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Strings, black holes, and quantum information

Renata Kallosh and Andrei Linde
Department of Physics, Stanford University, Stanford, California 94305, USA

(Received 22 February 2006; published 25 May 2006)
1550-7998=20
We find multiple relations between extremal black holes in string theory and 2- and 3-qubit systems in
quantum information theory. We show that the entropy of the axion-dilaton extremal black hole is related
to the concurrence of a 2-qubit state, whereas the entropy of the STU black holes, Bogomol’nyi-Prasad-
Sommerfield (BPS) as well as non-BPS, is related to the 3-tangle of a 3-qubit state. We relate the 3-qubit
states with the string theory states with some number of D-branes. We identify a set of large black holes
with the maximally entangled Greenberger, Horne, Zeilinger (GHZ) class of states and small black holes
with separable, bipartite, and W states. We sort out the relation between 3-qubit states, twistors, octonions,
and black holes. We give a simple expression for the entropy and the area of stretched horizon of small
black holes in terms of a norm and 2-tangles of a 3-qubit system. Finally, we show that the most general
expression for the black hole and black ring entropy in N � 8 supergravity/M theory, which is given by
the famous quartic Cartan E7�7� invariant, can be reduced to Cayley’s hyperdeterminant describing the
3-tangle of a 3-qubit state.
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1The explicit construction of BPS black holes with four
charges and a finite area of the horizon within D � 4 N � 4
toroidally compactified string theory was obtained in [11]. This
solution has an embedding as a generating solution in the STU
model.
I. INTRODUCTION

During the last 15 years there was a significant progress
in two different fields of knowledge: a description of black
holes in string theory and the theory of quantum informa-
tion and quantum computing. At the first glance these two
subjects may seem quite distant from each other. However,
there are some general themes, such as entanglement,
information, and entropy, which repeatedly appear both
in the theory of black holes and in the theory of quantum
information.

Studies of stringy black holes began with a discovery of
a broad class of new extremal black hole solutions [1],
investigation of their supersymmetry [2], a discovery of the
black hole attractor mechanism [3], and the microscopic
calculation of black hole entropy [4]. Investigation of
stringy black holes resulted in a better understanding of
the information loss paradox in the theory of black holes,
revealed nonperturbative symmetries between different
versions of string theory, and stimulated what is now called
‘‘the second string theory revolution’’ [5–7]. For reviews
on stringy black holes see [8]. On the other hand, there
were many exciting developments in the theory of quantum
computation, quantum cryptography, quantum cloning,
quantum teleportation, classification of entangled states,
and investigation of a measure of entanglement in the
context of the quantum information theory; for a review
see e.g. [9]. It would be quite useful to find some links
between these different sets of results.

One of the first steps in this direction was made in a
recent paper by Michael Duff [10]. He discovered that a
complicated expression for the entropy of the so-called
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extremal STU black holes1 obtained in [12] can be repre-
sented in a very compact way as Cayley’s hyperdetermi-
nant [13], which appears in the theory of quantum
information in the calculation of the measure of entangle-
ment of the 3-qubit system (3-tangle) [14,15]. The
STU black holes represent a broad class of classical solu-
tions of the effective supergravity derived from string
theory in [16].

As emphasized in [10], the intriguing relation between
STU extremal black holes and 3-qubit systems in quantum
information theory may be coincidental. It may be ex-
plained, e.g., by the fact that both theories have the same
underlying symmetry. At the level of classical supergravity
the symmetry of extremal STU black holes is �SL�2;R��3.
This symmetry may be broken down to �SL�2;Z��3 by
quantum corrections or by the requirement that the electric
and magnetic charges have to be quantized. In string theory
a consistent microscopic description of the extremal black
holes requires �SL�2;Z��3 symmetry. In ABC system the
symmetry is �SL�2;C��3.

But even if the relation between the STU black holes and
the 3-qubit system boils down to their underlying symme-
try, this fact by itself can be quite useful. It may allow us to
obtain new classes of black hole solutions and provide their
interpretation based on the general formalism of quantum
information. It may also provide us with an extremely
-1 © 2006 The American Physical Society
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nontrivial playground for testing the general ideas of the
theory of quantum information. It would be very interest-
ing to see how the puzzles and paradoxes associated with
black holes may be related to the puzzles and paradoxes of
the quantum information theory.

In this paper we will pursue a detailed analysis of the
relations between the structures which appear in the theory
of extremal black holes and in the theory of quantum
information. In Sec. II we will describe some basic facts
about general 2- and 3-qubit systems (for the hep-th reader
unfamiliar with these concepts). In Sec. III we will discuss
the relation between the 2-qubit systems [17] and the
axion-dilaton black holes of [18]. We will also describe
the relation between the 3-qubit systems and STU black
holes represented as string theory states with some number
of D0, D2, D4, and D6 branes. This description is known to
provide a microscopic entropy via counting of states of
string theory [19,20]. This microscopic entropy coincides
with the macroscopic Hawking-Bekenstein entropy (quar-
ter of the area of the horizon) of the STU black holes at
large values of charges/branes. Section IV gives a dictio-
nary between a particular (SjTU) basis of STU black holes
and the twistor geometry used in the description of the 3-
qubit system in [21]. In Sec. V we find a one-to-one
correspondence between the states of 3-qubit systems clas-
sified in [22] and black holes in string theory. In Sec. VI we
observe an intriguing relation between the value of the
subsystem entanglement and the value of the quantum
corrected entropy of the so-called ‘‘small’’ black holes.
These black holes in a classical approximation have zero
entropy and a singular horizon, but acquire a nonzero
entropy and horizon area after quantum corrections [23–
25]. We give a simple expression for the entropy of small
black holes in terms of 2-tangles of a 3-qubit system and its
norm. Finally, in Sec. VII we show that not only the
entropy of the STU black holes, but the most general
expression for the black hole and black ring entropy in
N � 8 supergravity/M theory, given by the famous Cartan
E7�7� invariant [26], can also be represented as Cayley’s
hyperdeterminant describing the 3-tangle of a 3-qubit state.
This, in turn, provides a natural link between the 3-qubit
states and octonions.
II. QUBITS AND A MEASURE OF
ENTANGLEMENT

Let us bring up several most important definitions from
quantum information theory, which will be required to
understand the correspondence between the language of
string theory black holes and the language of the quantum
information theory.

Quantum entanglement is a quantum mechanical phe-
nomenon in which the quantum states of two or more
objects have to be described with reference to each other.

