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Post-Newtonian corrections to the motion of spinning bodies in nonrelativistic general relativity
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In this paper we include spin and multipole moment effects in the formalism used to describe the
motion of extended objects recently introduced in hep-th/0409156. A suitable description for spinning
bodies is developed and spin-orbit, spin-spin, and quadrupole-spin Hamiltonians are found at leading
order. The existence of tidal as well as self-induced finite size effects is shown, and the contribution to the
Hamiltonian is calculated in the latter. It is shown that tidal deformations start formally at O�v6� and
O�v10� for maximally rotating general and compact objects, respectively, whereas self-induced effects can
show up at leading order. Agreement is found for the cases where the results are known.
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I. INTRODUCTION

In a recent paper an effective field theory (EFT) of
gravity for nonspinning, spherically symmetric extended
objects was introduced [1]. Within the post-Newtonian
(PN) [2] framework this approach was coined NRGR (non-
relativistic general relativity) due to its similarities with
EFT approaches to nonrelativistic bound states in QED and
QCD [3]. However, the EFT formalism can be applied to a
variety of scenarios, for instance the large small mass ratio
case [4]. NRGR is relevant for understanding the gravita-
tional power spectra emitted by binary systems, an impor-
tant class of candidate signals for gravitational wave
observatories such as LIGO or VIRGO [5,6]. The formal-
ism allows for a clean separation of the long wavelength
gravitational dynamics from the details of the internal
structure. This separation enables us to calculate correc-
tions to all orders in the point particle approximation.
Furthermore, it was shown that the ambiguities [7,8] that
plague the conventional PN calculations can be attributed
to the presence of higher-dimensional world line terms in
the action whose coefficients encode the short distance
structure of the particles.

Building upon this idea, here we propose an extension of
NRGR which allows for the inclusion of spin and multipole
moments. Spin in general relativity (GR) has been consid-
ered previously in the literature from many different points
of view (see for instance [9–12] and references therein),
and is argued to play an important role in binary inspiral,
particularly for black holes [13,14]. Within the PN ap-
proximation, spin effects for binary systems have been
calculated using different techniques [13–17]. Dealing
with spinning objects in the point particle approximation
inevitably entails running into divergent integrals as one
does in the nonspinning case. Regularization procedures,
like Hadamard finite part [18] or considering contributions
from different zones [19], were invoked when dealing with
pointlike sources [17]. However, it has been argued, for
instance for the proposal of [19], that the formalism is
‘‘considerably complicated but it is inevitable that we
have to adopt it to deal with divergences when we go to
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higher PN orders’’ [16]. As it has been repeatedly empha-
sized in [1] that is not the case within an EFT approach.
Here we will explicitly see how a systematic, and consis-
tent to all orders approach, is translated into our case as
well.

The outline of the paper is as follows. In the first section
we review NRGR for nonspinning spherically symmetric
objects highlighting the main results. Then, we will gen-
eralize the formalism to include internal angular as well as
multipole moment degrees of freedom extending the work
of Hanson and Regge in the realm of special relativity [20].
Afterwards we derive the power counting and Feynman
rules of NRGR and calculate the leading spin-spin and
spin-orbit potentials and show to reproduce known results
[10,13,14]. A quadrupole-spin correction to the gravita-
tional energy is obtained for the first time (to my knowl-
edge) to leading order. The equivalence between different
choices for the spin supplementary condition is also shown.
Finally, we discuss the insertion of nonminimal terms in
the world line action and its relevance to renormalization.
The existence of two types of finite size effects encapsu-
lated in a new set of coefficients, which can in principle be
fixed by matching to the full theory, is predicted: those
which have a renormalization group (RG) flow and natu-
rally represent tidal spin effects induced by the companion,
and those that do not have a RG flow and represent self-
induced effects, such as the spin induced quadrupole mo-
ment due to the proper rotation of the objects [21,22]. By
power counting it is shown that companion induced tidal
effects start formally at 3PN, and 5PN for maximally
rotating general and compact objects, respectively. Self-
induced effects can show up at leading order. Details are
relegated to appendices. We will study higher-order PN
corrections, the radiative energy loss, matching, and new
possible kinematic scenarios in future publications.

II. NRGR

In this section we will emphasize the main features of
NRGR within the PN formalism; detailed calculation and
further references can be found in the original proposal [1].
-1 © 2006 The American Physical Society
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A. Basic philosophy

The traditional approach to the problem of motion was
introduced by Fock [23] who split it into two subproblems.
The internal problem, which consists of understanding the
motion of each body around its center of mass, and the
external problem, which determines the motion of the
centers of mass of each body. Decomposing the problem
this way allows us to naturally separate scales and hence-
forth calculate in a more systematic fashion. The price one
pays is the necessity of a matching procedure which relies
either in comparing with the full theory, if known, or
extracting unknown parameters from experiment. This
method is now called ‘‘effective theory,’’ or EFT in the
realm of quantum field theory (QFT), and has been used to
great success in many different branches of physics [3].
While at first glance quantum field theoretical tools appear
to introduce unnecessary machinery for classical calcula-
tions,1 the power of the method will be shown to reside in
two facts: It allows for the introduction of manifest power
counting and naturally encapsulates divergences into text
book renormalization procedures.2 This means in addition
that in the EFT it is straightforward to calculate the order at
which a given term in the perturbative series first contrib-
utes to a given physical observable.

Here we are going to tackle the problem of motion by
treating gravity coupled to point particle sources as the
classical limit of an EFT, i.e. the ‘‘tree level approxima-
tion,’’ within the PN formalism. Feynman diagrams will
naturally show up as perturbative techniques to iteratively
solve for the full Green functions of the theory. As it is
known, GR coupled to distributional sources is not generi-
cally well defined due to its nonlinear character [25].3 This
can be seen as a formal obstacle to the PN expansion for
point particle sources in GR. Within an EFT paradigm this
problem does not even arise since one is not claiming to
construct a full description to be applicable to all regimes,
but an effective theory which will mimic GR coupled to
extended objects within its realm of applicability. In addi-
tion, one can also argue that this EFT could be seen as the
low energy regime of a quantum theory of gravity neces-
sary to smear out pointlike sources.

The idea of describing low energy quantum gravity as an
EFT is not new (for a review see [26]). What makes NRGR
appealing is the uses of EFT to attack so-called classical
problems. QFT has proven to be useful with classical
calculations, as in electromagnetic radiation where we
can think of photons (QED) to calculate a power spectrum.
Here we will use the same idea introducing ‘‘gravitons’’ as
1QFT techniques have been recently used to calculate self-
force effects in a curved space-time background [24].

2Also bear in mind that the classical solution is just the saddle
point approximation to the path integral or what is known as the
‘‘tree level’’ approximation.

3I would like to thank Jorge Pullin for discussions on this
point.
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the quantum of the metric field which will allow us to
calculate the gravitational potential, from which the equa-
tions of motion (EOM) are derived, as well as gravitational
radiation in a systematic fashion.

B. Effective theory of extended objects

The method of [1] is based in the explicit separation of
the relevant scales of the problem: the size of the objects rs
(internal problem), the size of the orbit r (external prob-
lem), and the natural radiation wavelength r=v, where
v� c is the relative velocity in the PN frame. Finite
size effects are treated by the inclusion of a tower of new
terms in the world line action which are needed to regu-
larize the theory.4 For a nonspinning spherically symmetric
particle the most general action consistent with the sym-
metries of GR is

S �
Z
��m� cRR� cVv

�v�R�� � � � ��d�; (1)

where R�� and R are the Ricci tensor and scalar, respec-
tively. The series, involving higher-order Riemann-type
insertions, must be truncated within the desired accuracy
to have any predictive power. The coefficients of each of
these new terms can be determined by comparison with the
full theory. In this case the underlying theory is GR plus the
internal equation of state of the objects. The beauty of this
method is that, since these are 1-body properties, we can
match using any relevant observable, for instance scatter-
ing processes, rather than solving the complete problem of
motion explicitly.

