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Effective field theory of gravity for extended objects
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Using effective field theory (EFT) methods we present a Lagrangian formalism which describes the
dynamics of nonrelativistic extended objects coupled to gravity. The formalism is relevant to under-
standing the gravitational radiation power spectra emitted by binary star systems, an important class of
candidate signals for gravitational wave observatories such as LIGO or VIRGO. The EFT allows for a
clean separation of the three relevant scales: rs, the size of the compact objects, r, the orbital radius, and
r=v, the wavelength of the physical radiation (where the velocity v is the expansion parameter). In the
EFT, radiation is systematically included in the v expansion without the need to separate integrals into
near zones and radiation zones. Using the EFT, we show that the renormalization of ultraviolet
divergences which arise at v6 in post-Newtonian (PN) calculations requires the presence of two
nonminimal worldline gravitational couplings linear in the Ricci curvature. However, these operators
can be removed by a redefinition of the metric tensor, so that the divergences arising at v6 have no
physically observable effect. Because in the EFT finite size features are encoded in the coefficients of
nonminimal couplings, this implies a simple proof of the decoupling of internal structure for spinless
objects to at least order v6. Neglecting absorptive effects, we find that the power counting rules of the EFT
indicate that the next set of short distance operators, which are quadratic in the curvature and are
associated with tidal deformations, does not play a role until order v10. These operators, which
encapsulate finite size properties of the sources, have coefficients that can be fixed by a matching
calculation. By including the most general set of such operators, the EFT allows one to work within a
point-particle theory to arbitrary orders in v.
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I. INTRODUCTION

The experimental program in gravitational wave detec-
tion that is currently under way [1,2] has brought renewed
attention to the problem of obtaining high accuracy pre-
dictions for the evolution and gravitational radiation power
spectra of binary star systems with neutron star or black
hole constituents. The conventional approach to calculat-
ing the initial inspiral of the system as it slowly loses
energy to gravitational radiation employs the post-
Newtonian (PN) approximation to general relativity
(GR). Essentially, this formalism consists of systematically
solving the Einstein equations with nonrelativistic (NR)
sources as a power series expansion in v < 1, where v is a
typical three-velocity of the system under consideration
[3,4]. For binary systems that can be detected by LIGO,
which have binary constituents with masses in the range
��1–10�m�, the inspiral phase spans roughly 0:1< v<
0:4, corresponding to orbital separations from about 100 to
a few times �m=m�� km.

A detector such as LIGO is particularly sensitive to the
time varying phase ���t� of the gravitational waves emit-
ted during the evolution of the binary system [5]. In the PN
formalism, this observable can be obtained by calculating
the mechanical energy E as well as the total power P
emitted in gravitational radiation as functions of the orbital
parameters of the binary system. Taking for illustration the
extreme mass ratio limit and using conservation of energy,
dE=dt � �P, for circular orbits the gravitational wave
06=73(10)=104029(22) 104029
phase seen by the detector is then given by
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Z t
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d�!��� �
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v�t�
dv0v03

dE=dv0

P�v0�
; (1)

where !��� is the wave’s frequency and M the mass of the
heavy component star. Because a typical inspiral event will
sweep a large number of radians of phase as it scans the
detector frequency band (e.g., for LIGO, with a frequency
range 1–104 Hz, the number of cycles for a neutron star/
neutron star binary is of order 104), to compare the pre-
dictions of GR with the experimental data requires com-
puting the observable ���t� to extremely high order in the
velocity expansion. For instance, for binary neutron star
inspirals in the LIGO band, one must know ���t� to O�v6�
(or ‘‘3PN’’) beyond the leading order quadrupole radiation
results, and higher order terms in v may be necessary for
tracking the phase variation of the gravitational waves
emitted by more massive objects [5].

Several independent research groups have applied vari-
ants of the PN formalism to the computation of high order
corrections to the gravitational wave observables during
the binary inspiral phase [6–11]. Heroic calculational ef-
forts in the last few years have yielded the v6 analytic
results necessary to fully interpret the LIGO data [10,11].
While the independent calculations are in agreement in-
cluding terms up to v5 (or ‘‘2.5PN’’) beyond the predic-
tions of Newtonian gravity, the v6 corrections do not give
well-defined results. At this order, there seems to be an
-1 © 2006 The American Physical Society
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1In this paper we employ dimensional regularization, and
modified minimal subtraction (the MS scheme). This has the
advantage of not introducing spurious length scales that could
spoil dimensional analysis arguments within the EFT. See [13]
for a discussion of dimensional regularization in the context of
conventional PN formalisms.

2Historically, logarithmic divergences in the PN expansion
were first pointed out by Ref. [17].

3In the case of extreme mass ratio binaries where the large
mass component is a black hole, it is known that absorption into
the black hole first appears at order v8 [18]. We will show how
absorptive effects are incorporated into the EFT in a future paper.
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ambiguity in the PN expansions for the binary system,
stemming from scheme dependence in the regularization
of singular integrals that arise in the perturbative series.
Recently, Refs. [12,13] have proposed a resolution of this
ambiguity purely within the framework of the PN
expansion.

