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Dissipative effects in the worldline approach to black hole dynamics
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We derive a long wavelength effective point-particle description of four-dimensional Schwarzschild
black holes. In this effective theory, absorptive effects are incorporated by introducing degrees of freedom
localized on the worldline that mimic the interaction between the horizon and bulk fields. The correlation
functions of composite operators in this worldline theory can be obtained by standard matching
calculations. For example, we obtain the low frequency two-point function of multipole worldline
operators by relating them to the long wavelength graviton black hole absorptive cross section. The
effective theory is then used to predict the leading effects of absorption in several astrophysically
motivated examples, including the dynamics of nonrelativistic black hole binary inspirals and the motion
of a small black hole in an arbitrary background geometry. Our results can be written compactly in terms
of absorption cross sections, and can be easily applied to the dissipative dynamics of any compact object,
e.g. neutron stars. The relation of our methodology to that developed in the context of the AdS/CFT
correspondence is discussed.
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I. INTRODUCTION

Understanding the dynamics of black holes in four
dimensions has become a topic of phenomenological in-
terest. The next generation of gravitational wave detectors
will be sufficiently sensitive to probe effects arising from
the dynamics of the horizon. In particular, horizon dynam-
ics in black hole binary star systems, including tidal de-
formation and absorption, will leave an imprint on the
measured signals. For instance, it has been estimated in
Refs. [1] that the effects of horizon dissipation in the large
mass black hole binary inspiral events seen by LISA can be
large enough to account for about 5% of the duration of the
inspiral phase. Reliable templates of the gravitational ra-
diation waveforms emitted by these systems, which are
necessary for interpretation of the LISA data, require that
theoretical calculations be carried out to very high accu-
racy, making such effects relevant.

The problem of calculating the merger of two black
holes as their orbits decay due to gravitational radiation
is, in general, a difficult strong coupling problem, tractable
only by numerical simulations. However, there are several
limits of astrophysical interest in which a small expansion
parameter arises, and which can therefore be treated by
analytical methods. These include, for instance, the
nonrelativistic (or ‘‘post-Newtonian’’) limit, and the ex-
treme mass ratio limit, in which one of the black holes is
much lighter and therefore moves approximately on a
geodesic of the geometry generated by its heavier
companion.

In both of these situations, the characteristic gravita-
tional fields in which at least one of the black holes
move are typically long wavelength compared to the hori-
zon size. It is therefore convenient to treat the small black
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holes as point particles, and to describe their motion in
terms of the worldline of some suitable center of energy
coordinate. However, the limit of singular delta function
sources is problematic for conventional methods of solving
the Einstein equations for binary systems, since point-
particle sources lead to singularities in the curvature in-
variants of the many-body spacetime which are difficult to
handle by the tools of differential geometry.

In a previous paper [2], we constructed an effective field
theory (EFT) method for systematically calculating gravi-
tational wave observables within a point-particle worldline
approximation. In this approach, the black holes (or any
other compact object) are described by generalized world-
line actions that include all possible terms consistent with
the general coordinate invariance of general relativity. By
including all such operators it is possible to (a) consistently
renormalize all short distance divergences that may arise in
calculations, and (b) systematically account for finite size
(i.e., tidal) effects. Furthermore, the coefficients of these
nonminimal worldline operators can be obtained by match-
ing calculations in which one compares the interactions of
gravitons with an isolated black hole (for instance, graviton
scattering amplitudes) to those calculated in the point-
particle theory.

The effective point-particle action of Ref. [2] is adequate
for obtaining a point-particle description of nondissipative
tidal effects. However, it cannot describe dissipative effects
that may arise in realistic astrophysical sources, such as the
absorption of orbital gravitational energy by the horizons
of black holes within a binary star. In this paper, we extend
the EFT formalism to include dissipation.

The presence of dissipation requires, on general
grounds, the existence of a large number of gapless degrees
-1 © 2006 The American Physical Society
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of freedom [3] and therefore cannot be described by a
worldline action with just particle velocity and spin de-
grees of freedom.1 It becomes necessary to introduce an
additional number of worldline localized degrees of free-
dom that couple to gravity (as well as other four-
dimensional fields) and can therefore account for the en-
ergy loss across the black hole horizon within a point-
particle description.

