
L: (A8)

The gauge transformation for k2
S�k

2
S � nK� � 0 are ob-

tained by setting appropriate functions equal to zero in
the above equations.
APPENDIX B: DETAILS OF CALCULATIONS

In this Appendix, we summarize the details of calculat-
ing perturbed Einstein’s equations for completeness. Some
of them are based on Ref. [31].

1. Background quantities

We consider perturbations of spacetime on (n� 2� 1)-
dimensional spacetime whose unperturbed background ge-
ometry is given by the metric (1). Decomposition of con-
nection coefficients is

�� a
bc �

�2��abc�y�;
��aij � �r�D

ar��ij;

��iaj �
Dar
r
�ij; ��ijk � �̂ijk�x�:

(B1)

Here �2��abc is the Christoffel symbol of the two-
dimensional orbit spacetime. Curvature and Ricci tensors
are
-11
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�Rabcd �
�2�Rabcd;

�Riajb � �
DaDbr
r

gij;

�Rijkl � 
K � �Dr�
2��gik�jl � g

i
l�jk�:

�Rab � �2�Rab �
n
r
DaDbr;

�Rij �
�
�

�r
r
� �n� 1�

K � �Dr�2

r2

�
gij;

�Rai � 0;

�R � �2�R� 2n
�r
r
� n�n� 1�

K � �Dr�2

r2 :

(B2)

Einstein tensors are decomposed as

�Gab �
�2�Gab �

n
r
DaDbr

�

�
n�n� 1�

2

K � �Dr�2

r2 �
n
r

�r
�
gab;

�Gi
j �

�
�

1

2
R�

�n� 1��n� 2�

2

K � �Dr�2

r2

�
n� 1

r
�r

�
gij;

�Gai � 0:

(B3)

For the two-dimensional metric

ds2 � �f�r�dt2 �
1

f�r�
dr2; (B4)

Ricci tensor and Riemann tensor are explicitly given by

�2�R � �f00; Rba � �ba
�2�R

2
;

Rabcd � �gacgbd � gadgbc�
�2�R

2
;

(B5)

and nonvanishing Christoffel symbols are

�ttr �
f0

2f
; �rtt �

ff0

2
; �rrr � �

f0

2f
: (B6)
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2. Perturbations of the Ricci tensors

We consider metric perturbations under the gauge fixing
of Eq. (3). In general the perturbation of the Ricci tensor is
expressed in terms of hMN � � �gMN as
104034
2� �RMN �� �rL �rLhMN� �rM �rNh� �rM �rLhLN

� �rN �rLhLM� �RMLhLN� �RNLhLM� 2 �RMLNShLS;

� �R��hMN �RMN� �rM �rNhMN� �rM �rMh: (B7)

Here and hereafter the trace h is hAA � hMNgMN � haa �
r2hij�ij.

a. Decomposition formula

To calculate the perturbed Ricci tensor, we need to
decompose the connection r into D and D̂. The operator
D and D̂ work as

D̂ jhab :� @jhab; D̂jhai :� @jhai � �̂kjihak;

Dahij :� @ahij; Dahbj :� @ahbj �
�2��eabhej:

(B8)

The followings are useful formulas of decomposing the
operator D for arbitrary tensor hAB and vector TA.

�raTb � DaTb; �riTj � D̂iTj � r�Dar��ijTa;

�riTa � D̂iTa �
Dar
r
Ti; �raTi � D̂aTi �

Dar
r
Ti;

�rzTA � @zTA (B9)

and

�rahcd � Dahcd;

�ra �rbhcd � DaDbhcd;

�rahij � Dahij � 2
Dar
r
hij;

�rahbj � Dahbj �
Dar
r
hbj;

�rihbc � D̂ihbc �
Dbr
r
hic �

Dcr
r
hbi;

�rihjc � D̂ihjc � r�D
ar��ijhac �

Dcr
r
hij;

�rihjk � D̂ihjk � r�D
cr��ijhck � r�D

cr��ikhjc;

�ri �rjh � D̂iD̂jh� r�Dcr��ijDch;