A quantum bit, or qubit is a smallest unit of quantum
information. That information is described by a state in a 2-
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level quantum mechanical system. The two basis states are
conventionally written as j0i and j1i. A pure qubit state is a
linear quantum superposition of those two states. This
means that each qubit can be represented as a linear
combination of j0i and j1i:

j�i �  0j0i �  1j1i; (2.1)

where  0 and  0 are complex probability amplitudes of
finding the system in a particular state when one makes
measurements. This leads to a normalization condition

j�j2 � h�j�i �
X
i

j ij
2 � j 0j

2 � j 1j
2 � 1: (2.2)

A 1-qubit system usually goes by the name A (Alice).
For a 2-qubit state AB (Alice and Bob) one has

j�i �  00j00i �  01j01i �  10j10i �  11j11i; (2.3)

with the corresponding normalization condition, h�j�i �
1. One can introduce a partial density matrix, a trace over
the subsystem A, �A � TrBj ih j, and the same for B. For
a pure state, entanglement E is defined as the entropy of
either of the two subsystems

E� � � �Tr��Alog2�A� � �Tr��Blog2�B�: (2.4)

This is von Neumann entropy of a quantum state. The
properties of an AB system are also determined by the
so-called concurrence C, which is a measure of the entan-
glement. Concurrence of the 2-qubit AB system in a pure
state can be given as

C � CAB � 2
�������������
det�A

p
� 2

������������
det�B

p
� 2j det j: (2.5)

These two measures of entanglement are related to each
other [17]:

E�C� �� � �
1�

���������������
1� C2
p

2
log2

1�
���������������
1� C2
p

2

�
1�

���������������
1� C2
p

2
log2

1�
���������������
1� C2
p

2
: (2.6)

The function E�C� is monotonically increasing, and ranges
from 0 to 1 as C goes from 0 to 1.

For a mixed state of the AB system concurrence is more
complicated. For our purposes we will need to define the
concurrence of a particular AB state inside of a pure 3-
qubit state.

The 3-qubit system ABC (Alice, Bob, and Charlie) in
turn is given by the normalized wave function

j�i �
X

ijk�1;0

 ijkjijki

�  000j000i �  001j001i �  010j010i �  011j011i

�  100j100i �  101j101i �  110j110i �  111j111i:

(2.7)

A 3-dimensional matrix corresponding to the 3-qubit sys-
-2



FIG. 1. The 2	 2	 2 matrix corresponding to the quantum
state (2.7).
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tem can be represented as a cube with vertices correspond-
ing to  ijk, see Fig. 1.

The 3-qubit system  ijk has an invariant, Cayley’s hy-
perdeterminant [13] defined as2

Det � �1
2�
ii0�jj

0
�kk

0
�mm

0
�nn

0
�pp

0
 ijk i0j0m npk0 n0p0m0

�  2
000 

2
111 �  

2
001 

2
110 �  

2
010 

2
101 �  

2
100 

2
011

� 2� 000 001 110 111 �  000 010 101 111

�  000 100 011 111 �  001 010 101 110

�  001 100 011 110 �  010 100 011 101�

� 4� 000 011 101 110 �  001 010 100 111�:

(2.8)

The 3-tangle of the ABC system as shown in [14] is given
by

�ABC � 4j det j: (2.9)

When the wave function is normalized, h�j�i � 1, the 3-
tangle �ABC is also normalized to take values in the range
from 0 to 1.

An important tool in describing 3-qubit states is a re-
duced density matrix. For example,

�A � TrBCj�ih�j; SA � 4 det�A � �A�BC�; (2.10)

where �A is a 2	 2 matrix. SA is sometimes called local
entropy, it is a measure of how entangled A is with the pair
(BC). The threeway tangle �ABC consists of three contri-
butions [14]:

�ABC � �A�BC� � �AB � �AC: (2.11)

Each term in Eq. (2.11) is a particular contraction of the
4 terms  ijk with each other and with some number of
totally antisymmetric 2-component �ij tensor. It was
2In this paper we will always write the usual determinant of a
matrix  ij as det , and the hyperdeterminant of a matrix  ijk as
Det .
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shown in [14] that the first term �A�BC�, which is a tangle
between Alice with Bob-and-Charlie system, is a square of
the concurrence in A(BC) system: �A�BC� � C2

A�BC�. The
second term, �AB � C2

AB, which is called a 2-tangle be-
tween Alice and Bob in the 3-cubit system ABC, is a
square of the concurrence in AB system inside the ABC,
CAB will be defined below in Eq. (2.16). Finally, the third
one �AC � C2

AC is the 2-tangle between Alice and Charlie
in ABC; it is a square of the concurrence of the AC system
inside ABC, CAC will be defined below in Eq. (2.17).
Equation (2.11) and its analogues obtained by permuta-
tions of A, B, and C, can be represented in the form [14]

�ABC � C2
A�BC� � C2

AB � C2
AC; (2.12)

�ABC � C2
B�CA� � C2

BC � C2
BA; (2.13)

�ABC � C2
C�BA� � C2

CB � C2
CA: (2.14)

Here

C 2
A�BC� � 4 det�A; C2

B�AC� � 4 det�B;

C2
C�AB� � 4 det�C;

(2.15)

is a squared concurrence between A and the pair BC, B and
the pair AC, C and the pair AB, respectively. One can also
define the concurrence of AB inside ABC in terms of
various combinations of  ijk.

C AB � �det�C � det�A � det�B �
1
2�ABC�

1=2; (2.16)

C AC � �det�B � det�A � det�C �
1
2�ABC�

1=2; (2.17)

C BC � �det�A � det�B � det�C �
1
2�ABC�

1=2: (2.18)

In Eqs. (2.11), (2.12), (2.13), (2.14), (2.15), (2.16), (2.17),
and (2.18) each term scales under the rescaling of  ijk
homogeneously. Thus they are valid not only for the usual
normalized vectors, satisfying the condition h�j�i � 1,
but also for vectors with arbitrary norm

j�j �
��������������
h�j�i

q
� 1: (2.19)

One may try to interpret h�j�i for the states with j�2j � 1
as a number density rather than a probability density. One
may also notice that

j�j2 � � � TrABCj�ih�j (2.20)

and

� � TrA�A � TrB�B � TrC�C � 1: (2.21)

The difference between normalized and unnormalized vec-
tors plays a significant role in our subsequent analysis
because we are going to use the concepts of the 2-tangle
and 3-tangle not for the calculation of probabilities in
quantum mechanics, but for the calculation of black hole
-3
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entropy, which can be much greater than 1. In what follows
we will discuss general states with norm j�j � 1, and in
the calculations of such objects as the 3-tangle or Cayley’s
hyperdeterminant we will use the states j�i (2.7) without
imposing any normalization constraints on  ijk.
FIG. 2. The 2	 2	 2 matrix corresponding to supergravity
black holes [12].
III. BLACK HOLES IN SUPERGRAVITY, STRING
THEORY, AND ABC SYSTEM

A. Axion-dilaton extremal black holes and concurrence
of a 2-qubit system

As a warm up to STU black holes 3-qubits relation we
start with a simpler case of the so-called axion-dilaton
black hole solutions with manifest SL�2; Z�-symmetry in
[18] and display their relation to a 2-qubit system. In the
case of N � 2 supergravity with one vector multiplet in a
version without a prepotential the double-extremal axion-
dilaton black holes were constructed in [18,27]. The
double-extreme black holes solve the attractor equations
[3] for the scalars and have everywhere constant scalars.
The set of electric and magnetic charges is (p0, p1, q0, q1),
and the entropy formula is given by the following
SL�2;Z�-invariant expression

S
�
� jp0q1 � q0p

1j: (3.1)

If we identify the charges with the components of a 2	
2-matrix  ij

p0

p1

q1

q0

0
BBB@

1
CCCA �

 00

 01

 10

 11

0
BBB@

1
CCCA; (3.2)

the entropy formula is proportional to the concurrence of a
2-qubit system:

S � �j det j �
�
2
C;

 �
p0 p1

q1 q0

� �
�

 00  01

 10  11

� �
:

(3.3)

Thus we have identified the features in the axion-dilaton
black holes with some analogous features in a 2-qubit
system AB in a pure state. In particular, the entropy for-
mula for arbitrary integer charges is equal to the concur-
rence C of the 2-qubit system described by the
unnormalized vector in Eq. (2.5).