The singular integrals that cause trouble at high orders in
v can be seen to arise from treating the binary star con-
stituents as point-particle sources coupled to general rela-
tivity. It is then clear that these singularities are simply the
usual ultraviolet (UV) divergences that appear in any field
theory coupled to point sources. Their presence is merely a
sign that the formalism has limited predictive power and
needs to be supplemented by a more complete model that
accounts for the fact that the sources are not really point-
like. While in principle one could obtain finite, unambig-
uous results for experimental observables in this more
complete theory, the price would be much greater compu-
tational complexity. Even then, it would be difficult to
disentangle the effects that depend upon short distance
physics from those that are solely a consequence of the
gravitational dynamics. Since the goal of the gravitational
wave experiments is to probe the internal structure of
strongly gravitating astrophysical systems as well as to
test the dynamics of general relativity (or possible devia-
tions from it), it is critical to have a computational ap-
proach that can cleanly separate these two aspects of the
binary problem.

In this paper, we propose a Lagrangian framework for
systematically calculating to any order in the PN expan-
sion. Within our theory the ‘‘ambiguities’’ that plague the
conventional PN techniques at order v6 and beyond have a
natural place in the renormalization program. Our formal-
ism is based on effective field theory (EFT) reasoning, and
it is motivated by the EFT approach to NR bound state
problems in quantum field theories such as QED and QCD
[14,15]. Rather than trying to resolve the point-particle
singularities by resorting to a specific model of the short
distance physics, in an EFT framework we systematically
parametrize our ignorance of this structure by including in
the effective point-particle Lagrangian the most general set
of operators consistent with the symmetries of the well-
understood, long-wavelength physics. In our case, this
long-wavelength physics is general relativity, and the sym-
metry that constrains the dynamics is just general coordi-
nate invariance. By arguments that are standard in other
EFTs (see [16] for a review) the systematic inclusion of all
worldline operators that respect the symmetries implies
that the point-particle approximation may be used to arbi-
trary orders in the expansion parameter v.

The operators in the point-particle action have coeffi-
cients which encapsulate the properties of the structure of
the extended sources. UV divergences encountered in cal-
culations in the EFT can then be dealt with using any
convenient regulator, and renormalized by adjusting the
104029
operator coefficients.1 Given a model of stellar structure,
the precise value of these coefficients can be obtained by
a UV matching calculation that we describe below in
Sec. IV. Note that because these operators are intrinsic
to the structure of the sources, the matching procedure
can be carried out for a single source in isolation, inde-
pendently of the complicated binary star dynamics. In this
way the EFT manages to disentangle the model-dependent
aspects of the gravitational wave signals from the fea-
tures that arise as unambiguous predictions of general rel-
ativity.

An EFT also has the advantage of having manifest power
counting in the expansion parameter of the theory, in our
case the velocity v. This means that in the EFT it is
possible to calculate, using simple scaling arguments, the
order in v which a given term in the perturbative series
(i.e., a typical Feynman diagram obtained from the vertices
of the effective Lagrangian or an operator in the effective
theory) first contributes to a given physical observable. In
particular, one can determine ahead of any calculation the
number of terms in the point-particle Lagrangian that will
appear at any order in v.

As an example, using our formalism we will see that for
binaries with nonspinning black hole or neutron star con-
stituents, the proper time term is sufficient to describe the
physics up to v5. The appearance of logarithmic divergen-
ces in the PN expansion that first appear at order v6

indicates that two new nonminimal terms whose form is
dictated by general covariance must be included at this
order to consistently renormalize the point-particle theory.2

However, the coefficients of these operators can be shifted
arbitrarily by making field redefinitions of the metric,
which indicates that the v6 operators cannot contribute to
observables. This gives a clean argument for the absence
of v6 finite size effects in the predictions for gravitational
wave templates. Ignoring the effects of absorption,3 we
also find that the next set of point-particle operators,
including, for instance, operators quadratic in the
Riemann curvature, do not contribute until order v10.
These operators, which cannot be removed by field rede-
finitions, are associated with the leading effects of tidal
forces exerted on an isolated neutron star or black hole by
an external gravitational field. The fact that such tidal
operators do not arise until v10 is consistent with purely
-2
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Newtonian estimates which also conclude that tidal forces
are v10 effects.4

Finally, an EFT has the advantage that it is possible to
use renormalization group (RG) methods to understand in a
simple way logarithms of scale ratios that may arise in the
perturbative series for a given observable. For example, in
the NR expansion of the binary star gravitational wave
observables, one encounters logarithmic terms of the
form vn�ln��m, where � � rs=r is the ratio of a distance
scale rs that characterizes the size of the binary constitu-
ents and r is a distance of order the orbital radius (note that
for black hole binaries, the virial theorem relates �� v2).
We will show that, in our EFT, the coefficients of operators
in the effective point-particle action undergo nontrivial RG
flows, so that the logarithms of � (tidal logarithms) can be
obtained by RG running from a renormalization scale ��
1=rs where the point-particle theory is initially defined
down to a scale �� 1=r where the binary dynamics takes
place. Moreover, the complete structure of the RG flows is
encoded in the black hole metric.