While clearly these new worldline modes arise from a
more complete, perhaps quantum mechanical or finite
temperature, description of the black hole (for instance,
as the dimensional reduction of the degrees of freedom
living on the stretched horizon [4,5]), such a formulation is
not necessary for our purposes here. Rather, we will simply
assume that these localized degrees of freedom couple to
bulk fields through composite operators, labeled by the
representation of the invariance group SO�3� of symme-
tries in the rest frame of the particle, in a way that respects
general covariance as well as worldline reparametrization
invariance. Thus these degrees of freedom can be inter-
preted in the bulk theory as dynamical multipole moments
[6] in the local asymptotic rest frame of the particle. Model
independence is achieved by including all couplings and
operators consistent with these symmetries.

It is possible to calculate the relevant gravitational wave
observables completely in terms of the n-point correlation
functions of the multipole operators, which can be ex-
tracted by a standard matching calculation to observables
of the Schwarzschild solution. As we show explicitly in
this paper, to leading order in the size of the black holes,
the relevant quantities are the two-point function of the
multipoles. These can be obtained by calculating the am-
plitude for absorption of low energy modes of bulk, four-
dimensional fields by the particle worldline, and compar-
ing it to the analogous result obtained in the full black hole
background [7,8].

As an example of these methods, we calculate the rate of
horizon absorption of gravitational energy in black hole
binary systems. We first consider a toy model with an
electromagnetically charged point particle gravitationally
bound to a black hole, taking the test charge to be for
simplicity in a nonrelativistic (NR) orbit. In this scenario,
we calculate the amount of electromagnetic energy ab-
sorbed by the black hole horizon. In this case, the mass
gained by the black hole can be qualitatively attributed to
the coupling between the field of the test particle and a
dynamically induced electric dipole moment on the black
hole. To our knowledge this result has not appeared else-
1In fact, one may attempt to reproduce dissipation by includ-
ing local operators with complex coefficients (leading to non-
unitary time evolution and therefore dissipation). However, it is
possible to show that, at least for Schwarzschild black holes, it is
impossible to find non-Hermitian worldline operators that can
reproduce the known energy dependence of absorption ampli-
tudes for real valued fields with spin-0, 1 or with spin-2.
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where in the literature. We then turn to the gravitational
case. In particular, we calculate the rate of mass change for
a small black hole moving in an arbitrary background
gravitational field, reproducing the recent result of
Ref. [9]. We also calculate the leading contribution to
mass increase for a pair of comparable mass black holes
in the post-Newtonian approximation [10,11]. Since our
results depend only on the graviton absorption cross sec-
tion of the binary constituents, they can be easily applied to
other astrophysically relevant systems, for instance, neu-
tron star binaries. The general formula for absorption in a
nonrelativistic binary star (neglecting contributions due to
spin) is given in Eq. (38). The more phenomenologically
relevant case of spinning compact binaries will be taken up
elsewhere.

On a more formal note, one may notice that the meth-
odology discussed above is reminiscent of ideas used in the
context of the anti-de Sitter/conformal field theory (AdS/
CFT) [12] correspondence. Some early evidence for this
type of duality was given by Klebanov [13], who pointed
out that the low energy limit of classical scalar absorption
by black 3-brane solutions of IIB supergravity is repro-
duced by an analogous quantum mechanical process in
which the absorption is attributed to the excitation of
modes in the worldvolume theory of a D3 brane in flat
spacetime by the incoming bulk field. These results were
later extended to include supergravity black holes in four
and five dimensions with AdS near-horizon geometries
[14]. These examples are analogous to the situation here,
where we also calculate gravitational dissipative effects by
rewriting them in terms of correlation functions in a non-
gravitational localized theory. However, unlike these string
theoretic scenarios, where the worldvolume theory is
known (for the calculation of Ref. [13] it is N � 4
super-Yang-Mills theory with gauge group U�N�), here
we are only able to determine the correlation functions of
the dual worldline theory by matching onto processes in
the full black hole background. Nevertheless, we find it
quite interesting that, despite the geometrical differences
between four-dimensional Schwarzschild black holes and
string theory black holes, the basic methodology applies in
an almost identical fashion. In this paper, however, the
existence of a dual field theory follows simply from the
basic tenets of effective field theory. This ‘‘universality’’ of
dual theory approaches is reviewed in [15].
II. BLACK HOLE ELECTRODYNAMICS

To begin with we consider the electrodynamics of black
holes, in particular, the absorption of photons by the black
hole horizon, in the limit where all external fields have a
wavelength larger than the black hole radius rs. Following
the ideas developed in [2], in this limit the nondissipative
interactions of the black hole with photons can be system-
atically described in terms of an effective point-particle
action constructed from the relevant degrees of freedom in
-2