B. STU black holes and 3-qubits

Consider type IIA string theory compactified on a
Calabi-Yau space in the presence of D0, D2, D4, and D6
branes. The corresponding effective N � 2 supergravity is
described by N � 2 gravitational multiplet and 3 vector
multiplets. First we consider the simplest version of super-
gravity with the prepotential F � STU. The electric and
104033
magnetic charges of the graviphoton are denoted by (p0,
q0), and the ones for the 3 vector multiplets are (p1, q1),
(p2, q2), (p3, q3), respectively. These supergravity charges
are known to originate from the number of D0, D2, D4, and
D6 branes as follows: the number nD0 of D0 branes is q0,
the numbers kD2, mD2, lD2 of D2 branes wrapped on 3 2-
cycles are q1, q2, q3, respectively. The numbers kD4, mD4,
lD4 of D4 branes wrapped on 3 4-cycles, dual to the
relevant 2-cycles are p1, p2, p3 and the number of D6
branes is p0. Negative number of branes corresponds to a
positive number of antibranes of the same kind.

Following Ref. [10], we can associate all magnetic
charges with the presence of 1s in the ABC system accord-
ing to a simple rule illustrated by Eq. (3.5). The state with
the magnetic charge p0 is the state j000i which has zero
number of 1s. The state with charge p1 corresponds to
j001i, which has 1 in the first position; p2 corresponds to
j010i, which has 1 in the second position; p3 corresponds
to j100i, which has 1 in the third position. (We count
positions from the right to the left.) We associate electric
charges with the presence of 0s in the ABC system. Thus
the state q0 corresponds to j111i, which has no 0s; q1, the
state j110i, has 0 in the first position; q2, the state j101i, has
0 in the second position; q3, the state j011i, has 0 in the
third position. The signs are not explained by this rule,
however, they have to be taken in a way so that the black
hole entropy is an �SL�2;Z��3-invariant for integer charges
and is defined by the properties of the ABC system. The
explanation of signs is actually coming from the corre-
sponding cube in p, q variables given in Fig. 2 which was
presented in [12].

All S-, T-, and U-dualities in this basis are nonperturba-
tive. However, one can switch to a different basis by
performing an Sp�8;Z� transformation which transforms
both the symplectic section (X, F) as well as the charges
(p, q), e.g.

p�

q�

 !
0 �

A B
C D

� �
p�

q�

� �
(3.4)
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with ATC� CTA � BTD�DTB � 0 and ATD� CTB � 1. In manifestly STU-symmetric version we have

Supergravity ABC String Theory

p0

p1

p2

p3

q0

q1

q2

q3

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
�

 000

� 001

� 010

� 100

 111

 110

 101

 011

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
�

nD6

kD4

mD4

lD4

nD0

kD2

mD2

lD2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: (3.5)

It is important to stress here that the cubes, according to Fig. 1 as well as Fig. 2, have 3 magnetic and 1 electric charge in
upper 4 corners, and 3 electric and 1 magnetic charge in lower 4 corners.

To associate these charges/numbers of branes with the elements of the  ijk matrix one has to keep in mind that the
entropy and the absolute value of the hyperdeterminant are invariant under the �SL�2;Z��3 subgroup of the symplectic
Sp�8;Z� transformations. We may go to an (SjTU), (TjUS), or (UjST) basis in which one of the duality transformations
becomes perturbative and does not mix electric and magnetic charges. In this case either S, T, or U direction becomes
different from the other two directions. Here are three possible options for �p; q�0 which one can get by returning to the
symmetric STU basis:

(i) STU! �SjTU� ! STU

Supergravity ABC String Theory

dp0 � cp1

bp0 � ap1

dp2 � cq3

dp3 � cq2

aq0 � bq1

�cq0 � dq1

bp3 � aq2

bp2 � aq3

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
�

�000

��001

��010

��100

�111

�110

�101

�011

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
�

dnD6 � ckD4

bnD6 � akD4

dmD4 � clD2

dlD4 � cmD2

anD0 � bkD2

�cnD0 � dkD2

blD4 � amD2

bmD4 � alD2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(3.6)

(ii) STU! �TjUS� ! STU

Supergravity ABC String Theory

dp0 � cp2

dp1 � cq3

bp0 � ap
2

dp3 � cq1

aq0 � bq2

bp3 � aq1

�cq0 � dq2

bp1 � aq3

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
�

�000

��001

��010

��100

�111

�110

�101

�011

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
�

dnD6 � cmD4

dkD4 � clD2

bnD6 � amD4

dlD4 � ckD2

anD0 � bmD2

blD4 � akD2

�cnD0 � dmD2

bkD4 � alD2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(3.7)

(iii) STU! �UjST� ! STU

Supergravity ABC String Theory

dp0 � cp3

dp1 � cq2

dp2 � cq1

bp0 � ap3

aq0 � bq3

bp2 � aq1

bp1 � aq2

�cq0 � dq3

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
�

�000

��001

��010

��100

�111

�110

�101

�011

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
�

dnD6 � clD4

dkD4 � cmD2

dmD4 � ckD2

bnD6 � alD4

anD0 � blD2

bmD4 � akD2

bkD4 � amD2

�cnD0 � dlD2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(3.8)
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According to [12], the black hole entropy of BPS black
holes is given by

S
�
� �W�p�; q���

1=2; (3.9)

where

W�p�; q�� ���p 
 q�2� 4��p1q1��p2q2�� �p1q1��p3q3�

� �p3q3��p2q2��� 4p0q1q2q3� 4q0p1p2p3

(3.10)

and

p 
 q � �p0q0� � �p1q1� � �p2q2� � �p3q3�: (3.11)

The function W�p�; q�� is symmetric under transforma-
tions: p1 $ p2 $ p3 and q1 $ q2 $ q3 and we have to
require that W > 0. In addition to these symmetries, one
can also replace each p� and q� in the expression (3.10)
for W by the combinations of p� and q� shown in the first
column in Eqs. (3.6), (3.7), or (3.8).

As pointed out in [10], the classical expression for the
entropy of the STU black holes W�p�; q�� (3.10) can be
represented in a very beautiful form:

SBPS � �
�����
W
p
�
�
2

���������������
� det 

p
; det < 0; (3.12)

where det is the Cayley’s hyperdeterminant of the un-
normalized vector with components  ijk related to p� and
q� by Eq. (3.5). The BPS black hole entropy condition
WBPS > 0 requires the related Cayley’s hyperdeterminant
to be negative.

Recently the entropy of some examples of extremal non-
BPS STU black holes have been calculated in [28,29].3 We
will show in [31] that in the general case, the entropy of
nonextremal black holes in STU model is equal to

Snon-BPS � �
���������
�W
p

� �
����������
det 

p
; det > 0: (3.13)

Thus we find that in all cases, including BPS and non-
BPS, the classical supergravity entropy formula is

S � �
��������������������
jW�p; q�j

q
� �

��������������
j det j

q
�
�
2

�����������
�ABC
p

: (3.14)

Here �ABC � 4j detaj determines the threeway entangle-
ment of the three qubits A, B, and C, and  ijk defines an
unnormalized vector with the coefficients depending on (p,
q), see Eq. (3.5).