As it was shown in [1], the terms proportional to cR, cV
are generated by logarithmic divergences of the point
particle approximation. However, it is possible to show
that they are unphysical in the sense that they can be
removed from the effective action by field redefinition
(f.r.) and no trace is left in observable quantities [1,8].
Nevertheless, from here one concludes that not all diver-
gences can be absorbed into the mass and new counter-
terms are necessary. Furthermore, at higher orders5 it can
be shown that (full Riemann dependent) finite size tidal
effects are induced which cannot be removed from the
theory. We will see here that allowing the objects to spin
also introduces new terms in the world line action. For the
sake of completeness, and given that the same idea will be
used here later on, we will sketch the reasoning. One starts
by calculating the effective action [28],

��g��	 �
1

mp

Z d4k

�2��4
h����k�T

��
�1p��k� � � � � ; (2)
4A similar approach can be found in [27] within the realm of
tensor-scalar theories. However, renormalization issues as well
as spin effects were left undiscussed.

5Finite size effects first appear at order v10 for nonspinning
particles.
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FIG. 1. Leading order mass vertex. The dashed line represents
a potential graviton, whereas the wavy line stands for the full
graviton propagator.
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where g�� � ��� �
h��
mp

, and h�� the graviton field. Let us

concentrate on the contributions to the one point function
T��
�1p��k�. As it was shown in [1] within dimensional regu-

larization techniques (dim. reg.), the logarithmic divergen-
ces in T��

�1p��k� cannot be absorbed into the mass and a new
counterterm of the form

T��ct �k� � �2����k � v��cR����k2 � k�k�� � 1
2cVk

2v�v�	

(3)

is therefore needed. It is straightforward to conclude from
here the necessity of including two new terms in the
effective action as shown in (1). Within dim. reg. an arbi-
trary mass scale � associated to the subtraction point at
which the theory is renormalized is introduced. Given that
the metric field does not pick any anomalous dimension at
tree level we must have �d��g��	=d� � 0. Thus the
explicit dependence on the subtraction scale � must be
canceled by allowing the coefficients cR;V to vary with
scale. The theory therefore exhibits nontrivial classical
RG scaling. As we are going to show here spin dependent
finite size effects are predicted by similar arguments.

C. The post-Newtonian expansion

Once the internal scale is taken into account by the
introduction of a series of new terms in the 1-body world
line action, the next scale we have to integrate out is the
orbit scale. In order to do that we decompose the graviton
field h�� into two pieces,

h���x� � �h���x� �H���x�; (4)

where H�� represents the off-shell potential gravitons,
with

@iH�� 

1

r
H�� @0H�� 


v
r
H��; (5)

and �h�� describes an on-shell radiation field

@� �h�� 

v
r

�h��: (6)

We can now further decompose H�� by removing from
it the large momentum fluctuations,

H���x� �
Z d3k
�2��3

eik�xHk���x
0�: (7)

The advantage of this redefinition is that now derivatives
acting on any field in the EFT scale in the same way, @� 

v=r, so it is easy to count powers of v coming from
derivative interactions.

The effective radiation NRGR Lagrangian, with the
potential gravitons integrated out, can then be derived by
computing the functional integral,
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exp�iSNRGR�xa; �h		�
Z
DH��exp�iS� �h�H;xa	� iSGF	;

(8)

where SGF is a suitable gauge fixing term. Equation (8)
indicates that as far as the potential modes H�� are con-
cerned �h�� is just a slowly varying background field. To
preserve gauge invariance of the effective action, we
choose SGF to be invariant under general coordinate trans-
formations of the background metric �g���x� �
��� � �h���x�. This whole procedure is what is usually
known as the ‘‘background field method,’’ originally in-
troduced by DeWitt [29] in canonical quantum gravity and
used by t’Hooft and Veltman for the renormalization of
gauge theories [30]. By expanding the Einstein-Hilbert
action using (4), we can immediately read off Feynman
rules [1]. For potential gravitons, which we are going to
represent by a dashed line, the propagator is given by

hHk���x0�Hq���0�i � ��2��3�3�k� q�
i

k2 ��x0�P��;��;

(9)

where P��;�� �
1
2 ������� � ������ � ������	. The

radiation gravitons, which will be represented by a curly
line, have the usual spin 2 massless propagator. Awavy line
will be used for the full propagator. We also need to
consider mass insertions which will just provide a vertex
interaction [1],

X
a

ma

mp

�
1

2
h00 � h0ivai �

1

4
h00v2

a �
1

2
hijvaivai

�
� � � � ;

(10)

where h00, h0i, hij are evaluated on the point particle world
line (the leading order graviton-mass vertex is shown in
Fig. 1). Following standard power counting procedures, we
arrive to the scaling laws for the NRGR fields shown in
Table I [1,3]. In the last column we have introduced m2

p �
1

32�GN
the Planck mass and L � mvr the angular

momentum.
The effective action in (8) will be a function of the world

line particles (treated as external sources) and the radiation
field which allows us to calculate the energy loss due to
gravitational radiation as well as the gravitational binding
-3



TABLE I. NRGR power counting rules.

k Hk
��

�h�� m=mp

1=r r2v1=2 v=r
�������
Lv
p

RAFAEL A. PORTO PHYSICAL REVIEW D 73, 104031 (2006)
potential from which the EOM are obtained. To get Seff�x
a�

we simply integrate out the radiation field �h. Seff�x
a� has a

real part which represents the effective potential for the 2-
body system.6 It also has an imaginary part that measures
the total number of gravitons emitted by a given configu-
ration fxa�g over an arbitrarily large time T ! 1,

1

T
ImSeff�xa� �

1

2

Z
dEd�

d2�

dEd�
; (11)

where d� is the differential rate for graviton emission from
the binary system from which the power spectrum is
computed.
III. INTERNAL DEGREES OF FREEDOM I:
SPINNING PARTICLE

Here we will follow closely the ideas developed in [20].
We will start formulating a Lagrangian formalism to deal
with internal angular as well as multipole moment degrees
of freedom which will enable us to describe a richer tensor
structure. We will introduce the basic elements first, then
we will construct the action and show how to reproduce
Papapetrou equations for spinning particles in GR [32].
The issue of constraints, the correct number of degrees of
freedom, and the angular-velocity/spin relationship will be
discussed at the end of the section.

A. Basics

Given a space-time structure �g;M� we can always find
at each point x 2 M a coordinate system where the metric
looks locally flat at the point. Such a transformation can be
expressed as

�IJ � e�I e
�
Jg��; (12)

�IJe�I e
�
J � g��; (13)

with �IJ � �1;�1;�1;�1� the Minkowski metric and e�I
a set of I � 0 . . . 3 orthonormal basis vectors such that the
tensor metric is diagonalized at the point. From now on,
capital Latin letters will denote internal indexes [notice
that they transform in SO�3; 1� due the residual Lorentz
invariance]; the other conventions are as usual. Given a
tetrad we can define its transport through the particle’s
world line using Fermi-Walker ideas as [33]
6Remember we are treating the world line of the particles as
external sources, namely xa � J, therefore Seff is just the parti-
tion function eiSeff � h0j0iJ 
 ei��J; _J...�T , with ��J� the effective
action for the sources as T ! 1 [31].
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_e I� �
De�I
d	
� u�r�e

�
I � ����eI�; (14)

where r� is the covariant derivative compatible with g,
namelyr�g�� � g��;� � 0, and ��� is an antisymmetric
tensor which therefore preserves (12). One can invert the
previous relation using (12),

��� � �IJe�I
De�J
d�
�

�
de�J
d�
� �
��e
Ju

�
�
�IJe�I:

(15)

Notice that (15) implies the antisymmetry directly from
g��;� � 0.