FIG. 1. Feynman diagram whose imaginary part gives the
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the problem: the black hole worldline x���� and the gauge
field A��x�. By including in the action all operators con-
sistent with the symmetries (gravitational and electromag-
netic gauge invariance, worldline reparametrizations) we
can systematically account for all finite size effects asso-
ciated with black hole electrodynamics order by order in
the parameter rs!� 1, where ! denotes the typical fre-
quency of the external fields. The first few terms in this
derivative expansion are given by

Seff � eQ
Z
dx�A� �

�
2

Z
d�E�E� �

�
2

Z
d�B�B�

� � � � ; (1)

where E� � v�F��, B� �
1
2 �����v

�F��, and v� �
dx�=d�. We will only consider neutral black holes, Q �
0, in what follows. By dimensional analysis, we expect �,
� to be proportional to a typical length scale rs, and the
coefficients of operators constructed with more derivatives
acting on F�� (not shown) scale like more powers of rs,
leading to corrections to observables that are suppressed by
powers of rs! relative to those shown here.

While this effective action can be used to reproduce
elastic photon scattering amplitudes to arbitrary order in
rs!, it cannot be used to reproduce black hole absorption.
On general grounds, dissipation naturally implies the ex-
istence of a large number of modes2 with energy near that
of the vacuum. As such, these degrees of freedom must be
included in the effective theory since they may lead to
nonlocal effects that cannot be reproduced by Eq. (1)
alone.

In general, we do not know the explicit dynamics of
these additional degrees of freedom. However, we may use
the symmetries of the black hole solution to determine the
spectrum of possible composite operators in this theory. In
the case of a Schwarzschild black hole interacting with a
field theory that conserves parity, the operator spectrum
can be classified in terms of representations of the isometry
group SO�3� of the background as well as a parity eigen-
value. Thus the Lagrangian that describes the interaction of
the black hole with the electromagnetic field is of the form

Sint � eQ
Z
dx�A� �

Z
d�pa���Ea���

�
Z
d�ma���Ba��� � � � � ; (2)

where a � 1, 2, 3 are SO�3� indices, and pa���, ma��� are
composite operators corresponding to electric and mag-
netic parity electromagnetic dipole moments. In this equa-
tion, Ea � ea�E�, Ba � ea�B� are the electric and
magnetic fields measured in the frame of the black hole,
and the set of vectors e�a constitutes a frame orthogonal to
2Here, ‘‘large’’ means large enough that the Poincaré recur-
rence time is long compared to the other scales in the problem.
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the velocity v� and satisfying g��e
�
a e�b � ��ab,

�abea�eb� � �g�� � v�v�. Note that the isometry group
of the gravity background acts in the worldline theory as a
global symmetry. This relation is analogous to what occurs
in the AdS/CFT correspondence, where the isometries of
the AdS background map onto the global symmetries of the
CFT.

Given the correlation functions of worldline operators,
one may determine any observable involving black holes.
Although we do not know how to compute these Green’s
functions from first principles, it is possible to relate them
to known black hole observables. The idea is to match
scattering amplitudes calculated using Eq. (2) to known
results calculated in a Schwarzschild background. For in-
stance, to determine the effects of horizon dissipation it is
sufficient to compare the known low energy absorption
cross section for polarized photons, calculated by solving
Maxwell’s equations around a black hole [7,8],

�abs;p�!� �
4	
3
r4
s!2 �O�!3� (3)

(where p � �1 labels the polarization of the incoming
state) to the predictions of Eq. (2). In terms of the two-point
functions hpapbi, hmambi, Eq. (2) predicts, in the black
hole rest frame (see Fig. 1),

�abs�!� �
1

2!

Z
dx0e�i!x

0
	!2�
a�bhpa�x

0�pb�0��i

� �k� �
�a�k� ��bhma�x
0�mb�0�i�; (4)

where �a is the incoming photon polarization, k is the
photon momentum 3-vector, and the expectation values are
taken in the ground state j�i of the worldline theory.