As an explicit example of the RG method, we will give a
simplified derivation of the terms at O�v6� in the two-body
interaction Lagrangian (or equivalently the binary gravita-
tional binding energy) that are enhanced by ln�. We then
show explicitly that the effect of these logarithms do not
contribute to physical observables. This result must follow
since, as we already mentioned above, the v6 worldline
operators can be removed by redefining the metric.
However, this calculation is still useful as a template for
determining the logarithmically enhanced terms at higher
orders in v that stem from true finite size effects.

The outline of the paper is as follows. In the next section
we formulate our EFT. The starting point is a theory of
relativistic point particles coupled to gravity. This theory is
appropriate for discussing the dynamics of extended
sources at inverse momentum transfers larger than their
size rs. We then describe the general procedure for match-
ing this theory at the mass scale5 �� 1=r, where the
binary orbital dynamics takes place, onto an EFT that is
optimized for the NR limit (NRGR). The resulting EFT has
manifest power counting in the typical velocity v of the
sources, and governs the dynamics of the long-wavelength
‘‘radiation’’ gravitons that propagate out towards the gravi-
tational wave detector. To illustrate our formalism, in this
section we also give two classic examples of how the
matching procedure and the EFT velocity power counting
rules are applied to reproduce the leading nontrivial con-
sequences of general relativity in the context of the NR
two-body problem: the Lagrangian that describes the
gravitational interactions of two NR objects at O�v2� be-
yond Newtonian gravity [3], and the interactions of gravi-
4We thank Kip Thorne for pointing this out to us. See also [19]
for a recent review.

5We use units @ � c � 1.
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tational radiation with the binary star at leading order in the
velocity.

In Sec. III we return to the relativistic point-particle
effective Lagrangian, and show how all point-particle di-
vergences can be absorbed into worldline operators. In
Sec. IV, we discuss how, given a more complete stellar
model, one can determine the coefficients of operators in
the point-particle EFT at the scale �� 1=rs. Finally, in
Sec. V we show how the RG running of the EFT coeffi-
cients at order v6 can be exploited to yield a simplified
calculation of the terms in the NR expansion of the two-
body gravitational Lagrangian that scale as v6 ln�. This
calculation serves as a prototype for the RG running of
worldline operators. We have also included Appendix B
which illustrates how the Feynman rules of the EFT are
derived and used.

II. THE EFFECTIVE THEORY

A. Kinematics

To construct an EFT that has manifest velocity power
counting, we must first carefully analyze the kinematic
configurations that arise in the binary problem. Consider
a binary system composed of slowly moving neutron stars
or black holes. Let m characterize the typical mass of the
constituents (taking them, in this discussion, to be roughly
the same size), r the typical separation between them, and
v their relative three-velocity. In a system whose evolution
is determined to leading order by a 1=r Newtonian inter-
action, these parameters are not independent, since the
virial theorem relates

v2 �
GNm
r

: (2)

The EFT for the binary system will contain degrees of
freedom representing the point-particle binary constituents
coupled to gravitons. While the typical particle momenta
are of order �E�mv2; jpj �mv�, the gravitons appearing
in a generic Feynman diagram have momenta that can be
divided into two classes. Gravitons with momentum scal-
ing as �k0 � v=r;k� 1=r� mediate the forces responsible
for binding the two-body system. These potential gravitons
can never go on shell and thus will not appear as propagat-
ing degrees of freedom. On the other hand, radiation
gravitons with momentum �k0 � v=r;k� v=r� can appear
on shell and must be kept in the EFT to reproduce the
correct long distance physics.

Note that the interaction of a NR particle with a single
potential or radiation graviton causes the particle to recoil
by a fractional amount jkj=jpj � @=L� 1, where L�
mvr is the typical orbital angular momentum of the sys-
tem. Thus as far as the graviton dynamics is concerned, the
NR particles can be treated as background nondynamical
sources. Consequently, in this regard the EFT that de-
scribes the binary configuration has more in common
with heavy particle effective field theories (e.g., heavy
-3
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quark effective theory [20]), in which light modes interact
with a static, nonpropagating source, than a theory such as
NRQCD [14,15], where the quark and gluon degrees of
freedom have momentum components which differ only by
powers of the velocity. However, unlike HQET our EFT is
not an expansion in inverse powers of the mass.

As we will see, treating the stellar objects as nonpropa-
gating sources of gravitons also resolves a long standing
formal problem in the treatment of general relativity as an
EFT [21,22]. For astrophysical systems with masses m�
mPl, one would naively conclude from the conventional
Feynman rules of the EFT that the expansion parameter is
m=mPl � 1 and therefore the energy expansion implicit in
the interpretation of gravity as an EFT seems to be spoiled
[23]. In fact, this obstruction to the EFT interpretation of
general relativity is only an artifact of treating the point
sources as dynamical degrees of freedom, and disappears
when the theory is formulated in terms of world lines
interacting with gravitons. Once this is done, the power
counting in v becomes manifest at the level of the action.