Note that because of the �SL�2;Z��3 invariance, the
result of the calculation of the black hole entropy SBPS

does not change if instead of the hyperdeterminant of the
matrix  ijk defined in Eq. (3.5) one uses the hyperdeter-
3Examples of extremal nonsupersymmetric black holes were
presented before in N � 8 theory in [30], where it was shown
that the flip of the sign of one of the charges converts BPS
solutions to non-BPS solutions.
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minant of the matrix �ijk defined in (3.6), the hyperdeter-
minant of the matrix �ijk defined in (3.7), or the
hyperdeterminant of the matrix �ijk defined in (3.8).

In string theory the microscopic entropy of the set of
states with some number of branes was derived in [4] as

lnd�p; q� � Smicro�p; q�: (3.16)

Here d�p; q� counts the total number of states for a given
set of integers (p, q). In the limit of large (p, q)

Smicro�p; q� ) Smacro�p; q�: (3.17)

For our STU model the specific calculation was per-
formed in [20] in the context of M theory which by duality
can be related to type IIB string theory with the relation
between (p, q) and the numbers of D0, D2, D4, D6 branes
shown in Eq. (3.5). Their expression for the square of the
microscopic entropy in addition to the classical expression
�2W�p�; q��, which is quartic in charges, contained some
extra terms quadratic in charges, which come from quan-
tum corrections. We will come back to a more detailed
discussion of these terms later.

The interest to the extremal black holes was enhanced
during the last couple of years by the Ooguri, Strominger,
and Vafa (OSV) conjecture [32] about the relation between
extremal black holes and topological string theory, see for
example [33] where these recent developments are pre-
sented. In these new developments it was important to
differentiate between the so-called ‘‘large’’ and small black
holes. The classical black hole entropy equal to 1=4 of the
area of the horizon, in the limit of very large charges when
quantum corrections are small is important for defining
two different kinds of extremal black holes which have
analogies in definition of classes of states in ABC systems
in quantum information theory.

(1) Large black holes, Sclass � 0 ! entangled
Greenberger, Horne, Zeilinger (GHZ) class of
states, j det j � 0

(2) Small black holes, Sclass � 0 ! nonentangled,
bipartite, and W states, j det � 0j

We will present more details on GHZ canonical states
and GHZ class of states with nonvanishing 3-tangle, as
well as on nonentangled (completely separable), bipartite,
and W states with vanishing 3-tangle in Sec. V. Here we
only stress the fact that these two groups are differentiated
by vanishing or nonvanishing 3-tangle which coincides
with the vanishing or nonvanishing area of the horizon of
the classical extremal black holes. We used here an ex-
pression Sclass to emphasize that until now we were talking
about black holes without taking into account stringy
quantum corrections. With account of these corrections,
the classical entropy formula changes, terms quadratic in
charges have to be added to the quartic expression W [20].
Originally there was a discrepancy between the micro-
scopic and macroscopic entropies. After R2 quantum cor-
rections were included into the supergravity action in [34],
-6
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the discrepancy with the microscopic entropy was re-
moved. For large black holes the extra terms provide
only a small correction. However, recently a new class of
extremal black holes, small black holes, was identified, for
which the quantum corrections play a crucial role. It was
found in [23,24] that the small black holes with Sclass �
Aclass

4 � 0 actually acquire a nonvanishing entropy and a

nonvanishing area of the horizon, Squant �
Aquant

2 � 0. This
phenomenon is known as a ‘‘stringy cloak for the classical
singularity.’’ This is a realization of the idea of a ‘‘stretched
black hole horizon’’ proposed earlier by Susskind and Sen
[35,36].

Completely separable states, including, e.g., the states
with only one (electric or magnetic) charge, also have a
classically vanishing entropy and area of the horizon.
Recently it was found in the context of the Sen’s new
entropy function formalism [37] that the R4 type quantum
corrections may lead to a nonvanishing entropy and
stretching of the horizon even for such states [25].

IV. BLACK HOLES, 3-QUBIT STATES, AND
TWISTORS

The form of the STU black holes which we studied
above is completely symmetric in STU variables. This
model is described by the prepotential F � X1X2X3

X0
. The

symplectic section consists of four homogeneous coordi-
nates X�, depending on 3 special coordinates S, T, U,
X� � fX0 � 1; X1 � S; X2 � T; X3 � Ug and four deriva-
tives of the prepotential, F� �

@F
@X� � fF0 � �STU; F1 �

TU; F2 � SU; F3 � STg.
One can easily switch to the form in which one of the

moduli is not on equal footing with others. In ABC system
this would make one of the three friends, say Alice, not on
equal footing with Bob and Charlie. In the black hole case
we can use a symplectic transformation, a particular
Sp�8;Z� matrix, to transform into a new basis which has
no prepotential [38]. In this new basis one of the moduli,
say S, is removed from the set of new homogeneous
coordinates, X̂� and it shows up only in F̂�’s so that the
total section is given by hatted coordinates X̂� � 1��

2
p f1�

TU;��T� U�;��1� TU�; �T� U�g and F̂� � S���X̂
�.

Here ��� � ������. The (SjTU) coordinates now pa-
rametrize a coset space SU�1;1�

U�1� 	
SO�2;2�

SO�2�	SO�2� . The metric
��� � ������ reflects the manifest SO�2; 2�
symmetry.

In the relevant description of the ABC system one can
say: Alice was promoted to the status of the F̂� person
whereas Bob and Charlie remain the X̂�-guys. Or, in an
opposite mood one can say that Alice was excluded from
the list of X̂� persons and became an F̂� person. Either
way, she is not treated on equal footing with Bob and
Charlie anymore. The corresponding transformation also
produces the new hatted black hole charges (p̂�, q̂�). In
104033
terms of these hatted charges our lengthy expression for the
entropy given by Eqs. (3.10) and (4.4) looks very simple
[12]

Det a � W�p�p̂; q̂�; q�p̂; q̂�� � p̂2q̂2 � �p̂ 
 q̂�2: (4.1)

Here all contractions of the hatted 4-vectors are done with
the metric ��� � ������, p̂2 � p̂����p̂� � �p̂1�2 �
�p̂2�2 � �p̂3�2 � �p̂4�2, p̂ 
 q̂ � p̂�q̂�, etc. The duality in-
variant black hole entropy described by expression in
Eq. (4.1) for STU black holes was discovered in the context
of N � 4 string theory in [39].

The relevant 3-qubit entanglement in this basis is given
by

�ABC � 4jDet j � 4jp̂2q̂2 � �p̂ 
 q̂�2j � 2jP��P��j

� j�P� �P� 
 �P� �P�j; (4.2)

where the antisymmetric bivector P�� is defined as follows

P�� � p̂�q̂� � p̂�q̂�; (4.3)

where �P is a dual to P and q̂� � ���q̂�.
This construction may be easily compared with the

description of the 3-qubit system in the context of twistor
geometry [21]. Indeed, by some operation, closely related
to the change of a basis in the black hole system which
requires to put e.g. Alice on nonequal status with Bob and
Charlie, the form of the 3-tangle is obtained in [21]:

�ABC � 4j det j � 4j�Z 
 Z��W 
W� � �Z 
W�2j

� 2jP	
P	
j; (4.4)

where the bivector

P	
 � Z	W
 � Z
W	; (4.5)

Z 
 Z � Z	�	
Z
, and �	
 � ������, i.e. each vector
Z	 and W	 is a complex vector in SO�3:1� space.