The introduction of e�I is equivalent to adding an ele-
ment of SO�3; 1� to the world line of the particle to describe
rotations [20]. Following these ideas we will therefore
construct an action in terms of the generalized coordinates
and velocities �x�; u�; eI�; _eI��. The number of degrees of
freedom in e�I is 3 more than we need to describe 3-
rotations. We will see however that we can impose a set
of kinematic constraints which will ensure the correct
number.

B. Action principle and EOM

So far we have characterized the extra degrees of free-
dom we need in order to construct a Lagrangian for the
spinning particle. In the process to construct the action we
will demand, in addition to general covariance, internal
Lorentz invariance as well as reparametrization invariance
(RPI). This will naturally restrict ourselves to Lagrangians
of the form L�x�; u�;����. It is however natural, instead
of using ��� as coordinates to treat them as velocities of
angular degrees of freedom which will lead us to a natural
interpretation of spin. It is easy to see there are four differ-
ent scalar quantities (neglecting parity violating terms) we
can consider (schematically)

a1 � u2 (16)

a2 � �2 (17)

a3 � u��u (18)

a4 � ����; (19)

where contractions are made with the space-time metric
g��. Using these quantities our Lagrangian will be in
principle a general expression of the form
L�a1; a2; a3; a4�. We will neglect multipole moments
throughout this section, the inclusion of which will be
studied later on. The objects will be therefore considered
symmetric with respect to their rotational axis.

In order to introduce the idea of spin we will define the
antisymmetric tensor S�� and momentum p� by

�L � �p��u� �
1
2S
������; (20)
-4
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where the minus sign corresponds to the correct nonrela-
tivistic limit [20]. From these definitions we will have

p� � �2u�
@L
@a1
� 2������u

� @L
@a3

(21)

S�� � �4��� @L
@a2
� 2�u���	u	 � u

���	u	�
@L
@a3

� 8��������� @L
@a4

: (22)

The variation of the action consists of two pieces. Let us
concentrate first in the tetrad part. Using the definition of
spin we will have to deal with

�S � �
Z
d�S������

� �
Z
d�
�
�
DS��

D�
eK� �

DeK�
D�

S��

� S��
DeJ�
D�

e�KeJ�
�
�eK�: (23)

The equation of motion can be directly read from the
above expression, multiplying by eK� we get [using (15)]

DS��

D�
� S�	�	

� ���
	S

	� � p�u� � u�p�; (24)

where the last equality follows from (21) and (22) [20].
Notice that we have not specified a Lagrangian up to this
stage. It is easy to see from (24) that

DSIJ

D�
�
D�S��eI�e

J
��

D�
� 0; (25)

which shows that spin projected with respect to the eI�
frame remains constant. In addition, one can also show that
the scalar S2 � 1

2S
��S�� is conserved. As a further prop-

erty it is also instructive to notice that S��S��� is also a
constant of the motion, where S��� �

1
2 ����S

��.
In order the get the �x piece of �S, a shortcut can be

taken by going to a locally flat coordinate system where the
connection terms are zero at the point. Promoting the
derivatives to covariant ones in this frame we will end up
with

Dp�
D�

�
1

2
S������
;� � ����;
�u
 � �

1

2
R�
��S��u
;

(26)

where we have used the form of the Riemann tensor in a
locally flat coordinate system. Written this way we can
promote now the equation to all reference systems since it
is covariant. We therefore recognize in (24) and (26) the
well-known Papapetrou equations [32]. Remarkably,
although in terms of the tetrad these equations depend on
the choice of Lagrangian, as a function of spin and mo-
mentum the evolution equations are action independent as
104031
far as curvature terms are not inserted. Including curvature
terms in the effective action will be relevant to introduce
finite size effects and will modify these equations for
extended objects.

C. Constraints and angular-velocity/spin relationship

In order to describe the correct number of degrees of
freedom, we need to add a set of constraints to the EOM
(24) and (26). A well-defined angular-velocity/spin rela-
tionship is also necessary to extend our power counting
rules to the spinning case. We will show here that both
features are related. Here we will closely follow [20], to
which we refer the reader for details; other approaches may
be found in [34]. This section relies on a basic knowledge
of constrained systems (for further details see [35,36]).

It is natural to impose the following (covariant) con-
straints in the space of solutions:

V� � S��p�  0; (27)

where just three of the four components are independent,
and ‘‘’’ stands for weakly vanishing [35]. This set of
constraints are second class, namely, they have nonvanish-
ing Poisson bracket among themselves, and therefore re-
duce the number of degrees of freedom from 6 to 3 SO�3�
parameters as expected. It can be shown in addition there is
a Lagrangian from which (27) kinematically follows [20].

We need to guarantee the constraints in (27) are pre-
served upon evolution. It is however possible to show from
(24) and (26) that DV

�

d�  0 will be satisfied provided

p� � mu� �
1

2m
R���
S

��S�
u�; (28)

with m2�S2� � p2 defined by (21) and (22). This also
means that the difference between p�=m and u� is higher
order in the PN expansion and we can consider S��u� � 0
as well as dS��

d� � 0 to leading order.
It is possible to show that (27) implies C1 � S��S��� 

0, which is a first class constraint. There is therefore, in
addition to RPI [C2 � p2 �m�S2�  0], a gauge freedom
which can be attributed to the choice of the temporal vector
of the tetrad e0

�, and a sensible choice of gauge is then
 � � e�0 � p

�=m  0 [20]. This gauge, jointly with (27),
also translates into a choice of center of mass of the object
[10,14], and implies as well ���p� �

Dp�

D� , from which we
get

��� 
 S�� �
1

2m
R����S

�� � RRSSS� � � � ; (29)

where we have used (27) and (28). We can indeed obtain
the angular-velocity/spin relationship by matching the evo-
lution equation for the tetrad in a Minkowski background
obtaining (see Appendix A)

S�� �
I

�u2�1=2

�
��� �

I
2m

R������� � � � �

�
; (30)
-5
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with I the moment of inertia, and a particular Lagrangian is
chosen to ensure (27) [20]. The main results of this section
are therefore Eqs. (28) and (30), from which we conclude
that in a theory where (27) is kinematically imposed spin
and angular velocity are naturally related and proportional
in flat space. Within an EFT approach, these relationships
are all we need to construct the NRGR extension for
spinning bodies.
FIG. 2. Leading order spin-graviton vertex interaction. The
blow represents a spin insertion.
IV. NRGR FOR SPINNING BODIES

A. Power counting

The power counting rules in NRGR have been devel-
oped in [1]. Here we are going to extend them to include
spin degrees of freedom. As we shall show, the only
necessary change is the inclusion of spin insertions at the
vertices.

First of all notice that, from the constraints at leading
order,

S��u� � 0! Sj0 � Sjkuk; (31)

which implies a suppression of the temporal components
with respect to the spatial ones. In other words, spin is
represented by a 3-vector, Sk � 1

2 
kijSij, in the rest frame

of the particle as expected. We will concentrate here in
compact objects like neutron stars or black holes where the
natural length scale can be taken to be their Schwarzschild
radius rs 
Gm (for general objects see Appendix B), and
hence a momentum of inertia scaling as I 
m3=m4

p. For
the spin angular momentum we will have

S � I! � I
vrot

rs

mvrotrs < mrs 
 Lv: (32)

We therefore see that spin gets suppressed with respect
to the orbital angular momentum, even for the maximally
rotating case (vrot � 1). We can also assume a different
kinematical configuration with the particles corotating,
namely vrot

rs
� v

r . In the former S
 �mvr2
s�=r �

L�r2
s=r2� 
 Lv4. We will generally power count spin as

S
 Lvs; (33)

with s � 1 and s � 4 in the maximally rotating and coro-
tating scenario, respectively.