�rzhAB � @zhAB:

(B10)
b. Perturbed Ricci tensor
2� �Rab � ��hab �DaDch
c
b �DbDch

c
a � n

Dcr
r
��Dchab �Dahcb �Dbhca� �

�2�Rcahcb �
�2�Rcbhca � 2�2�Racbdh

cd

�
1

r2 4̂hab �
1

r2 �DaD̂
ihbi �DbD̂

ihai� �
Dbr

r3 Dahij�
ij �

Dar

r3 Dbhij�
ij �

4

r4 DarDbrhij�
ij �DaDbh� @

2
zhab;

(B11)
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2� �Rai � D̂iDbhba �
n� 2

r
DbrD̂ihab � r�

�
1

r
hai

�
�
n
r
DbrDbhai �DarDb

�
1

r
hbi

�
�
n� 1

r
DbrDahbi � rDaDb

�
1

r
hbi

�

�

�
�n� 1�

�Dr�2

r2 � �n� 1�
K � �Dr�2

r2 �
�r
r

�
hia �

1

r2 D
brDarhbi � �n� 1�rDa

�
1

r2 D
br
�
hbi

�
n� 2

r
DaD

brhib �
�2�Rbahbi �

1

r2 4̂hai �
1

r2 D̂iD̂
jhaj � rDa

�
1

r3 D̂
jhji

�
�

1

r3 DarD̂
jhji �

1

r3 DarD̂ihjk�
jk

� rDa

�
1

r
D̂ih

�
� @2

zhai; (B12)
2� �Rij � 
2rDarDbhba � 2�n� 1�DarDbrhab � 2rDaDbrhab��ij � rD̂iDa

�
1

r
haj

�
� rD̂jDa

�
1

r
hai

�

� �n� 1�
Dar
r
�D̂ihaj � D̂jhai� � 2

Dar
r
D̂khka�ij � r

2�

�
1

r2 hij

�
� n

Dar
r
Dahij �

1

r2 �D̂iD̂
khkj � D̂jD̂

khki�

�
1

r2 4̂hij � 2
�
�n� 1�

K

r2 � 2
�Dr�2

r2 �
�r
r

�
hij � 2��klhkl�ij � hij�

K � �Dr�2

r2 � 2
�Dr�2

r2 �ij�klhkl

� D̂iD̂jh� rD
arDah�ij � @

2
zhij; (B13)
� �R � DaDbh
ab �

2n
r
DarDbhab �

�
��2�Rab �

2n
r
DaDbr�

n�n� 1�

r2 DarDbr
�
hab �

2

r2 DaD̂
ihai � 2�n� 1�

Dar

r3 D̂ihai

�
1

r4 D̂
iD̂jhij �

Dar

r3 Dahij�ij �
1

r2

�
�n� 1�

K

r2 � 2
�Dr�2

r2

�
hij�ij ��h� n

Dar
r
Dah�

1

r2 4̂h� @
2
zh: (B14)
� �RAz components are

2� �Raz � @z

�
�Dah�Dbhba �

1

r2 D̂
jhja � n

Dcr
r
hac

�
Dar

r3 �hij�
ij�

�
; (B15)

2� �Riz � @z

�
�D̂ih�Dbh

b
i �

1

r2 D̂
jhji � n

Dcr
r
hci

�
;

(B16)

2� �Rzz � �@2
zh: (B17)
104034
APPENDIX C: EINSTEIN EQUATIONS

Einstein equations for scalar perturbations are summa-
rized as follows. From the components �Ga

i and traceless
part of �Gj

i of the Einstein equations, we find the following
equations:

kS

�
1

rn�2 Db�rn�2Fba� � rDa

�
Fcc
r

�
� 2�n� 1�DaF

�

� rfa;zz � 0; (C1)

k2
S

2r2

2�n� 2�F� Fcc� �HT;zz � 0: (C2)