B. Point-particle effective theory

Given these remarks, the starting point of our EFT
formulation consists of a theory of relativistic point parti-
cles coupled to gravity,

S � SEH 	 Spp; (3)

where the Einstein-Hilbert term

SEH � �2m2
Pl

Z
d4x

���
g
p
R�x�; (4)

describes the graviton dynamics6 and

Spp � �
X
a

ma

Z
d�a 	

X
a

c�a�R
Z
d�aR�xa�

	
X
a

c�a�V
Z
d�aR���xa� _x�a _x�a 	 
 
 
 (5)

determines the motion of the two-body system (a � 1, 2
labels the different particles). In this equation, d�a �������������������������
g��dx

�
a dx�a

q
is the proper time along the world line x�a

of the ath particle. We will ignore in this paper additional
degrees of freedom that describe the spin or any additional
multipole moments carried by each particle. This is justi-
fied for an extended object in which the energy cost of
exciting internal degrees of freedom is large compared to
the typical frequency of the gravitons which it interacts
with. Thus, strictly speaking, the formalism presented here
can be used only to describe the dynamics of spinless black
holes or spherically symmetric compact objects. We will
6Our conventions are R�� � @����� � @����� 	 
 
 
 and sig-
nature �	;�;�;��. m2

Pl � 1=32�GN .
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save the problem of including multipole moments in the
EFT for future work.

The first term in Spp generates geodesic motion about the
metric g��. Besides this term, we have also explicitly
shown the first two of an infinite set of possible nonmini-
mal couplings of the point objects to the spacetime metric.
Since these nonminimal couplings cause deviations from
pure geodesic motion, one would expect them to be asso-
ciated with the effects of the finite spatial extent of the
sources. Thus, by including the most general set of such
operators, we systematically take into account all possible
corrections due to the finite size rs of the object. As we
discuss later, the operators linear in the curvature appearing
in Eq. (5) will not contribute to any physical observable.7

This should be contrasted with higher-dimension operators
in the point-particle action involving higher powers of the
curvature tensor, which encode tidal deformations of the
binary constituents. We will discuss in Sec. IV how one
goes about determining the precise relation between the
coefficients of these operators and the microscopic physics
(i.e., the stellar structure model) that determines the inter-
nal structure. A discussion of the laws of motion for
extended objects in general relativity can be found in [25].

A gravitational wave detector such as LIGO measures
indirectly the power emitted in gravitational radiation from
the binary system [see Eq. (1)]. Given the action Eq. (3), it
is in principle possible to calculate this quantity by ex-
panding the metric around flat space, g�� � ��� 	 h��,
and integrating out the graviton field h�� to obtain an
effective action for the particle coordinates alone,

exp�iSeff�xa�� �
Z

Dh�� exp�iSEH 	 iSpp�: (6)

The effective action Seff�xa� has a real part which generates
the coupled equations of motion for the two-body system,
and consequently its mechanical binding energy. It also has
an imaginary part that measures the total number of grav-
itons emitted by a fixed two-particle configuration fx�a g
over an arbitrarily large time T ! 1,

1

T
ImSeff�xa� �

1

2

Z
dEd�

d2�

dEd�
; (7)

where d� is the differential rate for graviton emission from
the binary system. From this quantity we obtain the clas-
sical power spectrum dP � Ed�, and therefore the gravi-
tational wave phase seen by the detector.

In principle, one could directly evaluate Eq. (6) using the
Lorentz covariant Feynman rules generated by the
Einstein-Hilbert Lagrangian (the Feynman diagram expan-
sion for perturbative gravity is reviewed, for example, in
[22,26]), taking the NR limit at the level of each amplitude.
However, the perturbative series generated in this way is
not optimal for taking the limit v� 1. For example, the
7These operators have also been discussed in Ref. [24].
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one-graviton exchange term in iSeff�xa�,X
a�b

mamb

8m2
Pl

Z
d�ad�b�1� 2� _xa 
 _xb�

2�DF�xa � xb�; (8)

contains an infinite number of terms from the NR expan-
sion of the proper times d�2

a � ���dx
�
a dx�a and the

Feynman propagator DF�x�. While for a term like this it
is easy to do the expansion in small velocity, in a more
complicated diagram with multiple internal graviton lines
it becomes more cumbersome to keep track of all the
necessary terms at a given order in v. Furthermore, sup-
pose one is interested, because of the limited sensitivity of
the detector, in computing an observable only to some
fixed order in v. Then how many diagrams do we need to
keep? It is not possible to answer this question with the
Feynman rules generated by Eq. (3) as it stands. Likewise,
given the nonminimal tidal couplings in Eq. (5) it is not
possible to determine at what order in v they may first
contribute. Since from the point of view of the point-
particle theory, Eq. (3), the NR dynamics occurs in the
far infrared, to formulate an EFT that is tailored to the limit
v� 1, we must integrate out all field degrees of freedom
with wavelengths shorter than the orbital distance scale r.
We now turn to a formulation of this EFT.