Twistors associated with null vectors can be defined
either in spaces with Minkowski signature ���� or in
spaces with (����). The relation between the corre-
sponding 2-component spinors is the following. For the
case of null vectors, Z	E	BC � a0BC, W	E	BC � a1BC of
[21] one has to take the twistors �A

B and ~�A
C in aABC �

�A
B

~�A
C (no summation in A) to be related via complex

conjugation, ~� � � ��. In (����) signature these two
twistors �B and ~�C have to be completely independent real
2-component objects, since our SO�2; 2� without any com-
plexification is isomorphic to SL�2;R	 SL�2;R�. This
completes the translation from the black holes in the
(SjTU) basis to the twistor form of the 3-qubit ABC system
in the (AjBC) basis.
-7



FIG. 3 (color online). The 2	 2	 2 matrix corresponding to
twistor picture of a 3-cubit in [21]. The combination of 4 upper
corners forms a 4-vector Z. All lower corners are used to form a
4-vector W.
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To make the relation between black holes and 3-qubit
states in twistor form clear, let us look at the pictures. First,
we can cut the 3-qubit cube in Fig. 1 by a horizontal surface
so that all upper corners which have 0 in the first position
are used for forming a 4-vector Z in [21]. All lower corners,
which have 1 in the first position, are used to form a 4-
vector W, see Fig. 3.

In order to see the relation between black holes and
twistors we have to use a cube which appears after an
Sp�8;Z� duality transformation to the hatted basis, see
Fig. 4.

In the twistor formulation of the 3-qubit system, the
classification of the states proceeds in simple geometric
terms related to properties of the Z	 and W	 vectors
translated into the language of the twistor theory. Using
our hatted vectors q̂ and p̂ we easily perform an analogous
classification for black holes. Clearly, the cube in Fig. 4
FIG. 4 (color online). The 2	 2	 2 matrix corresponding to
supergravity black holes [12] in the hatted basis, p̂ and q̂. One
has to slice this cube vertically so that the back side is cut from
the front side. In this way we will separate the 4 corners in the
front forming a p̂ vector and the 4 corners in the back forming a
q̂ vector.

104033
with the vertical slice between front and back is related to
the Fig. 3 after a rotation and renaming the corners.

V. CLASSIFICATION OF STATES OF EXTREMAL
BLACK HOLES AND 3-QUBIT STATES

In ABC systems there are two groups of states, each with
subdivisions, see Table I, where the values of 3-tangle and
local entropies are given [22]. In group A one finds non-
entangled product space (completely separable states) and
bipartite entanglement (biseparable states). In group B of
genuine entangled 3-qubit states there are two different
classes: W class and GHZ class. In this classification only
GHZ class of states [40] corresponds to large extremal
black holes (i.e. to usual extreme black holes) since
�ABC � �

2Sclass

� �
2 � 0.

All states except the GHZ state (i.e. completely sepa-
rable, biseparable, and W-class states) have a vanishing 3-
tangle/classical entropy �ABC � �

2Sclass

� �
2 � 0. All of these

may describe the small black holes where small is defined
by the vanishing area of the horizon of the classical black
hole solution. We will find examples of all such black
holes.

There are many ways to classify different states of the 3-
qubit system. We found it most convenient to classify all
possible states by discussing several ways to place charges
to the corners of the cube shown in Figs. 1 and 2.

A. All states with vanishing 3-tangle and vanishing
black hole entropy; small black holes

For all black holes with vanishing 3-tangle �ABC, i.e.
with vanishing total black hole entropy, one has the follow-
ing relations for the local entropies defined in (2.10):

S A � C2
AB � C2

AC; (5.1)

S B � C2
AB � C2

BC; (5.2)

S C � C2
CB � C2

AC: (5.3)

1. Nonentangled product space, A-B-C state

An easy way to see the properties of a completely
separable state is by looking at the cube which has just
TABLE I. Values of the local entropies SA, SB, SC defined in
(2.10) and the 3-tangle �ABC for the different classes.

Class SA SB SC �ABC

A-B-C 0 0 0 0
A-BC 0 >0 >0 0
B-AC >0 0 >0 0
C-AB >0 >0 0 0
W >0 >0 >0 0
GHZ >0 >0 >0 >0

-8



FIG. 5 (color online). The 2	 2	 2 matrix with all entries
vanishing except one, e.g. q0. We show it by a corner with a
circle. This corresponds to a nonentangled completely separable
state describing a black hole with just one charge, q0, with
vanishing area of the horizon.
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one corner with a nonvanishing entry. All concurrences are
vanishing. As an example, we may consider a black hole
with just one charge, e.g. q0, with vanishing area of the
horizon and null singularity, see Fig. 5. The corresponding
quantum state is j�i � q0j111i, i.e.  111 � q0 in the basis
(3.5). For this state one has

S A � SB � SC � 0; CAB � CAC � CBC � 0;

�ABC � 0:
(5.4)

Quantum corrections may stretch the horizon. As a result,
this black hole may acquire a nonzero entropy proportional
to

��������
jq0j

p
�

��������
j�j

p
[25], see Sec. VI.

One could also consider a cube with two charges con-
nected to each other by an edge, for example, q0 and q1,
with j�i � q0j111i � q1j011i see Fig. 6. This would also
represent a completely separable state; all corresponding
determinants would vanish.

It is instructive to see how the state j�i � q0j111i looks
in the S basis, in terms of the S-basis decomposition j�i �P
�ijkjijki�. From the dictionary Eq. (3.6) one finds that
FIG. 6 (color online). The 2	 2	 2 matrix with two charges
connected to each other by an edge. This configuration also
corresponds to a nonentangled completely separable state de-
scribing a black hole with vanishing area of the horizon, in the
classical approximation.
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j�i � q0j111i � aq0j111i� � cq0j110i�. This state, up
to numerical coefficients, coincides with the state shown
in Fig. 6.

Similarly, when we go to the T basis or U basis, we will
get the states j�i � aq0j111i� � cq0j101i� and j�i �
aq0j111i� � cq0j011i�. In all of these cases we obtain
states described by the cubes with the charge aq0 in the
same position as in Fig. 6 and with a second charge �cqi
connected to it by an edge. All of these cases belong to the
same class of completely separable states.

If one tries to add more charges, or place them differ-
ently (i.e. add charges p� to an already existing charge
q�), one can only produce states that will not be com-
pletely separable. Therefore the simple cube with one
entry, Fig. 5, represents the general class of all completely
separable states.

2. Bipartite entanglement; A-BC state

In order to obtain a biseparable state one may consider a
cube with two nonvanishing entries in the opposite corners
of one side of the cube so that there is one nonvanishing 2-
tangle, for example �BC. This state shown in Fig. 7 de-
scribes a black hole with charges q0 and p1, which corre-
sponds to a quantum state j�i � �p1j001i � q0j111i (the
signs are due to the translation between the charges and
 ijk, Eq. (3.5)). In this case we have two nonvanishing
entanglements between the 1-qubit and a 2-qubit system
(or 2 local entropies).