To obtain the scaling laws we have assumed the usual
proportionality at leading order between spin and angular
velocity which was obtained from (30). As usual, sublead-
ing scalings will be naturally taken into account by the
insertion of higher-order terms in the world line action.
What we have learned here is that spin effects are in any
case subleading in the PN expansion, and the scaling laws
developed in [1] still hold and spin contributions can be
treated as a perturbation.
104031
B. Feynman rules: Spin-graviton vertex

To construct the effective theory for gravitons we need
to expand the metric around a Minkowski background,
namely g�� � ��� �

h��
mp

. There is however a subtle point

in doing this given that (13) leads to

�IJeI�eJ� � ��� �
h��
mp

;

eI� � �I
� � �eI� ! �eI� �

1

2mp
h����I � � � � ;

(34)

where �I� is an element of the Lorentz group. We will also
need �e�I which is defined through the inverse metric [37],

g�� � ��� � h��;

h�� � ���
0
���

0
��h�0�0 � h

�
�0h��0 � � � ��;

(35)

where indices are raised with ���. We will therefore have

�eI� � �
1

2mp
���h����I � � � � ; (36)

One can immediately see how to proceed by comparison
with what has been done in [20] within flat space where the
angular velocity was defined as

���
M � ��� d��

�

d�
; (37)

with ��� describing the rotation of the particle, and M
stands for Minkowski. Expanding the action using (34) and
(36), we will thus obtain the spin-graviton interaction to all
orders in a flat space background as a function of the
graviton field and (37) (see Appendix C for details). To
leading order in the weak field expansion (see Fig. 2),

L0 �
1

2mp
h��;�S

��
M u�; (38)

where S��M � �
@L
@���

at g�� � ��� (we will drop the M

from now on). The expression in (38) is remarkably action
independent if written in terms of spin and the graviton
field. The Lagrangian dependence enters in the so far
unknown function S���. This conclusion however just
applies to the leading term and a choice of action is
necessary to obtain the Feynman rules to all orders. At
next to leading order in the weak gravity limit we will have
-6



(b)(a)

FIG. 3. Leading order spin-orbit interaction. Diagram (a) takes
into account a v1 mass insertion. Diagram (b) corresponds to the
v3 spin-graviton vertex.
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L1 �
1

4m2
p
S��u�h	�

�
1

2
h�	;� � h�	;� � h��;	

�
; (39)

where a particular action has been chosen to ensure (27). A
different choice of Lagrangian will imply different
Feynman rules. However, bear in mind that different ac-
tions will differ in the spin/angular-velocity relationships
and might not lead kinematically to (27). The physics will
be invariant once these differences are taken into account.

To calculate in the EFT we need to match (38) and (39)
into NRGR using the power counting rules developed in
[1] plus the spin insertions. Up to 2PN, for maximally
rotating compact objects we will get for the spinning part
of the NRGR Lagrangian

LNRGR
1PN � �

1

2mp
Hi0;kSki; (40)

LNRGR
1:5PN � �

1

2mp
�Hij;kS

kiuj �H00;kS
k0�; (41)

LNRGR
2PN � �

1

2mp
�H0j;kS

k0uj �Hi0;0S
0i�

�
1

4m2
p
Sij�H	

j H0	;i �Hk
jH0i;k�: (42)

The procedure follows systematically as shown in
Appendix C.

It is an useful exercise to check the gauge invariance of
(38), or in other words to obtain the leading stress energy
tensor. It is straightforward to calculate T��

�1� � �
@L
@g��

at

g�� � ��� getting

T��
�1� � �

1
2@��S

��u� � S��u��; (43)

which agrees at zero order with the original proposal of
Dixon [38] and also Bailey and Israel [39] (see
Appendix D).

The Ward identity,

@�T
��
�1� 
 @�

dS��

d�
� 0; (44)

is therefore obeyed since spin is constant to leading order
in the PN expansion.

C. Leading order graviton exchange

Our goal from now on is to calculate the leading order
piece (one graviton exchange) of the potential energy due
to spin-orbit (Fig. 3) and spin-spin (Fig. 4) couplings
coming from (40) and (41).7 The leading order spin-orbit
7Self-energy terms are not considered since they yield scale-
less integrals.
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contribution is the sum of two pieces,

Fig: 3 �
�im2

4m2
p

Z
dtdt0

d3p

�2��3

�
e�i ~p� ~x�t�� ~y�t

0��

~p2

� ��t� t0�P0;��

�
S��1 u�1 �t�u


2�2� �


0�: (45)

We need to distinguish two different cases: the temporal
and spatial derivative. The temporal derivative will just hit
��t� t0� and can be integrated by part bringing down a
velocity factor. To leading order we would need to consider
 � � � 0. However, P00;�0 � 0 unless � � 0, which
leads to a term proportional to S00 � 0. There is then no
contribution from the temporal derivative and we just need
to concentrate in the spatial part and the terms,

�im2GN@j
Z
dt

1

j ~x�t� � ~y�t�j
P0;��S

j�
1 u

�
1 �t�u


2�t��2� �


0�:

(46)

Notice that we have three possible contributions, one
coming from  � 0, � � l, � � k, another where  � l,
� � k, � � 0, and finally  � � � � � 0. The latter
looks at first as a v0 piece, however this is misleading since
our spin choice implies Sj0 � Sjlul. Adding all the terms
one gets

Fig :3� i
Z
dt
�2GNm2

j ~x�t�� ~y�t�j2
�� ~n� ~u1� � ~S1�� ~n� ~u2� � ~S1�;

(47)

where ~n is the unit vector in the � ~x� ~y� direction and we
have used Skj � kjiSi. Joining the mirror image we will
FIG. 4. Leading order spin-spin interaction.
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end up with

VSO �
2GN

r2 �� ~n� ~v� �
��

1�
m1

m2

�
~S2 �

�
1�

m2

m1

�
~S1

�
;

(48)

for the spin-orbit potential, where � is the reduced mass,
r � j ~x�t� � ~y�t�j and ~v � ~u1 � ~u2.

Let us now consider the spin-spin interaction. The lead-
ing order contribution is (see Fig. 4)

i

4m2
p
@yk@xk0

Z
dt

d3p

�2��3
ei ~p� ~x�t�� ~y�t��

1

~p2 Pj00;j0S
jk
1 S

j0k0

2 : (49)

Using Pj00;j0 � �
1
2�jj0 it is straightforward to show

VSS � �
GN

r3 �
~S1 � ~S2 � 3 ~S1 � ~n ~S2 � ~n�; (50)

for the spin-spin binding potential. It is easy to see by
power counting that VSOdt
 Lv3 and VSSdt
 Lv4, ef-
fectively 1.5PN and 2PN for maximally rotating compact
objects.

By comparison with the results in [10], it is immediate to
notice there is a mismatch in the spin-orbit contribution
(48), which can be traced back to the choice of spin
supplementary condition in (27). As it was noticed in
[10,12,13,15], this discrepancy is associated to the choice
of center of mass of each body. It can be shown there is a
coordinate transformation that relates the center of mass
choice which follows from (27) and the so-called baryonic
coordinates (implicitly used in [10]), where the center of
mass is defined through the baryonic density, and one has
Si0 � 1

2 S
ijuj. Had we calculated the spin-orbit term within

the baryonic condition we would obtain

�V SO �
2GN

r2 �� ~n� ~v� �
��

1�
3m1

4m2

�
~S2 �

�
1�

3m2

4m1

�
~S1

�
;

(51)

in complete agreement with the result in [10]. The leading
order spin-spin interaction does not get affected by this
new choice.