C. NRGR

The EFT that systematically describes the NR two-body
problem, which we call NRGR, has manifest power count-
ing in the velocity v. To construct NRGR, we proceed in
several steps. We work in a preferred set of frames in which
the relative velocity is small, allowing us to expand in v.
Then, in order to have interaction vertices with homoge-
neous velocity scaling, we simply expand Spp in powers of
the particle three-velocities. Ignoring for now the effects of
the higher-dimension tidal operators, this leads to a world-
line Lagrangian

Lpp �
X
a

ma

�
1

2
v2
a �

1

2
h00 � h0ivai �

1

4
h00v2

a

�
1

2
hijvaivai 	

1

8
v4
a 	 
 
 


�
; (9)

where h00, h0i, hij are evaluated on the point-particle world
line �x0;xa�x0�� (we use the Euclidean metric �ij to raise/
lower spatial indices i; j � 1, 2, 3).

The propagator for the field h�� appearing here is still
fully relativistic, so it does not distinguish between poten-
tial gravitons, which have no right to appear as degrees of
freedom in NRGR, and radiation gravitons. Because of
this, the Feynman rules still do not scale homogeneously
with v. To deal with this problem, it is convenient to
decompose the graviton as

h���x� � �h���x� 	H���x�; (10)

where H�� represents the potential gravitons, with
104029
@iH�� �
1

r
H��@0H�� �

v
r
H��; (11)

and �h�� describes a long-wavelength radiation field

@� �h�� �
v
r

�h��: (12)

Actually, it is better to further decompose H�� by remov-
ing from it the large momentum fluctuations k� 1=r. To
do this we simply work with the Fourier transformed field
[15] Hk���x0�,

H���x� �
Z

k
eik
xHk���x0�; (13)

where
R

k is shorthand for
R
d3k=�2��3. The advantage of

this redefinition is that now derivatives acting on any field
in the EFT scale in the same way, @� � v=r, so it is easy to
count powers of v coming from derivative interactions.

The NRGR Lagrangian can then be derived by comput-
ing the functional integral

exp�iSNRGR�xa; �h�� �
Z

DH�� exp�iS� �h	H;xa� 	 iSGF�;

(14)

where SGF is a suitable gauge fixing term. We have not
included ghost terms because, as we will see, they are not
needed in any NRGR computation. Equation (14) indicates
that as far as the potential modes H�� are concerned �h�� is
just a slowly varying background field. To preserve gauge
invariance of the NRGR action, we will choose SGF to be
invariant under general coordinate transformations of the
background metric �g���x� � ��� 	 �h���x�. To be defi-
nite, we take the gauge

SGF � m2
Pl

Z
d4x

���
�g

p
����; (15)

with �� � D�H
�
� �

1
2D�H

�
� , where D� is the covariant

derivative derived from the background metric �g��. In this
gauge, the O�H2� terms in the action are (after performing
a rescaling of H�� to obtain a canonically normalized
kinetic term)

L H2 � �
1

2

Z
k

�
k2Hk��H

��
�k �

k2

2
HkH�k

� @0Hk��@0H
��
�k 	

1

2
@0Hk@0H�k

�
; (16)

where Hk � H�
�k. The terms in the second line of this

equation are suppressed relative to the first line by a power
of v2, and are treated perturbatively, as operator insertions,
in correlation functions. Thus, the propagator for Hk�� is

hHk���x
0�Hq�	�0�i � ��2��

3�3�k	 q�
i

k2 ��x0�P��;�	;

(17)
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TABLE I. NRGR power counting rules.

k Hk
��

�h�� m=mPl
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Lv
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where P��;�	 �
1
2 ������	 	 ��	��� �

2
d�2�����	�

with d the spacetime dimension. If we assign the scaling
x0 � r=v, k� 1=r, we learn from this that a potential
graviton scales as Hk�� � v1=2r2. Likewise, because in
momentum space the radiation graviton propagator scales
as 1=k2 � r2=v2, the coordinate space radiation graviton
field is taken to scale as �h�� � v=r.

Just as we had to expand H�� in terms of momentum
labels to obtain manifest power counting [15], it is also
necessary to perform a multipole expansion of the radia-
tion field �h�� whenever it couples to particle world lines or
to potential modes [27]. To see the necessity for this,
consider the absorption of a radiation graviton from a
potential graviton as shown in Fig. 1. The outgoing poten-
tial graviton has a propagator of the form

1

�p	 k�2
(18)

which does not scale homogeneously in v since p�
O�1=r� and k�O�v=r�. The propagator must be ex-
panded in powers of jkj=jpj, which is achieved by multi-
pole expanding the interactions of the radiation graviton
field with the potentials at the level of the action,

�h ���x
0;x� � �h���x

0;X� 	 �xi@i �h���x
0;X�

	 1
2�xi�xj@i@j �h���x0;X� 	 
 
 
 ; (19)

where �x � x�X, and X is some reference point in the
vicinity of the point-particle ensemble, for instance, the
center of mass (CM). Likewise, consider the amplitude for
the point-particle system to absorb a 00-polarized radiation
graviton with 4-momentum k,

iA � �
i
2

X
a

ma

mPl

Z
dx0
00�k�e�ik
xa : (20)

A graviton emitted during the binary inspiral phase has 4-
momentum k� �v=r; v=r�, so, if the coordinates xa are
measured relative to, for instance, the center of mass, then
we have xa=x0 � v and consequently this amplitude con-
tains an infinite number of terms each with a different
velocity scaling. This situation is also remedied by the
multipole expansion in Eq. (19).