S A � 0; (5.5)

S B � C2
BC � 4jq0p1j2 � 0; (5.6)

S C � C2
BC � 4jq0p

1j2 � 0: (5.7)

This is the small black hole with just 2 charges and with
classically vanishing entropy and the area of the horizon
FIG. 7 (color online). The 2	 2	 2 matrix with all entries
vanishing except two entries on the same side but in opposite
corners. They are shown by circles, one for  111 � q0 and one
for  001 � �p

1. This is the case of the small black hole with just
2 charges q0 and p1 and with classically vanishing area of the
horizon.
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[24]. When quantum corrections are included, which lead
to quantum stretching of the horizon, the value of the new
area is proportional to the only nonvanishing concurrence
of the BC system inside the ABC system, CBC � 2jq0p1j,
see Sec. VI. It is also a concurrence CB�AC� � 2jq0p1j

between Bob and the system of Alice-Charlie as well as
a concurrence CC�AB� � 2jq0p

1j between Charlie and the
system of Alice-Bob.

3. W class of states

Now let us consider 3 entries in the black hole case: q0,
p1, and p2 charges, as shown in Fig. 8. This is the state
j�i � �p1j001i � p2j010i � q0j111i. None of the local
entropies is vanishing, however we still have a vanishing 3-
tangle and, at the classical level, vanishing entropy and the
area of the horizon [24]. The corresponding black holes
may be corrected and the area of the horizon with account
of quantum corrections may depend on q0p

1 and q0p
2.

Here again we will find that the stretched horizon depends
on nonvanishing concurrences of the 2-qubit systems in-
side ABC, see Sec. VI.

C AB � 2jq0p
1j � 0; (5.8)

C BC � 2jq0p2j � 0; (5.9)

C AC � 2jp1p2j � 0; (5.10)

and

S A � C2
AB � C2

AC � �p
1�2��q0�

2 � �p2�2�; (5.11)

S B � C2
AB � C2

BC � �q0�
2��p1�2 � �p1�2�; (5.12)

S C � C2
CB � C2

AC � �p
2�2��q0�

2 � �p1�2�: (5.13)
FIG. 8 (color online). The 2	 2	 2 matrix with all entries
vanishing except for  111 � q0,  001 � �p1, and  010 � �p2,
corresponding to the charges q0, p1, and p2. The charges are
always in opposite corners of each of these 3 sides. This state
describes the small black hole [24] with just 3 charges and with
classically vanishing area of the horizon.

104033
B. Nonvanishing 3-tangle and entropy, GHZ states;
large black holes

Here we have to satisfy the Eqs. (2.12), (2.13), and (2.14)
with nonvanishing left-hand side. Using our cube pictures,
we may immediately see that the configuration in Fig. 9
corresponds to a class of GHZ states, where we pick up
some set of black hole charges in the expression for the
nonvanishing entropy. For example, in the case of super-
symmetric BPS black holes we may have nonvanishing
charges q0, p1, p2, p3 with q0p

1p2p3 > 0. We place them
as shown in Fig. 2. This is the cube in Fig. 9. The corre-
sponding quantum state is j�i � �p1j001i � p2j010i �
p3100i � q0j111i. Now every side has two nonvanishing
entries so that a concurrence associated with each side is
nonvanishing. More importantly, the entropy and the 3-
tangle also do not vanish,

S � �
��������������������
jW�p; q�j

q
� �

��������������
j det j

q
�
�
2

�����������
�ABC
p

� 2�
������������������������
jq0p

1p2p3j
q

: (5.14)

If however, q0p1p2p3 < 0, this will be related to an
extremal nonsupersymmetric non-BPS black hole with 4
charges, [28,29]. This is in general the case when W < 0
[30].

By using transformations preserving �ABC � j det j
(but not necessarily the sign of Det ) one can always
transform a state j�i � �p1j001i � p2j010i � p3100i �
q0j111i to a canonical GHZ state describing only one
electric and one magnetic charge in the same gauge group,
say ~p0 and ~q0: j�i � ~p0j000i � ~q0j111i, see Fig. 10. The
two charges corresponding to a canonical GHZ state are
always at the opposite corners of the cube. One can easily
check that for the canonical GHZ states, Fig. 10, the
Cayley’s hyperdeterminant det is always positive and
FIG. 9 (color online). The 2	 2	 2 matrix with 4 nonvanish-
ing charges, for example, q0, p1, p2, p3. This is a case of the
large BPS and non-BPS black holes (depending on the sign of
the product of these 4 charges) with just 4 charges and with
classically nonvanishing area of the horizon. It belongs to the
GHZ class of states, which may describe either BPS or non-BPS
black holes.
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FIG. 10 (color online). The 2	 2	 2 matrix with all entries
vanishing, but two on the opposite diagonal of the cub. This is a
case of the large non-BPS black hole with just 2 charges (in one
gauge group, like p0 and q0) and with classically nonvanishing
area of the horizon. It corresponds to the canonical GHZ state
describing non-BPS black holes.
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W is always negative, which corresponds to nonsupersym-
metric non-BPS black holes.

Thus all extremal BPS and non-BPS black holes with
nonvanishing entropy, i.e. all ‘‘usual,’’ or large black holes,
belong to the GHZ class of states of the ABC system,
which is described by the lowest line in Table I.
However, the theory of stringy black holes requires a
more detailed classification than the standard 3-qubit clas-
sification provided by Table I. One encounters two inequi-
valent subclasses of GHZ states with respect to
supersymmetry. The canonical GHZ states, Fig. 10 always
correspond to nonsupersymmetric non-BPS black holes.
Meanwhile the GHZ states described by Fig. 9 have the
same 3-tangle (i.e. the same j det j), but the sign of deta
may be either positive or negative. The states with det >
0 correspond to nonsupersymmetric non-BPS black holes,
whereas the states with det < 0 correspond to supersym-
metric BPS black holes.
VI. ENTROPY OF SMALL BLACK HOLES, THE
NORM, AND 2-TANGLES IN ABC SYSTEMS

One of the goals of our paper was to obtain a better
understanding of the intriguing relation between the en-
tropy of the extreme BPS STU black holes and the 3-tangle
discovered by Duff [10]. In this paper we extended his
analysis for the axion-dilaton black holes and for the non-
BPS STU black holes, and developed a new set of tools for
investigation and classification of black holes, which have
their counterparts in the theory of quantum information.
Now we may apply our tools to the so-called extremal
small black holes, which have a singular horizon with
vanishing area and zero entropy at the classical level, but
may acquire nonvanishing entropy and the area of horizon
due to quantum corrections.

Let us first consider completely separable states such as
a state with a single charge q0 shown in Fig. 5. The
corresponding small black holes with just one charge (eg.
104033
number of D0 branes) were studied in [25]. The value of
the entropy due to R4 corrections in the limit q0  1 was
found to be

S BH � �K
����������
2
3jq0j

q
; (6.1)

where K is some number. This entropy is also proportional
to the area of the stretched horizon. As emphasized in [25],
in order to verify this result one may need to check higher
order corrections in R. If Eq. (6.1) is valid, one can repre-
sent it in the form that does not depend on the choice of a
single charge q� or p�:

S BH � K
����������
2
3j�j

q
; (6.2)

where j�j is the norm of the state defined in Eq. (2.19).
One can interpret this result as a consequence of the
quantum stretching of the horizon conjectured by
Susskind and Sen [35]. The classification in Table I does
not attach any invariant concept to completely separable
states, simply because in the quantum information theory
all of these states are equally normalized: j�j � 1.
Meanwhile the entropy of the black holes is proportional
to the square root of the wave function with a ‘‘stretched’’
norm j�j � jq0j � 1 (2.19). Thus we arrive at a simple
intuitive interpretation: the stretching of the horizon of
black holes with a single charge is related to the stretching
of the norm of this state j�j.