It is actually more convenient for us to work in terms of
the time-ordered correlators of dipole operators, rather
than the expectation values appearing in Eq. (4). Using
the relation
Z
dx0e�i!x

0
hOa�0�Ob�x

0�i � 2 Imi
Z
dx0e�i!x

0
hTOa�0�

�Ob�x
0�i; (5)

valid for !> 0 (Oa is either pa or ma), as well as rota-
leading order contribution to the absorptive cross section. The
dots correspond to insertions of leading multipole worldline
operators.
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3As usual, diagrams with loops of gravitons are quantum
effects suppressed by powers of the typical energy scale over
the Planck mass.
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tional invariance
Z
dx0e�i!x

0
hTpa�0�pb�x0�i  �i�abF�!�; (6)

we find

�abs;p�!� � 2! ImF�!� (7)

for each polarization state of the photon. This equation is a
special case of the fluctuation-dissipation theorem [3].
Note that we have used the equality of the time-ordered
two-point functions of pa and ma, which follows from the
duality invariance Ea ! �Ba, Ba ! Ea of the Maxwell
equations in the Schwarzschild vacuum. For the effective
theory of Eq. (2) to reproduce the duality invariance of the
full theory, we must have pa ! �ma under a duality flip,
guaranteeing the equality of magnetic and electric corre-
lators. Comparing to Eq. (3), this yields

ImF�!� �
2	
3
r4
s j!j; (8)

where we have used the fact that F��!� � F�!�, which
follows from the definition, Eq. (6). The nonabsorptive part
of the two-point function can be obtained in an analogous
manner, by computing the amplitude for photon elastic
scattering off the black hole. By dispersion relation argu-
ments, this term is even in ! and therefore leads to a term
in the amplitude that can be reproduced by one of the terms
in Eq. (1).

The utility of knowing correlators such as hpapbi is that
they are universal. Having extracted them from a simple
process such as the one we just considered, they can be
applied in more complex (and realistic) dynamical situ-
ations involving multiple black holes interacting with elec-
tromagnetic and gravitational fields. All calculations can
be done in the point-particle approximation, where the
dynamics simplifies, and finite size effects are systemati-
cally incorporated by higher dimensional worldline opera-
tors in Eqs. (1) and (2). Although, in general, one may
encounter divergences in the point-particle limit, these can
be renormalized into the coefficients of the operators in
Eq. (1). This is explained in detail in Ref. [2].

Physically, the relevant observable in the gravitational
many-body problem is the flux of energy radiated to in-
finity in massless fields (photons and gravitons). Following
[2], this observable can be calculated from the quantity
Seff	xa�, defined by the expression

exp	iSeff	xa�� �
Z

Dh��DA�DXa exp	iS	xa; Xa; A; h��:

(9)

In this equation, S	xa; Xa; A; h� is the action that describes
the interaction of photons and gravitons with the degrees of
freedom Xa on the worldline xa of the ath black hole.
Besides the usual gravitational term �2m2

Pl

R
d4x

���
g
p
R,

S	xa; Xa; A; h� contains the (unknown) worldline
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Lagrangian for the X terms, as well as the action for the
point particles, including the finite size terms of Eqs. (1)
and (2).
Seff	xa� has a graphical interpretation as the sum of

connected diagrams with no external graviton or photon)
lines.3 The real part of Seff	xa� gives rise to the conserva-
tive terms in the multibody Lagrangian, from which the
equations of motion can be extracted. The imaginary part
accounts for the fact that energy in the electromagnetic and
gravitational fields is transferred either to infinity or to the
worldline degrees of freedom Xa. In other words, the
system of massless fields is open and therefore its time
evolution is nonunitary. In practice, one may distinguish
between the energy lost to infinity and the energy absorbed
by the degrees of freedom Xa by examining the individual
diagrams contributing to ImSeff	xa�. Specifically,

2

T
ImSeff	xa� �

Z
dE

d�

dE
(10)

gives the rate of energy loss either to infinity or to the black
holes. One can obtain the total power loss as dP � Ed�.