These field redefinitions are enough to recast the original
point-particle theory of Eq. (3) into a form that is better
FIG. 1. The incoming potential graviton with momentum p
absorbs a radiation graviton with momentum k.
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suited to a small velocity expansion. The power counting
rules in Table I allow one to determine the order in the
velocity at which any diagram in the calculation of the
functional integral in Eq. (14), as well as in Feynman
diagrams computed in NRGR. However, the simplest ex-
ample of the power counting rules, the counting of the
particle NR kinetic term, reveals a slight subtlety that we
must deal with. Given that dx0 � r=v, we have

Z
dx0mv2 �

r
v
mv2 � mvr: (21)

Thus this term scales as the orbital angular momentum
L� 1. This is not the only term that scales in this way.
The exchange of a single H00 potential graviton between
two particles, responsible for the Newton force, involves
the computation of the diagram of Fig. 2(a), which is given
by

Fig: 2a �
im1m2

8m2
Pl

Z
dt1dt2��t1 � t2�

Z
k

1

k2 e
�ik
�x1�x2�

� i
Z
dt

GNm1m2

jx1�t� � x2�t�j
(22)

(GN  1=32�m2
Pl). This scales as

��dt��d3k��m=mPl�H�
2 �mvr; (23)

by virtue of the virial theorem (the power divergent self-
energy graphs, Figs. 2(b) and 2(c), which renormalize the
particle masses, vanish when evaluated in dimensional
regularization). It can be shown, in general, that all other
contributions to Seff�xa� are down by powers of v relative
to the particle kinetic terms or the Newton potential (see
Appendix A). It is then easy to deal with the presence of the
large parameter L in the power counting. We must treat the
operators that scale as Lv0 nonperturbatively or, in other
words, we must expand about background fields xa that to
leading order in v satisfy the equations of motion of
Newtonian gravity, treating operators which scale as Lvn

perturbatively. This is the resolution of the problem raised
in [23] regarding the apparent breakdown of a manifest
FIG. 2. Diagrams contributing to Lv0 potentials. The self-
energy graphs in (b), (c) are pure counterterm and have no
physical effect.
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FIG. 3. NRGR diagram whose imaginary part gives rise to the
quadrupolar gravitational radiation power spectrum.
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perturbative expansion when the particle masses are larger
than mPl.

One can also show that diagrams that contain graviton
loops are suppressed by powers of 1=L relative to the tree
diagrams (after particle world lines are stripped off). This
is in accordance with the intuition that loop diagrams
represent quantum corrections which should not be kept
in the perturbative expansion of classical field theory ob-
servables. The fact that loop corrections are irrelevant to
the quantities of interest also explains why we did not need
to keep ghost terms in the functional integral of Eq. (14).

What is the resulting theory after all potential gravitons
are integrated out? It is a theory of radiation gravitons
coupled to moments of the two-particle distribution in a
gauge invariant manner. Working in the CM frame,P
amaxa � 0, the leading order contributions to processes

in NRGR can be calculated from

L �
1

2

X
a

mav2
a 	

GNm1m2

jx1 � x2j
�

m
2mPl

�h00 �
�h00

2mPl

�

�
1

2

X
a

mav2
a �

GNm1m2

jx1 � x2j

�
�

1

2mPl

ijkLk@j �h0i

	
1

2mPl

X
a

maxaixajR0i0j; (24)

where we suppress the argument �x0;Xcm� of the canoni-
cally normalized radiation field �h��, and writem �

P
ama,

Xcm �
1
m

P
amaxa, L �

P
amaxa � va. Note that after in-

tegrating out the potential modes, the only dependence on
the orbital scale r appears in the Wilson coefficients (the
moments) of the theory. Thus, in our theory, the decoupling
between near-zone NR physics and far-zone radiation is
manifest at the level of the NRGR Lagrangian. This ex-
plicit separation of scales, which is what motivates the EFT
approach, should simplify the evaluation of higher order
radiative tail effects within our formalism. Of the terms
shown here, only the coupling of the (linearized) Riemann
tensor to the moment Iij �

P
amaxaixaj can source gravi-

tational radiation, since all other terms in this Lagrangian
couple to conserved quantities and therefore cannot radi-
ate, up to higher order radiation reaction effects. In fact, the
trace of the linearized Riemann tensor