D. EOM

Even though (51) is in total agreement with the spin-
orbit potential in baryonic coordinates, the calculation in
the covariant approach does not reproduce the well-known
fact that the generalized Lagrangian from which the EOM
are derived turns out to be acceleration dependent
[9,10,12,13,15]. Indeed, (48) reproduces the gravitational
potential in [13] up to this acceleration dependent piece
which does not follow from a graviton exchange. As we
shall show in Appendix E, the solution to this puzzle lies on
the fact that a noncanonical algebra develops which natu-
rally reconciles both approaches. Instead of following that
path here, it is instructive to remark there is a coordinate
transformation which leads to a canonical structure. Not
104031
surprisingly this map transforms the covariant choice into
the baryonic one, where it has been explicitly shown there
is no need for an acceleration dependent piece in the
action. We can therefore proceed from the potentials in
(50) and (51) and the standard Euler-Lagrange formalism
to obtain the EOM within the baryonic supplementary
condition. It can be easily shown that they are given by
(in relative coordinates)

~a � ~a1 � ~a2 � �
GNM

r2
~n� ~aSO � ~aSS (52)

~a SO �
GN

r3 �3 ~n� ~n� ~v� � ~�� 2 ~v� ~�� 3 ~n � ~v� ~n� ~���

(53)

~aSS � �
3GN

�r4 � ~n�
~S1 � ~S2 � 5 ~S2 � ~n ~S2 � ~n� � ~S2� ~n � ~S1�

� ~S1� ~n � ~S2�� (54)

d ~S1

dt
�
GN

r3

�
~L� ~S1

�
2�

3m2

2m1

�
� ~S1 � ~S2

� 3� ~n � ~S2� ~n� ~S1

�
;

d ~S2

dt
� 1$ 2; (55)

where we have introduced M � m1 �m2, ~� �

�2� 3m2

2m1
� ~S1 � �2�

3m1

2m2
� ~S2, and ~L � �r ~n� ~v.

From the symmetries of the action we can directly
construct the conserved quantities, in particular, the en-
ergy. First of all notice that the spin-orbit force does not do
any work, namely ~aSO � ~v � 0, from which we conclude
that the conserved energy is nothing but

E �
1

2
� ~v2 �

GNM�
r

� VSS: (56)

In order to compare with the results in [13] within the
covariant supplementary condition, we restrict ourselves
now to the case of nearly circular orbits to express (56) in
terms of the orbital angular frequency ! and spin. Taking
an angular average for all quantities we obtain from (52),

r�!; S� �
M1=3

!2=3

�
1�

1

3

!
M
~l � ~�

�
1

2

!4=3

�M5=3
� ~S1 � ~S2 � 3~l � ~S1

~l � ~S2�

�
(57)

E�!; S� � �
1

2
�M!�2=3

�
1�

4

3

!
M
~l � ~�

�
!4=3

�M5=3
� ~S1 � ~S2 � 3~l � ~S1

~l � ~S2�

�
; (58)
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FIG. 6. Leading order diagram whose imaginary part gives rise
to the quadrupole radiation power spectrum. The black boxes are
quadrupole insertions and the curly propagator a radiation gravi-
ton.
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with ~l the unit vector in the ~L-direction. We therefore
conclude that energy as a function of spin and angular
frequency in (58) matches that of [13,15] independently
of the spin supplementary condition. As a final comment,
let us remark that our results also agree with those of
Buonanno et al. [40], which appeared after we had com-
pleted our work, where a similar procedure is advocated
within baryonic coordinates. However, the covariant spin
supplementary condition and finite size effects are left
undiscussed in [40].

V. INTERNAL DEGREES OF FREEDOM II:
PERMANENT MULTIPOLE MOMENTS

By now it should be easy to visualize how are we going
to include multipole moments in terms of the eI� fields. Let
us assume for instance the particle has an intrinsic, perma-
nent quadrupole moment QIJ. In order to couple it to the
gravitational field, the following term can be introduced:

Z
d�R����e

�
I e

�
J Q

IJu�u�: (59)

Notice in fact this is just a generalization of what has
been done in [1]. In fact, it can be shown (see Appendix C)
this quadrupole term is naturally obtained if we include the
nonspherical contribution of the tensor of inertia in the spin
part of the Lagrangian.

From the gauge fixing condition e�0  p�=m, we im-
mediately see that the Q0I components do not contribute at
all given that replacing e�0 in (59) gives rise to vanishing
terms. We can therefore, as expected, concentrate just in
the spatial components.

It is easy to see that (59) will naturally reproduce the
quadrupole gravitational energy piece, �Qijx

ixj�=r5, in the
potential. In order to obtain a nontrivial contribution, we
calculate a correction to the binding energy due to a
quadrupole-spin interaction to leading order. After match-
ing (59) into NRGR and using the expression for the
Riemann tensor in the weak gravity approximation, the
one potential graviton exchange in Fig. 5 gives

VQS �
3GN

r4 ��Q
i
1i � 5Qik

1 nink� ~n � � ~u2 � ~S2�

�Qjk
1 nk��2 ~u2 � ~u1� � ~S2�j

�Qij
1 �u1j � 5� ~u1 � ~n�nj�� ~n� ~S2�i	; (60)

for the quadrupole-spin potential within the covariant spin
FIG. 5. Leading order quadrupole-spin one graviton exchange.
The black square represents a quadrupole insertion.

104031
condition, where we have used Qij � Qji and the
Euclidian metric (�ij) to raise and lower indexes. A similar
expression is obtained from the mirror image 1$ 2. It is
easy to show it corresponds to a 3.5PN contribution for
maximally rotating neutron stars or black holes. Notice that
for a spherically symmetric object (Qij 
 �ij) EQS ! 0 as
one would have guessed.8 Therefore, the coupling is effec-
tively to the traceless piece of the quadrupole. Higher-
order multipole moments are easily handled by similar
procedures.

A. Quadrupole radiation

It is instructive to notice that (59) will directly lead to the
well-known quadrupole radiation formula. The leading
order piece will be of the form (for on-shell gravitons)

1

2mp
Ri0j0Q

ij
TF; (61)

where TF stands for the traceless piece. By calculating the
imaginary part of Fig. 6 we can immediately obtain (we
skip details which can be found for an identical calculation
in [1])

Im Fig: 6 � �
1

80m2
Pl

Z d3k
�2��32jkj

k4jQij
TF�jkj�j

2; (62)

from which the power radiated follows:

P �
GN

5�T

Z 1
0
d!!6jQij

TF�!�j
2 �

GN

5
hQ
:::ij
TFQ
:::ij
TFi; (63)

with dots as time derivatives and the bracket representing
time averaging. This is the celebrated quadrupole radiation
formula.
VI. DIVERGENCES, NONMINIMAL INSERTIONS,
AND FINITE SIZE EFFECTS FOR SPINNING

BODIES

We are going to discuss here the appearance of diver-
gences and their consequent renormalization. This will
lead us to the study of higher-order terms in the world
line action and their Wilson coefficients, which will encode
the information about the internal structure of the body. In
addition to terms coming from logarithmic UV divergen-
8This is reminiscent of the vanishing of the cV contributions in
[1].
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FIG. 7. Two graviton contributions to the one point function in
effective action with a single spin insertion.
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ces, we will encounter power law divergences whose asso-
ciated Wilson coefficients do not have scale dependence.
This distinction will turn out to be connected with tidal
deformations vs self-induced effects as we shall see.

A. A cursory first look

Let us study the one point function in the effective action
with spin insertions. Let us start with the diagram shown in
Fig. 7. The spin-graviton Feynman rules derived from (38)
differ from mass insertions in two main points: its tensor
structure and its dependence on the graviton momentum.
Figure 7 then contributes for potential gravitons terms
proportional to

Z d3q
�2��3

�
q � k;q2;k2

q2�q� k�2

�
; (64)

where k is the external graviton momentum. None of these
integrals are logarithmically divergent and therefore can be
absorbed as pure counterterms in the original Lagrangian.