As an application, consider a charged point particle in
orbit around a black hole (orbital radius much larger than
the Schwarzschild radius). In this case the dynamics is
given, in the black hole rest frame where the frame ea�
lines up with the global flat space coordinates, by

S � �m
Z
d�

�����������������������������
1� h��v

�v�
q

� e
Z
dx�A��x�

�M
Z
dt

����������������
1� h00

p
� S	X� �

Z
dtpa�t�E

a�t�

�
Z
dtma�t�B

a�t�: (11)

The leading order term in the effective action is simply

iSeff	x� � �
mM

4m2
Pl

Z
d�dtv����v����

� hTh���x����h00�0; t�i � � � � ; (12)

while the term of Fig. 2 captures the dissipative features of
the black hole,

iSeff	x� �
e2

2

Z
dx�d �x�dtd�thTpa�t�pb��t�i	hTA��x�Ea�t�i

� hTA�� �x�E
b��t�i � �E$ B�� � � � � : (13)

For simplicity we will take the point particle to be in a
nonrelativistic orbit. In this case, to leading order in the
three-velocity v� 1, Eq. (12) reduces to the Lagrangian
for a NR particle in a Newtonian potential V�r� �
�GNmM=r. In the NR limit, only the electric contribution
-4



FIG. 2. Leading order contribution to the absorptive potential.
The dots correspond to insertions of the leading worldline multi-
pole operators. The upper line corresponds to the point charge in
the electromagnetic case.

DISSIPATIVE EFFECTS IN THE WORLDLINE . . . PHYSICAL REVIEW D 73, 104030 (2006)
to Eq. (13) survives (the magnetic field being suppressed
by an additional power of v). Using

hTA0�x0;x�Ei�0�i �
1

4	
��x0�

xi
jxj3

; (14)

Eq. (13) becomes

iSeff	x� �
e2

32	2

Z
dx0d �x0hTpi�x0�pj� �x0�idi�x0�dj� �x0�

� � � � ; (15)

where we have defined d�t� � x�t�=jx�t�j3. This gives

Seff	x� � �
e2

32	2

Z d!
2	
jdi�!�j

2F�!� � � � � ; (16)

and by Eq. (10),

dPabs
d!

� �
1

T
e2

24	2 r
4
s!2jdi�!�j2: (17)

Integrating over the physical region !> 0 we find

Pabs � �
e2

24	
r4
sh _d � _di; (18)

where the brackets denote a time average. Comparing to
the leading order dipole radiation formula, this shows that
the absorption of electromagnetic energy by the black hole
is an effect that is down by v6 in the NR limit.

Although here we have only considered the leading
order NR expression for electromagnetic absorption, it is
possible to systematize the expansion to all orders in v, by
a trivial modification of the velocity power counting rules
developed in Ref. [2] for gravity. In particular, to obtain
manifest velocity scaling in the electromagnetic sector
[16,17], one would have to decompose the photon A�
into a potential term with energy-momentum �v=r; 1=r�
and a radiation piece with momentum components
�v=r; v=r�. In addition, we would have to assign the power
counting rule pa �

����
L
p

v7=2=mPl in the nonrelativistic limit
(L � mvr is the typical angular momentum of the system)
to keep track of powers of v arising from higher order
insertions of the dipole operator. One would also have to
include insertions of higher multipole operators.
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Finally, we stress that the analysis above is completely
general. It would apply, for instance, in the analysis of a
finite extent condensed matter system interacting with long
wavelength electromagnetic fields. In that case, the two-
point functions hpapbi, hmambi would describe the electric
and magnetic susceptibilities of the material.
III. GRAVITATIONAL DISSIPATION

The absorption of gravitational energy by black holes
can be understood in a manner analogous to our discussion
of electrodynamics. The nondissipative part of the re-
sponse of a black hole to external gravitational fields is
encoded by a local effective point-particle action of the
form

Seff	x� � �m
Z
d��

�
2

Z
d�E��E�� �

�
2

Z
d�B��B��

� � � � : (19)

In this equation we assume for simplicity that the back-
ground field is a vacuum solution, so that all operators can
be written in terms of the ten independent components of
the Weyl tensor: the five electric-type parity components
E�� � C����v

�v�, and the five magnetic components
B�� �

1
2 ����
C

��
��v
v�. By dimensional analysis, we

expect �,� to depend cubically on the internal length scale
of the system. Other operators arising at this order, involv-
ing the Ricci curvature, can be removed by a field redefi-
nition of the metric.

As in the previous section, we take the presence of
absorptive processes to signal the existence of a large
number of worldline modes that interact with gravitons.
Although we do not know what this worldline theory is, in
the spirit of effective field theory we determine the inter-
actions by writing down all possible operators consistent
with the symmetries. The simplest possible couplings,
involving two derivatives, are given by

S � �
Z
d�QE

abE
ab �

Z
d�QB

abB
ab � � � � ; (20)

where Eab � ea�e
b
�E

��, Bab � ea�e
b
�B

��. The operators
QE;B
ab are electric and magnetic quadrupole-type parity

operators composed of the worldline degrees of freedom.
Terms with more derivatives, which are suppressed in the
low energy limit, are not shown. Using this equation, the
graviton absorption cross section is given by

�abs�!� �
!