�Gab and �Gi
i gives another two equations.
�
1

S
2�Gab � �Fab �DaD

cFbc �DbD
cFac � n

Dcr
r
�DcFab �DaFbc �DbFac� � R

�2�c
aFcb � R

�2�c
bFca

� 2R�2�acbdF
cd �

k2
S

r2 Fab �DaDbF
c
c � 2n

�
DaDbF�

1

r
DarDbF�

1

r
DbrDaF

�
� fab;zz

� gab

�
DcDdFcd �

2n
r
DcrDdFcd �

�
2n
r
DcDdr� n�n� 1�

DcrDdr

r2 � R�2�cd
�
Fcd � 2n�F

�
2n�n� 1�

r
DcrDcF� 2�n� 1�

k2
S � nK

r2 F��Fcc �
n
r
DdrDdFcc �

k2
S

r2 F
c
c � fcc;zz � 2 nHL;zz

�
(C3)
-13
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�
1

S

1

n
�Gi

i �
1

2
DaDbFba �

1

2
�Faa �

�n� 1�Dar
2r

�2DbFba �DaFcc� �
�
�n� 1�

�
�n� 2�

2r2 DarDbr�
DaDbr
r

�
�
R�2�ab

2

�
Fab

� �n� 1��F�
n�n� 1�

r
DarDaF�

�n� 1�

2nr2 
2�n� 2��k2
S � nK�F� k

2
SF

a
a� �

1

2
faa;zz � �n� 1�HL;zz:

(C4)

Explicit equations from �RzA � 0 components are

2� �Rzz � �S@2
z�fcc � 2nHL� � 0; (C5)

2@z� �Raz � S@2
z

�
Dcfca �

kS
r
fa � n

Dcr
r
fca � 2n

Dar
r
HL

�
� 0; (C6)

2@z� �Riz � Si@2
z

�
Dc�rfc� � n�Dcr�fc � 2kSHL � 2HT

�
n� 1

n
k2
S � nK
kS

��
� 0; (C7)

where we have used (C5) in (C6) and (C7).
Let us try to rewrite Eqs. (C3) and (C4). Taking the trace of (C3) and combining it with (C4), we can solve fcc;zz andHL;zz

in terms of F and Fab:

2�n� 1�HL;zz � �Fcc �DaDbFba �
Dar
r
�DaFbb � 2DbFba� �

�
2�n� 1�

DaDbr
r
� �n� 1��n� 2�

DarDbr

r2 � R�2�ab

�
Fab

�
k2
S

nr2 F
c
c � 2�F�

2n�n� 1�

r
DarDaF�

2�n� 1��n� 2�

n
k2
S � nK

r2 F; (C8)

�n� 1�faa;zz � �2n�Fcc � 2nDaDbFab � n�n� 1�
Dar
r
�DaFbb � 2DbFba� � �n� 1�

k2
S

r2 F
c
c

� 2
�
R�2�ab � n�n� 1�

DarDbr

r2

�
Fab � 2n�n� 1��F� 4�n� 1�

k2
S � nK

r2 F: (C9)

Substituting these into (C3) we obtain

�Fab �DaD
cFbc �DbD

cFac � n
Dcr
r
�DcFab �DaFbc �DbFac� � R

�2�
caFcb � R

�2�
cbF

c
a � 2R�2�acbdF

cd �
k2
S

r2 Fab

�DaDbF
c
c � 2n

�
DaDbF�

1

r
DarDbF�

1

r
DbrDaF

�
�

gab
n� 1

�
DcDdFcd �

n
r
Dcr�DcF

d
d � 2DdF

d
c �

�

�
R�2�cd � n�n� 1�

DcrDdr

r2

�
Fcd � 2n�F�

2n�n� 1�

r
DcrDcF� 2�n� 1�

k2
S � nK

r2 F��Fcc �
k2
S

r2 F
c
c

�
� fab;zz � 0:

(C10)

So far, we have only used (C3) and (C4). From (C1) and (C2), one can construct Xa as

@2
zXa � �

1

rn�2 Db�r
n�2Fba� �

1

2
DaF

c
c � nDaF� 2�n� 2�

Dar
r
F: (C11)

Then using this, we can rewritten (C8) and (C10) in terms of Fab and F, resulting in Eqs. (24) and (25).
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