Let us concentrate now on the divergent piece coming
from diagrams like in Fig. 8. It can be shown that this
diagram contain terms such as (in d-dimensions)

I�k� �
Z dd�1p
�2��d�1

dd�1q
�2��d�1

�q � k��p � k�
q2p2�q� p� k�2

; (65)

as well as integrals with q � p in the numerator. These
integrals contain power as well as logarithmic UV diver-
gences. It is clear that these divergences cannot be ab-
sorbed into the original Lagrangian since they involve in
principle higher-order derivatives of the metric. By general
covariance and parity conservation, there is a limited set of
nonzero terms one can build up with the right structure to
cancel the previous divergences. In what follows we will
FIG. 8. Three graviton contribution to the one point function in
the effective action with two spin insertions.
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study a possible set of new insertions in the world line
action which are generated by renormalization.

B. Nonminimal insertions I: Self-induced effects

We will consider here terms which are not total deriva-
tives and cannot be removed by f.r. Let us proceed system-
atically. Let us start with terms linear in Riemann and no
further derivatives acting on external fields. The first non-
zero terms we can construct are

O 1
RS2 �

C1
RS2

mp
R����S��S��

O2
RS2 �

C2
RS2

mp
R����S

��S��

O3
RS2 �

C3
RS2

mp
R����S

��S��u�u�:

(66)

It is possible to show that they are physically equivalent,
namely, they are proportional up to f.r. removable terms.
By simple inspection it is easy to see they are similar to the
quadrupole moment insertion in (59). It is therefore natural
to expect these terms to describe self-induced quadrupole
effects rather than tidal deformations. It is straightforward
to show, after matching into NRGR for potential gravitons,
that Oi

RS2 

����
L
p

v2s�2 with Ci
RS2 
 1=m. This immediately

tells us Oi
RS2 cannot be generated from a logarithmic UV

divergence. It is possible to show nonetheless that these
terms can be generated from power law divergences (see
Appendix G). At 2(5)PN these terms generate a gravita-
tional potential for a maximally rotating (corotating) neu-
tron star or black hole A coupled to a nonspinning one B of
the form

VS2O � Ctot
RS2�A�

GNmB

2r3 �3�
~SA � ~n�

2 � ~SA � ~SA�; (67)

with Ctot
RS2�A� � ��C

1
RS2 �

1
2C

2
RS2 �

1
4C

3
RS2�A. A spinning

particle will tend to deform and therefore generate multi-
pole (mass) moments which will thus produce a binding
energy term equivalent, as in this case, to a quadrupole
interaction [21].9 It is well known that rotating black holes,
or neutron stars, have a quadrupole moment given by
Qbh � �aS2=m (G � c � 1), with m, S the mass and
spin, respectively. For a black hole a � 1 [41], for neutron
stars a ranges between 4 and 8 depending on the equation
of state of the neutron star matter [22]. This will give us a
straightforward matching for Ctot

RS2�A� in (67) which is con-

sistent by dimensional analysis with what we expect from
naturalness arguments. Furthermore, these coefficients
contribute to the one point function, and thus will show
9It will in principle vary in time and henceforth radiate. This
effect will be naturally taken into account similarly as we did for
the quadrupole.
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up in the metric solution for a rotating neutron star or black
hole. For the case of a black hole, the Kerr-Newman space-
time does not have any logarithmic dependence and there-
fore, every coefficient associated to a non-f.r. removable
term10, which contributes to the one point function, must
be scale independent. Similarly for neutron stars. This
provides a natural characterization for self-induced effects.
Tidal effects in the other hand will be then associated to
coefficients which do not contribute to the one point func-
tion, and moreover are scale dependent. Tidally induced
effects will be therefore naturally generated by logarithmic
UV divergences.

Once self-induced spin-multipole moments are included
it is no longer necessary to introduce a nondynamical
permanent multipole. Adding more spin insertions without
derivatives will have the same type of behavior we encoun-
tered above, namely, the Wilson coefficients will scale with
negative powers of the mass and therefore they cannot be
generated from logarithmic UV divergences. It is indeed
possible to show that we can in principle hook together n
spin tensors leading to terms scaling as

����
L
p

v4�n�s�1� after
matching into NRGR. Given that n could be any number of
spin insertions, it appears as if we will have no predictive
power for the case s � 1. However, it can be shown that
terms with a large number of spin insertions can be rewrit-
ten in terms of interactions with no more than four spin
insertions [20]. The case of three and four spin insertions
does not modify the leading order expression in (67).

C. Nonminimal insertions II: Tidal deformations

Another type of world line insertions we could in prin-
ciple generate are those having derivatives of the Riemann
tensor and more spin insertions. We will need to introduce
terms like
DR����S
�S��u�;

D2R����S
�
S�
u

�u�;

D�D
R����S

�S��u�u�;

D
D2R���S�
S�S��u� . . . :

(68)
We will concentrate here in tidal effects and therefore in
those terms generated by logarithmic UV divergences. To
lowest order it can be shown we will have D2Oi

RS2 (with
i � 1, 2, 3) coming from diagrams like Fig. 8. We will
generically denote their Wilson coefficients by CD2 . Given
that these expressions possess different tensorial structure,
the RG flow will naturally decouple. By dimensional
10As it was noticed in [1], f.r. removable terms can in principle
show up in the one point function. However, they can be washed
away by a coordinate transformation. Here we will concentrate
in terms which are not f.r. removable.
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analysis it is easy to conclude that

�
dCD2

d�


m

m4
p
: (69)

As it was pointed out before, these new insertions will
not contribute to the one point function.11 However, they
will in principle be observable for more complicated am-
bient metric, such as the field produced by a binary
companion.

Let us power count this effect. After matching into
NRGR for potential gravitons we will get, to leading order,

CD2�@4Hkd
3k�S2d�


m

m4
p

1

r4

v2����
L
p L2v2s r

v



����
L
p

v6�2s;

(70)

which would make it a 4PN contribution for maximally
rotating compact objects. A careful inspection shows how-
ever that the leading piece from these terms goes as de-
rivatives of ��x1 � x2�, which is a contact interaction (the
k2 piece cancels the propagator). As a consequence, the
first long range interaction coming from CD2 , and therefore
the lowest companion induced tidal effect, will scale as
Lv8�2s, a 5PN contribution for maximally rotating com-
pact objects (formally at 3PN as shown in Appendix B). At
this order new terms will also start to contribute [for
instance the third and fourth expressions in (68); see
Appendix G for details]. The reasoning in previous sec-
tions can be easily extended to the n-point function and
higher Riemann insertions.
VII. CONCLUSIONS

In this paper we have extended the formalism initially
proposed in [1] to include internal degrees of freedom like
spin as well as multipole moments. As a first step, we have
developed in a suitable fashion the description of spinning
bodies in GR to include a richer tensor structure extending
the previous work done in the realm of special relativity by
Hanson and Regge [20]. We have shown that a self-
consistent action principle can be implemented and
Papapetrou equations [32] recovered. Permanent multipole
moments are naturally introduced by adding new degrees
of freedom in the world line action. Using this formalism
we have extended NRGR, its power counting, and
Feynman rules with which we have reproduced the well-
known spin-spin and spin-orbit effects at leading order
[13]. A quadrupole-spin correction to the binding energy
was obtained for the first time (to my knowledge) as well as
the quadrupole radiation formula recovered. The equiva-
lence between different choices for the spin supplementary
condition was explicitly shown. We have shown afterwards
the appearance of divergences at higher orders in the PN
expansion and its consequent regularization. The type of
11For instance D2Oi
RS2 � 0 on shell.
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divergences are twofold: logarithmic and power law UV
divergences. This distinction was shown to be associated to
tidal vs self-induced effects. Renormalization through the
insertion of nonminimal terms in the effective action was
implemented and the RG flow obtained. A finite size cutoff
was invoked in the case of power law divergences and its
respective Wilson coefficients set by naturalness. In the
EFT spirit it is likely that all terms which are consistent
with the symmetries will contribute to the effective action.
In fact, self-induced spin effects are naturally expected and
the lack of scale dependence just responds to the fact that it
is a 1-body effect on itself due to its proper rotation which
does not get renormalized.12 A partial matching into the
full theory was accomplished by comparison with known
results [21,22]. Self-induced effects could in principle
appear at leading orders in the PN expansion in the case
of maximally rotating compact bodies, for which tidal
deformations were shown to first appear at 5PN, although
formally at 3PN for general objects. Within the power of
the EFT, most of the conclusions are based on dimensional
grounds without detailed calculations.