8m2
Pl

Z
dx0e�i!x

0
	!2�
ab�cdhQ

E
ab�0�Q

E
cd�x

0�i

� �k� �
�ab�k� ��cdhQB
ab�0�Q

B
cd�x

0�i�; (21)

where �k� ��ab � �acdkc�db. In terms of the two-point
function
-5



4The correlator with one electric and one magnetic quadrupole
insertion vanishes in the worldline theory by parity invariance.
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Z
dx0e�i!x

0
hTQE

ab�0�Q
E
cd�x

0�i

� �
i
2

�
�ac�bd � �ad�bc �

2

3
�ab�cd

�
F�!�; (22)

the cross section reads

�abs;p�!� �
!3

2m2
Pl

ImF�!�: (23)

Matching to the result in Refs. [7,8],

�abs;p�!� �
1

454	r
6
s!4; (24)

we find ImF�!� � 16G5
Nm

6j!j=45. Here we have used the
equality of the magnetic and electric correlators, which
follows from the duality invariance Eab ! �Bab, Bab !
Eab of the Teukolsky equation.

As a simple application of Eq. (20), we consider the
motion of a black hole in a background vacuum spacetime,
taking the curvature length scale R much larger than the
black hole radius rs. In order to determine how much of the
gravitational energy of the background is absorbed by the
black hole (as measured in the frame of the hole), we
compute the functional Seff	x� defined by Eq. (9).
Ignoring gravitational fluctuations, we can simply substi-
tute the background values of Eab, Bab into Eq. (20). In this
case the leading term in the path integral that generates
Seff	x� arises from two insertions of the operators QE;B

ab ,

Seff	x� � �m
Z
d��

i
2

Z
d�d ��hTQE

ab���Q
E
cd� ���i

� 	Eab���Ecd� ��� � Bab���Bcd� ���� � � � � : (25)

From the previous section, we expect the imaginary part of
this equation to be related to the power absorbed by the
black hole. In particular, this gain in energy by the black
hole is the measured change in the mass by a ‘‘local’’
observer [11,18]. The increase in mass by the black hole
will affect its motion through the background spacetime,
inducing a correction in the phase of the radiated gravita-
tional waveform measured by an observer at infinity [1].
Calculating in the black hole frame, we find

Im Seff	x� �
16

45
G5
Nm

6
Z 1

0

d!
2	

!	Eab�!�Eab��!�

� Bab�!�Bab��!��; (26)

and therefore

Pabs �
16
45G

5
Nm

6h _Eab _Eab � _Bab _Babi; (27)

where _Eab � dEab=d�. Ignoring spin effects, the three-
frame ea� is parallel transported along the worldline so
that _Eab � ea�eb��v �D�E

��, with D the covariant deriva-
tive. Thus the above expression is covariant.

It is also possible to use Eq. (20) to account for the
effects of absorption in the limit where two or more black
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holes are bound gravitationally in a nonrelativistic orbit.
As a simple example, we consider the effects of absorption
in a slowly inspiraling binary system of two black holes.
This can be done systematically, in the point-particle limit,
using the velocity power counting rules of Ref. [2]. From
Eqs. (22)–(24) we see that hQE

abQ
E
cdi �G

5
Nm

6!2 and
therefore, in the NR limit, with !� v=r, QE

ab �
Lv4=mPl, where L � mvr is the typical angular momen-
tum of the binary system. In the nomenclature of Ref. [2]
we therefore have

Z
d�QE

abE
ab	H� � v13=2; (28)

from the leading term in the NR expansion of Eab in terms
of potential graviton modes H�� [which have energy mo-
mentum ��v=r; 1=r� and thus generate instantaneous two-
body interactions],

Eij �
1
2@i@jH00 � � � � : (29)

Likewise, we find that the magnetic potential Bab is given
to leading order by

Bij � �irs	@r@jH0s � @s@jH0r� � � � � (30)

and therefore
Z
d�QB

abB
ab	H� � v13=2; (31)

in the NR limit as well. Similar electric and magnetic terms
linear in radiation modes h�� [which have on-shell mo-
mentum �v=r; v=r� and are thus propagating degrees of
freedom] are suppressed by an additional factor of v5=2.