Now let us consider the bipartite case characterized by
the charges q0, p1, numbers of D0 and D4 branes. In this
case, the entropy with account of quantum corrections
calculated in supergravity is given by

S quant � 4�
�������������
jq0p

1j
q

: (6.3)

This entropy was calculated in [23] by counting the num-
ber of microstates of string theory for q0  p1  1. By
comparing this answer with Fig. 7, one can see that the
only parameter available in the classical cube is precisely
the nonvanishing concurrence, C � 2jq0p1j, so we have
the following interpretation of this result:

S quant � �
���
C
p
: (6.4)

The radius of the stretched horizon rh and the area of the
horizon of the small black holes Aquant � 2Squant were
calculated in [24]. Now we see that they have the following
interpretation in terms of the concurrence of the 2-cubit
state inside a 3-qubit state in quantum information theory:

A quant � 4�r2
h � 2�

���
C
p
: (6.5)

It is amazing that the quantum corrected area of the
horizon and entropy are related to the only nonvanishing
concurrence for the case of the bipartite state q0, p1. One
may wonder how quantum corrections in string theory
could know about the concurrences in 3-qubit systems?
-11
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Is it just another coincidence or simply a consequence of
the underlying symmetry of the theory?

Now let us make another step and discuss the entropy
and the area of the horizon of the black holes in the
bipartite or W state with nonvanishing q0, p1, p2 charges.
At the classical level, such black holes have a vanishing
singular horizon with null singularity and zero entropy.
Meanwhile quantum effects give the entropy [24]

S quant � 4�
����������������������������
jq0�p

1 � p2�j
q

�
Aquant

2
: (6.6)

These calculations, and the semiclassical approximation in
general, require the condition that q0  p1, p2  1. In
such case the term p1p2, which is naturally expected from
the cube picture, may be missing simply because it is
supposed to be much smaller than the other two terms. In
the limit q0  p1, p2  1 one can describe all results
concerning the entropy of large and small black holes in
the bipartite or W state by one simple equation preserving
the symmetries of the system:

S total �
�
2

����������������������������������������������������������������
�ABC �

4c2

3
�CAB � CBC � CCA�

s
: (6.7)

Here c2 is the second Chern class coefficient of the com-
pactified manifold; in the example of K3 manifold c2 �
24. Interestingly, CAB � CBC � CCA is equal to a half of the
total area of a box with sides jq0j, jp1j, and jp2j. The total
entropy has two contributions, �ABC, which is quartic in
charges, and 4c2

3 �CAB � CBC � CCA�, which is quadratic in
charges. Therefore for large black holes this expression in
the leading approximation agrees with the result obtained
in [12] and coincides with the result obtained by counting
of states in string theory [20] and in supergravity with R2

corrections [33] under the condition that q0  p1, p2 
1. For small black holes the classical entropy vanishes,
�ABC � 0, and the microscopic entropy calculated in string
theory [23,24] is reproduced correctly by Eq. (6.7) in the
approximation q0  p1, p2  1:

S small �
Asmall

2
� �

����������������������������������������������
c2

3
�CAB � CBC � CCA�

r
: (6.8)

One may go one step further and consider the small 1-
charge black holes [25]. The modified entropy formula,
under the conditions specified above, can be written as
follows:

S total �
�
2

����������������������������������������������������������������������������������������
�ABC �

4c2

3
�CAB � CBC � CCA� �

8K2

3
j�j

s
:

(6.9)

Here j�j �
��������������
h�j�i

p
is the norm of the wave function.

One can understand this equation as follows. For com-
pletely separable states with only one nonzero charge, this
equation is reduced to Eqs. (6.1) and (6.2). For the bipartite
and W states at large values of charges, the concurrences
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are much greater than j�j, and the equation is reduced to
(6.7), which is equivalent to Eq. (6.6) in the region of its
applicability. Finally, for the GHZ states the 3-tangle is
much greater than the concurrences, and we return to the
equation S � �

2

�����������
�ABC
p

.
If Eq. (6.9) is correct beyond just representing various

limiting cases, it may be a prediction for certain subleading
corrections for the cases with �ABC � 0, or for the cases
where �ABC � 0 but CAB � CBC � CCA � 0. The relevant
results on subleading corrections to the entropy of black
holes with the classically finite horizon area were derived
in [33]. One can also try to relate it to the black holes
studied with the tools of topological string theory in [31].
VII. E7�7� QUARTIC INVARIANT AND CAYLEY’S
HYPERDETERMINANT

In the previous investigation we mostly discussed axion-
dilaton black holes and STU black holes. This covers
a very broad class of extreme stringy black hole solutions.
The STU black holes are described by 8 parameters and
the classical entropy of these black holes is given by a
square root of the absolute value of the Cayley’s
hyperdeterminant.

Now we are going to significantly generalize our results.
The most general class of black holes in N � 8 supergrav-
ity/M theory is defined by 56 charges, and the entropy
formula is given by the square root of the quartic Cartan-
Cremmer-Julia E7�7� invariant [26,41–47],

S � �
��������
jJ4j

q
; (7.1)

where the Cartan-Cremmer-Julia form of the invariant [42]
depends on the central charge matrix Z,

J4 � �Tr�Z �Z�2 � 1
4�TrZ �Z�2 � 4�PfZ� Pf �Z�; (7.2)

and the Cartan form [41] depends on the quantized charge
matrix (x, y)

J4 � �Tr�xy�2 � 1
4�Trxy�2 � 4�Pfx� Pfy�: (7.3)

Here

ZAB � �
1

4
���
2
p �xab � iyab���ab�AB (7.4)

is the central charge matrix and

xab � iyab � �

���
2
p

4
ZAB��

AB�ab (7.5)

is a matrix of the quantized charges related to some num-
bers of branes. The exact relation between the Cartan
invariant in Eq. (7.3) and Cremmer-Julia invariant [42] in
Eq. (7.2) has been established in [44].

The matrices of SO�8� algebra are ��ab�AB where (ab)
are the 8 vector indices and (A, B) are the 8 spinor indices.
The ��ab�AB matrices can be considered also as ��AB�ab
-12
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matrices due to equivalence of the vector and spinor rep-
resentations of the SO�8� Lie algebra. The central charge
matrix ZAB can be brought to the canonical basis for the
skew-symmetric matrix using an SU�8� transformation.
The eigenvalues zi; i � 1, 2, 3, 4 are complex. In this
way the content of a theory is reduced from 56 entries to 8.