Several aspects remain still to be worked out. In addition
to the matching calculation and the issue of finite size
effects, higher-order corrections are yet to be obtained
even though the formalism is already set and just computa-
tional work is needed. Including dynamical properties for
multipole moments as well as backreaction effects is also
to be worked out. Moreover, new kinematical scenarios,
like a 3-body system and the large small mass ratio case,
are currently under study. All these issues, including the
radiative energy loss due to spin, will be covered in forth-
coming publications.
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APPENDIX A: ANGULAR-VELOCITY/SPIN
RELATIONSHIP

By RPI we know the theory has vanishing Hamiltonian
and dynamics is generated by the constraints C1, C2. It can
be also shown that the Lagrange multiplier associated toC1
12Formally speaking, self-induced effects do not get renormal-
ized as a consequence of the fact that they are derived from the
coupling to the conserved stress energy and the metric field does
not get renormalized classically.
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has been set to zero by the condition   0 [20]. Using the
Hamiltonian equations for the tetrad and position we have
in the realm of special relativity,

dx�

d	
� �x�; �C2	pb � 2�p� ! � �

�u2�1=2

2m

deI�
d	
� �eI�; �C2	pb � 2�f0�S2�S��eI� ! ���

�
�u2�1=2

m
f0�S2�S��;

(A1)

where � is a Lagrange multiplier, �; 	pb stands for the
Poisson bracket and f�S2� � m2�S2�. By comparison
with (29) we conclude, by matching to the zero curvature
case,

��� � �u2�1=2 f
0�S2�

m

�
S�� �

1

2m
R����S�� � � � �

�
:

(A2)

The Lagrangian dependence of this expression is en-
coded in the function f�S2� defined by (21) and (22). It is
possible now to construct a Lagrangian � �L� using all the
freedom we showed previously, that will ensure (27) kine-
matically [20]. Such a procedure is therefore preferred
given that the unphysical degrees of freedom are cut off
kinematically rather than cut by hand. As it has been shown
in [20] �L is however not unique. There is still a remnant
freedom of the form f0�S2� 
 A, with A a constant.13 We
can henceforth set A in order to recover the well-known
relationship between angular velocity and spin in flat
space, namely S
 I�, with I the moment of inertia. One
then solves for S�� in (A2) order by order to get (30).

One could still argue that the angular-velocity/spin rela-
tion should be obtained directly from SM � �

@ �L
@��M rather

than using the EOM as we did. One should however bear in
mind that dynamics naturally help us to power count within
an EFT approach. Higher-order corrections are taken into
account by insertions in the world line action [1].

APPENDIX B: FORMAL POWER COUNTING

Here we will comment on the power counting from a
formal point of view without assuming any specific prop-
erties of the objects. This will introduce new parameters
which should be adjusted depending on the constituents.
For an object of characteristic length R, the spin magnitude
for a rotating velocity vrot is S
 L R

r
vrot

v , formally non-
perturbative effects. For maximally rotating, and corotat-
ing, bodies one gets S
 L R

rv and S
 L R2

r2 respectively.
Nevertheless, it is naturally expected that  � R=r� 1
and a new perturbative parameter is introduced (
 v2 for
neutron stars or black holes). It is easy to show that the
leading spin-orbit effect for maximally rotating objects
13Regge trajectories are of constant slope.
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scales as vL, a subleading contribution formally at 0.5PN.
The first long range contribution from CD2 to the effective
action will now scale as Lv62 for vrot � 1, a 3PN effect,
effectively at 4PN for 
 v. This brings hope to poten-
tially observe these effects in the future.

APPENDIX C: GOING TO ALL ORDERS

As we pointed out the unphysical states can be washed
away kinematically by (27) if a suitable Lagrangian � �L� is
chosen [20]. Moreover, the leading order spin-graviton
vertex was shown to be Lagrangian independent to leading
order. This however cannot be translated to higher orders.
Here we will show how to proceed to obtain the Feynman
rules to all orders.

By local Lorentz invariance and general covariance, we
know �L is a function of the metric and angular velocity. We
can rewrite �L � �L��IJ; �IJ� which shrinks to �IJ �

e�I e
�
J��� all the metric dependence. Within an EFT frame-

work, the explicit form of the Lagrangian given in [20] is
not necessary, since we can always obtain its NRGR coun-
terpart by expanding �L around a Minkowski background,

�L � �L��IJ
M� �

�
@ �L
@�IJ

�
M
��IJ � � � �

1

n!

�
@n �L
@�n

�
M
�n� . . . ;

(C1)

where ��IJ��e; h� � �IJ ��IJ
M , and �IJ

M is defined by
(37). Using that SM � I�M on shell, the NRGR
Lagrangian turns out to be (schematically)

�L � �L��M� �
1

2
SM���

I
2
����: (C2)

By expanding ����e; h� in (C2), we will therefore
generate the spin-graviton vertices to all orders in the
weak field limit.14 The next step to construct the EFT is
to match into NRGR using the power counting rules thus
far developed [1]. That is an straightforward task. The
terms in the NRGR Lagrangian for maximally rotating
compact objects are shown in (40)–(42) up to 2PN.

Notice also that the second piece in (C2) generates
contributions which are not explicitly spin dependent,
although the coupling is proportional to the moment of
inertia. For spherically symmetric objects, we will have for
instance a term of the form

I
2

�������
�u�u�; (C3)

which can be easily shown to be proportional to R��u�u�

and henceforth f.r. removable. For nonspherical bodies we
will get

R����e
�
Ke

�
JI
KJu�u�; (C4)
14We will show in Appendix F that the spin part of the action
can indeed be rewritten in terms of the Ricci rotation coefficients
in a more compelling fashion.
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with IKJ the inertia tensor defined by IKJ �P
pmp� ~x2

p�KJ � xJpxKp � with p labeling the internal struc-
ture of the body. Given that the symmetric piece leads to a
Ricci tensor, the only physically observable contribution
will come from the quadrupole piece QKJ �

P
pmpxJpxKp

as expected. Therefore, by adding the nonspherical struc-
ture into its rotational part we will automatically account
for its internal quadrupole moment structure. Higher-order
multipoles do not follow this procedure and they should be
added depending on the physical situation.

APPENDIX D: STRESS ENERGY TENSOR FOR
SPINNING OBJECTS

As it was shown by Dixon, a spinning particle can be
described by the following stress energy tensor [38,42]:

T��D �
X
A

Z
d�p�u�

�4�x�� x�A �����������
�g
p

�
1

2
r�

�
�S��u�� S��u��

�4�x�� x�A �����������
�g
p

�
: (D1)

The Papapetrou equations can be recovered as a conse-
quence of Einstein equations, namely T��;� � 0 [42].15

It can be shown also that (D1) is obtained from our
formalism. By definition the stress energy tensor is defined
such that

�S � �
1

2

Z
d4x

�������
�g
p

T���g��: (D2)

The variation of the action is in principle tricky due to
the presence of the constraint eI�eI� � g��. Using

�eI� �
1
2e
I
�g���g�� (D3)

�g�� � �g��g���g��; (D4)

we will therefore get

�1

2

Z
d�SIJ��IJ �

�1

2

Z
d4x

�������
�g
p

T��D�spin��g�� (D5)

as expected. It is important to remark that, even though at
first sight (D1) looks action independent, it utterly depends
on the relationship between spin and angular velocity
which by itself depends on the particular Lagrangian.