By rotational invariance, hQE
abi � 0 and the leading

order absorptive contribution to Seff	xa� is from a box
diagram similar to the one we found in black hole electro-
dynamics, with two insertions of the coupling Eq. (20) and
two insertions of the leading order Newtonian interaction
from the second particle. Note that the magnetic coupling
leading to graviton exchange between sources is sup-
pressed by a factor of v since h0i does not couple to leading
order to h00. Thus to get a nonvanishing magnetic contri-
bution to the box diagram one needs two insertions of a
vertex of the form vih0i.

4

Given that the Newtonian interaction,

S � �
X
a

ma

2mPl

Z
dx0H00 � � � � ; (32)

scales as
����
L
p

, the box diagram contributes to ImSeff a term
that is of order Lv13. For comparison, the leading order
diagram corresponding to radiation by the mass quadru-
pole of the binary system scales as Lv5. Thus absorption
from NR black hole binaries is a v8 effect in the case where
-6



5The cross section is defined per unit longitudinal volume.
6Note that in this theory it is more difficult to check the duality

since supersymmetry no longer protects the correlator in the
gauge theory.
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the constituents are not spinning [10]. However, for spin-
ning black holes this effect may be enhanced by up to three
powers of v [19], leading to potentially observable effects
in the LISA data [1]. A calculation of this effect in the
worldline theory, using the spin formalism developed in
[20], is in progress.

Explicitly calculating the box diagram of Fig. 2, we find
that the absorptive term in Seff is

iSeff	x1; x2� �
m2

2

8m4
Pl

Z
dx0

1d �x0
1dx

0
2d �x0

2hTH00�x
0
2�Eij�x

0
1�i

� hTH00� �x
0
2�Ers� �x

0
1�ihTQ

E
ij�x

0
1�Q

E
rs� �x

0
2�i

� �1$ 2� � � � � : (33)

Using Eq. (29) we find

hTH00�x
0;x�Eij�0�i �

i
4	

��x0�@i@j
1

jxj
; (34)

and defining q�a�ij �t� � @ai @
a
j jx12�t�j�1�a � 1; 2�, we obtain

Seff	x1; x2� �
1

4
G2
N

X
a�b

Z d!
2	

Fb�!�m2
ajq
�a�
ij �!�j

2 � � � � :

(35)

Thus the binding energy loss due to absorption is given by

Pabs �
16

45
G7
Nm

2
1m

2
2

�
1

2

X
a�b

m4
a _q�b�ij _q�b�ij

�

�
32

5
G7
N�m

6
1m

2
2 �m

6
2m

2
1�

�
v2

jxj8
� 2
�x � v�2

jxj10

�
: (36)

In the second line, we have defined x � x1 � x2, m �P
ama, � � m1m2=m.
Higher order relativistic corrections to this result follow

directly by including velocity suppressed vertices from the
point-particle and gravitational actions. The systematic
inclusion of such terms is standard, and is described in
[2]. There are also corrections from insertions of higher
multipole worldline operators, although these are highly
suppressed. For instance, an operator of the formR
d�QE

abcD
cEab, which generates a correction to the gravi-

ton absorption cross section suppressed by r2
s!2 relative to

Eq. (24), scales as v17=2 in the NR limit, giving a correction
to the power absorption that is down by v12 relative to the
leading order quadrupole radiation. Finally, there may be
corrections from more than two insertions of the quadru-
pole operators. Such terms involve the three-point and
higher correlation functions of QE

ab. However, given that
the operator

R
d�QE

abE
ab scales as v13=2, such contribu-

tions are completely irrelevant.

IV. SPECULATIONS

In the last two sections, we have introduced a formalism
for including dissipation in the worldline description of a
black hole by including a set of localized degrees of free-
104030
dom whose internal dynamics account for the absorption of
external field quanta. Although we used the formalism
merely as a bookkeeping device, it is interesting to assign
a physical meaning to these worldline modes as the dimen-
sional reduction down to 0� 1 dimensions (i.e., the parti-
cle worldline) of a hypothetical two-dimensional theory
localized on the stretched horizon [5]. The possible exis-
tence of such a horizon theory has been described in many
different contexts, mostly to assign a microphysical origin
to black hole entropy [21].