Relation between the entropy of stringy black holes and
the Cartan-Cremmer-Julia E7�7� invariant was established
10 years ago [26]. The stringy solutions in N � 4 theory
characterized by 5 parameters were first found in [39].
Since that time many new black hole solutions have been
found. In a systematic treatment in [45] in the context of
the eigenvalues of the central charge matrix of N � 8
theory the meaning of these 5 parameters was clarified:
zi � �ie

i�, from 4 complex values of zi � �ie
i�i one can

remove 3 phases by an SU�8� rotation, but the overall
phase cannot be removed. Therefore a 5-parameter solu-
tion is called a generating solution for other black holes in
N � 8 supergravity/M theory. Expression for their entropy
is always given by S � �

��������
jJ4j

p
for some subset of 5 of the

8 parameters mentioned above. Recently a new class of
solutions was discovered, describing black rings. The
maximal number of parameters for the known solutions
is 7. The entropy of black ring solutions found so far was
identified in [46] with the expression for �

��������
jJ4j

p
for a

subset of 7 out of 8 parameters mentioned above. That is
why it would be most interesting to establish a possible
relation between the general black hole/black ring entropy
equation S � �

��������
jJ4j

p
in N � 8 supergravity/M theory and

some of the constructions of the theory of quantum
information.

One could expect that this relation, if possible at all, may
be quite involved and may require investigation of more
complicated constructions, such as n-tangles for n > 3.
However, we have found that this relation again involves
only 3-tangles.

To find this relation, let us note that in x, y basis only
SO�8� symmetry is manifest, which means that every term
in Eq. (7.3) is invariant only under SO�8� symmetry.
However, is was proved in [41,42] that the sum of all terms
in Eq. (7.3) is invariant under the full SU�8� symmetry,
which acts as follows
�xab � iyab� � �2��a
�c

b�
d� � i�abcd��xcd � iycd�: (7.6)
The total number of parameters is 63, where 28 are from
the manifest SO�8� and 35 from the antisymmetric self-
dual �abcd�

��abcd. Thus one can use the SU�8� trans-
formation of the complex matrix xab � iyab and bring it to
the canonical form with some complex eigenvalues �I, I �
1, 2, 3, 4. The value of the quartic invariant (7.3) will not
change.
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�xab � iyab�can

�

0 �1 0 0 0 0 0 0

��1 0 0 0 0 0 0 0

0 0 0 �2 0 0 0 0

0 0 ��2 0 0 0 0 0

0 0 0 0 0 �3 0 0

0 0 0 0 ��3 0 0 0

0 0 0 0 0 0 0 �4

0 0 0 0 0 0 ��4 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

:

(7.7)
One can easily check that the Cartan-Cremmer-Julia
quartic invariant J4 depending on 4 complex eigenvalues
�I can be represented as a Cayley’s hyperdeterminant of a
matrix  ijk
J4��� � � det ; (7.8)
where the relation between the complex coefficients �i, the
parameters xij and ykl, the matrix  ijk, and the black hole
charges pi and qk is given by the following dictionary:
�1 � x12 � iy
12 � a111 � ia000 � q0 � ip

0;

�2 � x34 � iy34 � a001 � ia110 � �p1 � iq1;

�3 � x56 � iy
56 � a010 � ia101 � �p

2 � iq2;

�4 � x78 � iy78 � a100 � ia011 � �p3 � iq3:

(7.9)
The simplest way to prove it is to write the quartic E7�7�

Cartan invariant in the canonical basis (xij, yij), i; j �
1; . . . ; 8:
J4 � ��x12y12 � x34y34 � x56y56 � x78y78�2

� 4�x12x34x56x78 � y12y34y56y78�

� 4�x12x34y
12y34 � x12x56y

12y56 � x34x56y
34y56

� x12x78y
12y78 � x34x78y

34y78 � x56x78y
56y78�:

(7.10)
Then one should compare it to the Cayley’s hyperdeter-
minant (2.8) using the dictionary (7.9) given above, or an
equivalent dictionary in the form similar to the one used in
-13



RENATA KALLOSH AND ANDREI LINDE PHYSICAL REVIEW D 73, 104033 (2006)
Sec. III B, Eq. (3.5):

ABC STU Black Hole

N � 8 Black Hole

a000

a001

a010

a100

a111

a110

a101

a011

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

�

p0

�p1

�p2

�p3

q0

q1

q2

q3

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

�

y12

x34

x56

x78

x12

y34

y56

y78

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

:

(7.11)

Our results imply that the entropy of the most general
extremal BPS and non-BPS black hole and black ring
solutions in N � 8 supergravity can be brought to a ca-
nonical basis where it depends only on 8 charges and can
be represented by the same compact expression (3.14) as in
the theory of STU black holes and as a 3-tangle in a 3-qubit
system:

S�BH;BR� � �
��������������
jJ4���j

q
� �

��������������
j det j

q
� �

��������������������
jW�p; q�j

q
�
�
2

�����������
�ABC
p

: (7.14)

The quartic invariant of the E7�7� J4 is related to the
octonionic Jordan algebra JO3 , see [47]. It is therefore
natural, in view of our result (7.14), to expect that the 3-
qubit system can be described by octonions, which was
indeed shown in [48].

VII. CONCLUSIONS

Our work, following the recent work by Duff [10],
demonstrated a lot of intriguing connections between ex-
tremal black holes and the ABC system in the quantum
information theory. The new approach to the theory of
stringy black holes may help us with the black hole and
black ring classification and with interpretation of our
results in terms of general quantum mechanical systems.
It may also help us to represent our results in a different
form, which may allow our intuition to grow in a previ-
ously unexpected way. In this paper we found that the
entropy of the axion-dilaton extremal black hole is related
to the concurrence of a 2-qubit state, whereas the entropy
of the STU black holes, even if they are not BPS black
holes, is related to the 3-tangle of a 3-qubit state. We
identified usual black holes with the maximally entangled
GHZ class of states, and small black holes with either
separable, or bipartite entangled states or W class of states.
104033
We established a certain relation between 3-qubit states,
twistors, and black holes. We found an expression for
entropy and the area of the horizon of small black holes
in terms of the concurrence of the 2-cubit states inside a 3-
qubit state and its norm. Finally, we extended the previous
results to the most general extremal BPS and non-BPS
black hole and black ring solutions in N � 8 supergrav-
ity/M theory. To our own surprise, we have found that the
expression for the entropy of these solutions in terms of the
quartic E7�7� Cartan invariant [26] in Eq. (7.3) can be
represented by the same compact expression in terms of
the Cayley’s hyperdeterminant (2.8) as a 3-tangle (2.9) and
the entropy of STU black holes (3.14).

Our work was devoted to the implications of the quan-
tum information theory to the theory of black holes. Even if
some of these results eventually will be interpreted as
coincidental, we may still appreciate the theory of quantum
information for its heuristic potential, which allowed us to
look at the theory of stringy black holes from a completely
different perspective. However, we do not think that this is
a one-way road. It is quite plausible that the enormous
amount of highly nontrivial results obtained in the quantum
theory of stringy black holes may lead to new insights in
the theory of quantum information. We hope therefore that
the parallel study of both sides of the story may be quite
fruitful.
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Note added.— Recently a paper by Levay [49] appeared
where two important developments were made. First, it
was shown that a pure 3-qubit state is real under certain
conditions. Note that in general in quantum information
theory the wave function is complex, and the system has a
�SL�2;C��3 symmetry, whereas for black holes we have
only �SL�2;Z��3 and the relevant ‘‘wave function’’ is real.
Interestingly, two different conditions for reality found in
[48] correspond to either BPS or non-BPS black holes.
Second, it was established there that what in string theory
is known as a stabilization of moduli near the black hole
horizon, in quantum information theory is known as a
procedure of finding the optimal local distillation protocol
of a GHZ state from an arbitrary 3-qubit state. These
statements provide additional links between the theory of
extremal black holes and the quantum information theory.
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