Ri0i0 � R00 � @0@� �h�0 �
1
2@�@

� �h00 �
1
2@

2
0

�h	O� �h2�

(25)

vanishes for on-shell graviton matrix elements, so that
radiation only couples to the traceless quadrupole moment
of the source

Qij �
X
a

ma

�
xaixaj �

1

3
�ijx2

a

�
: (26)

In the next section we will show more explicitly how to
derive Eq. (24).
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Given Eq. (24), how do we obtain the power radiated in
gravitational waves from this formalism? We simply cal-
culate the imaginary part of the self-energy diagram of
Fig. 3,

Fig : 3 � �
1

8m2
Pl

Z
dx0

1dx
0
2Iij�x

0
1�Ikl�x

0
2�

� hR0i0j�x
0
1;Xcm�R0k0l�x

0
2;Xcm�i: (27)

(We have only kept the part of the diagram that arises from
the coupling IijR0i0j, since it is the only term at this order
which has a nonzero imaginary part.) Computing the two-
point function of the linearized R0i0j one finds that it is
proportional to the projection operator onto symmetric and
traceless two-index spatial tensors, 1

2�ik�jl 	
1
2�il�jk �

1
3�ij�kl. Writing the above equation in terms of the
Fourier transform of the quadrupole moment

Qij�k0� �
Z
dx0Qij�x0�e�ik0x0

; (28)

we end up with

Fig : 3 � �
i

80m2
Pl

Z d4k

�2��4
k4

0

k2 	 i

jQij�k0�j

2: (29)

This diagram then gives rise to the following contribution
to ImSeff�xa�:

Im Seff � �
1

80m2
Pl

Z d3k
�2��32jkj

k4jQij�jkj�j2: (30)

The integrand in this equation is proportional to the differ-
ential graviton emission rate over the history of the two-
particle system. To get the differential power, multiply the
integrand by an additional factor of the graviton energy jkj.
In particular, including this extra factor of the energy and
integrating over all momenta, we obtain the total power
radiated in gravitational waves,

P �
GN

5�T

Z 1
0
d!!6jQij�!�j2 �

GN

5
hQ
:::
ijQ
:::
iji; (31)

where the dots denote time derivatives, and the brackets
denote a time average. Of course, this equation is just the
usual quadrupole radiation formula.
-7



FIG. 5. Diagrams with two and three potential graviton lines
that also contribute to the Lv2 potentials. Similar diagrams with
1$ 2 are not shown.
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D. Examples at NLO

The construction of the EFT in the previous section was
perhaps somewhat formal, so it is helpful to see examples
of how to explicitly calculate the terms in the NRGR
action. We will work out two textbook examples in this
section: the Lagrangian that leads to the leading order
predictions for the power radiated in gravitational waves,
Eq. (24), and the EIH Lagrangian [3] that describes the
O�v2� general relativity corrections to the gravitational
interaction of two-point masses.

1. EIH Lagrangian

First consider LEIH. It arises from the diagrams shown in
Figs. 4 and 5. Using the NRGR Feynman rules, the sums of
the diagrams with a single potential graviton exchange are
given by

Fig: 4a �
im1m2

8m2
Pl

Z
dt1dt2

d2

dt1dt2
��t1 � t2�

�
Z

k

1

k4 e
�ik
�x1�x2�

�
i
2

Z
dt
GNm1m2

jx1 � x2j

�
v1 
 v2 �

�v1 
 x12��v2 
 x12�

jx1 � x2j
2

�
;

(32)

with x12 � x1 � x2,

Fig: 4b �
im1m2

m2
Pl

Z
dt1dt2��t1 � t2�v1iv2j

�
Z

k

1

k2 P0i;0je�ik
�x1�x2�

� �4i
Z
dt
GNm1m2

jx1 � x2j
�v1 
 v2�; (33)

and

Fig : 4c �
im1m2

4m2
Pl

Z
dt1dt2��t1 � t2�

�
1

4
v2

1

	 v1iv1jPij;00

�Z
k

1

k2 e
�ik
�x1�x2�

�
3i
2

Z
dt
GNm1m2

jx1 � x2j
v2

1: (34)
FIG. 4. Diagrams contributing to Lv2 terms in the two-body
potential. The � in (a) denotes an insertion of the potential
graviton kinetic term. A diagram similar to (c) with 1$ 2 is not
shown.
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Here, we have used the formula

Z ddk
�2��d

1

�k2��
e�ik
x �

1

�4��d=2

��d=2� ��
����

�
x2

4

�
��d=2

:

(35)

However, at this order in v, the single exchange dia-
grams are not sufficient. The NRGR power counting tells
us that we also get contributions from diagrams with two-
and three-graviton vertices. For example, the graph in
Fig. 5(a) scales as

Fig: 5a�
�
dx0d3k

�
m
mPl

�
H00

�
3
�
dx0�d3k�3�3�k�

k2H3
00

mPl

�

�

�
r
v

1

r3 �Lv�
1=2r2v1=2

�
3
�

1

mPl

r
v

1

r8 �r
2v1=2�3

�

� Lv2: (36)