APPENDIX E: THE EOM IN THE COVARIANT
GAUGE: NONCOMMUTATIVE ALGEBRA

As it is known relativistic N-body EOM cannot be
derived from an ordinary Lagrangian beyond the 1PN
level, provided Lorentz invariance is preserved [43].
15However, they do not decouple using (D1). They can be
separately recovered by using the stress energy tensor proposed
by Bailey and Israel [39], plus imposing the symmetry condition
T�� � T�� by hand [16].
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16As shown by Schafer [44], substituting the leading order
EOM in the acceleration dependent Lagrangian of [12,13] is
also equivalent to the map to baryonic coordinates.
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However, the latter theorem does not follow if the position
coordinates are not canonical variables, and this is exactly
what happens once the second class constraints in (27), and
the gauge fixing condition  � � 0, are imposed strongly in
the phase space [35]. As shown in [20], the Poisson brack-
ets are modified by the Dirac algebra [35,36]. The interest-
ing commutation relations are those of xia and spin, to
leading order we have [20]

�xia; x
j
a	db �

Sjia
m2
a

�xka; S
ij
a 	db �

1

ma
�Skia v

j
a � S

kj
a via�;

(E1)

with a � 1, 2, and db stands for Dirac brackets.
It can be easily noticed that our expressions in (48) and

(50) for the potentials within the covariant condition co-
incides with that of [9,12,13] up to the acceleration piece.
Therefore, all we have to do in order to prove the equiva-
lence is to explicitly show that the new term derived from
the acceleration part agrees with the extra factor generated
by the noncanonical brackets. Let us start with the position
dynamics. It is easy to show from (E1) that the following
new term,

d
dt

��
~x1;�

GNm2

r

�
db

�
� GN

m2

m1

d
dt

�
~n� ~S1

r2

�
; (E2)

will appear into the acceleration of body 1. Adding the
piece coming from the second body, it is straightforward to
show that the extra factor is equivalently obtained by add-
ing a term (in relative coordinates),

�
2M

~v �
�
~a�

�
m1

m2

~S2 �
m2

m1

~S1

��
(E3)

into the Lagrangian, where it is understood that wherever
the acceleration appears in higher-order terms one substi-
tutes the leading order EOM. This agrees with [12,13] and
the equivalence is thus proven. In addition, it is easy to
show there is a coordinate transformation that leads to a
canonical algebra, to leading order [20],

~x a ! ~xa �
1

2ma

~Sa � ~va: (E4)

Still missing is the precession of spin. Using (E1) one
can show that the EOM for spin ends up being

d ~S1

dt
�2

�
1�

m2

m1

�
�GN

r2 � ~n� ~v�� ~S1�
m2GN

r2 � ~n � ~v1� ~S1:

(E5)

It is easy to show now that the following PN shift,

~S a ! �1�
1
2 ~v

2
a� ~Sa �

1
2 ~va� ~va �

~Sa�; (E6)

which jointly with (E4) leads to a canonical algebra, re-
produces the well-known spin precession [see (52)]. The
map in (E4) and (E6) connects the covariant choice with
the baryonic one. The baryonic condition does not preserve
104031
Lorentz invariance, and an acceleration independent
Lagrangian exists.16 As a consequence, (51) will not be
invariant under the usual linear realization of the Poincaré
group [12,43]. Given that (E4) and (E6) are PN shifts it is
also immediate to conclude that the power counting rules
developed in this paper do not get affected by the new
choice.
APPENDIX F: SPIN-GRAVITON COUPLING
REVISED

By RPI we know that the Lagrangian must be of the form

L � �p�u� �
1
2S
�����: (F1)

Here we shall show that the spin part of the action can be
rewritten as

Sspin 

1

2

Z
d�!IJ

� SIJu�; (F2)

with !IJ
� the Ricci rotation coefficients. Notice this cou-

pling is generally covariant and RPI by construction. We
could have chosen to add spin this way into the NRGR
Lagrangian given that SIJ can be treated as a constant
external source [see Eq. (25)]. In fact, the momentum
dynamics [Eq. (26)] is also recovered following similar
steps as we did before. It is therefore natural to expect that
both formalisms agree which indeed follows almost
straightforwardly by definition. In terms of a tetrad and
the Levi-Cività connection, the Ricci rotation coefficients
can be written as [37]

!IJ
� � �J�

I � eJ�@�e�I: (F3)

Given that (F2) is defined on the world line, we can use
the tetrad field transported by the particle. We will thus get
for the spin part of the action [using (15)]

u�!�IJSIJ � SIJ
�
��JI�u� �

de�I
d�

e�J

�
� SIJ�IJ; (F4)

as advertised. Written this way it is clear how spin and
gravity couple to each other, with spin playing the role of a
‘‘gravitational charge‘‘ coupled to a connection of a spin 2
field.
APPENDIX G: NAIVE POWER COUNTING

Here we will schematically show the type of new in-
sertions which are generated by divergences in the one
point function. Let us start by calculating the effective
action with ns spin and nm mass leading order insertions
as shown in Fig. 9. This diagram will scale as (after
matching into NRGR for potential gravitons)
-14



FIG. 9. A typical contribution to the one point function in the
effective action coming from leading order mass and spin
insertions.
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1

mns�nm�1
p

�
m
mp

�
nm
Lns

vsns

mns
p

v2mp����
L
p

r

rdv
; (G1)

where rd is introduced for dimensional reasons. By using
NRGR power counting [1], each diagram should scale as����
L
p

and therefore,

d � 2ns � nm � 1! Fig: 9

����
L
p

v2d: (G2)

To consider the type of terms that can be generated by
renormalization in the one point function, and will con-
tribute to physical observables, we need as a necessary
condition ~d � d� 2 � 0. This however is not sufficient
given that using Bianchi identities it can be shown that
contraction of covariant derivatives with the full Riemann
tensor are equivalent to derivatives of the Ricci tensor and
henceforth f.r. removable terms. We can nonetheless enu-
merate some cases. Let us concentrate in logarithmic di-
vergences first. For ~d � 0 we have ns � nm � 1, and it is
easy to see there are not any new terms generated by Fig. 7.
The case ~d � 1 has either ns � 2, nm � 0 or ns � 1, nm �
2. None of these diagrams have logarithmic divergences
(for potential gravitons) which could generate an observ-
104031
able term. In fact, the only observable term which can be
written down with ~d � 1, and either ns � 1, 2 is the first
term in (68), which can be shown to be a subleading self-
induced effect. For ~d � 2 we have either ns � 2, nm � 1
and Fig. 8 which leads to the finite size effects we dis-
cussed in the paper, or ns � 1, nm � 3 which can be shown
does not generate observable terms. For ~d � 3 we can have
ns � 1, 2, 3 plus mass insertions. Some of these diagrams
will contribute observable terms. After matching into
NRGR such terms start out at O�v10� for maximally rotat-
ing compact objects. The procedure follows systematically
with higher-order terms.

In addition to logarithmic divergences, it is easy to see
that diagrams like Fig. 9 will also have power law diver-
gences. For instance, the term O3

RS2 can be generated by
diagram Fig. 8 and its coefficient scale as �m�2�=m4

p.
Assuming a cutoff of order �
 1=rs, we will have C3

RS2 


m=�r2
sm4

p� 
 1=m as expected.
It is therefore straightforward to conclude from all we

have seen thus far that companion induced finite size
effects due to spin start out at 5PN (formally at 3PN) for
maximally rotating compact objects. For the sake of com-
pleteness here are the terms which will contribute to the
potential energy,

D2Oi
RS2 ; D�D
R����S
�S��u�u�;

D
DD�R����S
�
S�S��u�; D2D
R����S

�
S�S� u�;

D2D
R����S
�
S�S�u

�; D2D�R����S
�
S
�S��u�;

D2D�R����S
�
S
�S��u�: (G3)

Other possible terms, like D2D�R
���S
�
S��u�, can

be shown to be subleading. The reasoning shown here can
be easily extended to the case of higher-order Riemann
insertions with similar conclusions.
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