In the case of AdS/CFT, the dual field theory is known in
many instances. In Klebanov’s work [13] the absorption of
gravitons polarized parallel to a D3-brane in IIB string
theory is reproduced by calculating the imaginary part of
the two-point function of the stress-energy tensor in the
D-brane worldvolume gauge theory, N � 4 supersym-
metric Yang-Mills (SYM),

� �
�2

!

Z
d4xei!th	Txy�x�; Txy�0��i; (37)

where � �
��������������
8	G10

p
, withG10 the ten-dimensional Newton

constant, and the xy plane is parallel to the D3-brane.5

Perhaps the more relevant analogy, however, can be found
in Ref. [22] where the calculation of the two-point function
was done in the near-extremal limit in which case the dual
field theory is at finite temperature and relates the bulk
absorptive cross section to the shear viscosity.6 A crucial
aspect of these calculations is that the near-horizon geome-
try is a tensor product of an AdS space and a compact
manifold. However, it has been shown that, even without
supersymmetry [23], there exists a dual field theory. This
result follows from the fact that the asymptotic symmetry
group for the BTZ [24] black hole is a Virasoro algebra
[25] thus leading to a dual conformal field theory whose
central charge determines an entropy which agrees with the
Bekenstein-Hawking result [26]. It has been suggested that
this relation holds even for non-AdS geometries [27–29].
Finally we should note that there is related work on using
quantum mechanics to describe horizon degrees of
freedom.

In [30] the authors use the duality between the ten-
dimensional D0 brane black hole and supersymmetric
quantum mechanics [31] to reproduce the thermodynamic
properties of the black hole by treating the strongly
coupled quantum mechanical theory as a gas of noninter-
acting quasiparticles. While we do not know the dual
theory in the examples of this paper, we can extract the
correlation functions of the theory in the low energy limit.
The higher order terms in the full theory cross section will
correspond to correlators of higher moment operators. In
-7
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principle, one could also extract the higher n-point corre-
lators by considering scattering contributions from time-
ordered products including multiple insertions of opera-
tors, though it is not clear how one would disentangle these
contributions from lower order insertions of higher multi-
poles. Nonetheless it seems plausible that one could nar-
row down classes of theories which could reproduce
known correlators in an attempt to find the true horizon
theory.
V. CONCLUSIONS

In this paper, we have presented a simple method for
including the effects of absorption in the dynamics of
compact objects interacting through long wavelength
gravitational fields. In this limit, one may use effective
field theory techniques to ‘‘integrate out’’ the internal
structure of the compact objects, treating them as point
particles with generalized worldline actions whose terms
encode their finite size. While such terms are sufficient to
give a simple yet systematic description of nondissipative
many-body gravitational dynamics, they do not capture
dissipative effects, such as the absorption of gravitational
radiation by black hole horizons. In order to include ab-
sorptive effects we have proposed introducing additional
gapless degrees of freedom localized on the worldline
which couple to external fields.

Using this method we determined the absorptive dynam-
ics of black holes in various situations. In particular, we
worked out the amount of electromagnetic energy ab-
sorbed by a charge in orbit around a neutral black hole.
We also calculated the amount of gravitational energy
absorbed by a black hole in a long wavelength background
gravitational field, as well as the fraction of the gravita-
tional radiation that gets absorbed rather than emitted to
infinity by two black holes in a nonrelativistic binary
inspiral event, to leading order in the velocity v, finding
agreement with calculations done by more traditional
methods [11].
104030
Although we have only considered the theoretically
clean case of black holes, our methods generalize easily
to other objects of astrophysical interest. For example, for
several objects in NR orbits, the power spectrum for ab-
sorption of gravitational energy over an observation time T
is given by

dPabs
d!

� �
1

T
GN

64	2

X
a�b

��b�abs�!�

!2 m2
ajq
�a�
ij �!�j

2; (38)

where ��a�abs�!� is the graviton absorption cross section for
each object in the system. This formula can be used to
predict the absorptive corrections to the gravitational wave
flux seen by a detector, given a model for the internal
structure in which �abs�!� can be calculated.

At higher orders one will encounter divergences due to
the point-particle approximation. As was shown in [2]
these divergences will simply renormalize higher dimen-
sional interactions terms. These terms are also responsible
for reproducing the finite size effects of the objects. Thus
there is no impediment to calculating to any desired order
using the power counting rules developed in [2].

Finally, once the effects of spin are included in the
effective theory [20], the dissipative dynamics of rotating
black hole or neutron star systems can be worked out.
These cases are more phenomenologically relevant than
the examples discussed in this paper.
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