The first factor stems from three insertions of leading order
vertices while the second bracket arises from an insertion
of a three-graviton interaction. Expanding the Einstein-
Hilbert Lagrangian to order H3, it is straightforward to
show

hT�H00
k1
�x1�H00

k2
�x2�H00

k3
�x3��i��

i
4mPl

��x0
1�x

0
2���x

0
1�x

0
3�

��2��3�3

�X
r

kr

�Y3

r�1

i

k2
r

�
X3

r�1

k2
r ; (37)

so that

Fig: 5a�
im1m2

2

16m3
Pl

Z
dx0

1dx
0
2dx

0
20

Z
k1;k2;k3

e
i
P
i

ki
xi
hT�H00

k1
�x1�

�H00
k2
�x2�H

00
k3
�x20 ��i � �i

R
dt

G2
Nm1m2

2

jx1�t��x2�t�j2
;

where we have dropped linearly UV divergent self-energy
contributions which can be absorbed into the particle
masses, and which vanish when evaluated in dimensional
regularization. Finally, the seagull diagram, Fig. 5(b), also
contributes at order Lv2, and is given by
-8



FIG. 6. Diagrams that contribute to the matching of radiation
graviton couplings. The diagram (a) is the multipole expansion
carried out to order v2. Diagrams (b) and (c) are needed to ensure
gauge invariance of the radiation graviton couplings. Similar
diagrams with 1$ 2 are not shown.
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Fig: 5b �
im1m2

2

128m4
Pl

Z
dt1dt2dt20��t1 � t2���t1 � t20 �

�

�Z
k

1

k2 e
ik
�x1�x2�

�
2

�
i
2

Z
dt

G2
Nm1m2

2

jx1�t� � x2�t�j
2 : (39)

Putting Eqs. (32)–(34), (38), and (39) together with their
mirror images under the interchange of the particle labels,
we end up with

LEIH �
1

8

X
a

mav4
a 	

GNm1m2

2jx1 � x2j

�
3�v2

1 	 v2
2� � 7�v1 
 v2�

�
�v1 
 x12��v2 
 x12�

jx1 � x2j
2

�
�
G2
Nm1m2�m1 	m2�

2jx1 � x2j
2 ;

(40)

where we have also included the relativistic corrections to
the kinetic energy of the point particles, which contribute
to the effective action at order Lv2. This Lagrangian was
first derived by Einstein, Infeld, and Hoffmann [3], by
different methods. A diagrammatic derivation of the static
1=r2 part of this Lagrangian, using Lorentz covariant
worldline methods [28], was given in Ref. [29]. A quantum
field theoretic derivation of the 1=r2 potential, treating the
source particles as dynamical fields, was presented in
[21,30].

2. Couplings of radiation gravitons

It is also instructive to use the formalism to derive the
leading order Lagrangian that describes the interactions of
radiation gravitons with NR sources, Eq. (24). The deriva-
tion involves all aspects of the construction of NRGR (the
multipole expansion for radiation, integrating out potential
gravitons, velocity power counting rules). At the lowest
two orders in the expansion, the interaction of radiation
with the NR sources follows simply from the multipole
expansion of the radiation field. Expanding the proper time
term in powers of v, using the counting rules in Table I,
leads to

Lv1=2 � �
1

2mPl

X
a

ma
�h00; (41)

Lv3=2 � �
1

mPl
Pcmi

�h0i � 0; (42)

in the CM frame. Note that to preserve manifest scaling in
v we must multipole expand about the center of mass, as
defined below Eq. (24). These terms (when integrated over
time to form an action) scale as

����
L
p

v1=2 and
����
L
p

v3=2,
respectively, according to the power counting rules of the
EFT, and generate diagrams (i.e. terms in Seff�xa�) that are
proportional to a single power of L.
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At the next order in the velocity, the situation is not as
straightforward. Keeping terms with one more power of v
(either from the multipole expansion or from explicit
powers of the particle velocities) one finds, in the CM
frame,

Lmult � �
X
a

ma

2mPl

�
1

2
�h00v2

a 	
1

2
xaixaj@i@j �h00

	 2xaivaj@i �h0j 	 �hijvaivaj

�
: (43)

This Lagrangian has two problems. First, it is not gauge
invariant under infinitesimal coordinate transformations.
Second, it seems to predict that unphysical 00, 0i graviton
polarizations can be emitted by the two-particle bound
state. Of course, these two problems are related. The
resolution to this is that at this order in the expansion there
are additional contributions to the effective Lagrangian,
from diagrams with both external radiation gravitons and
internal potentials, such as those of Fig. 6. The diagram in
Fig. 6(b) is given by

Fig : 6b � �
i
2
dx0 GNm1m2

jx1 � x2j
�h00: (44)

For the diagram in Fig. 6(c), we need the �hH2 vertex. It can
be obtained from

L �hH2 � k2 �h00

�
�

1

4
H��

k H�k�� 	
1

8
HkH�k

	Hk
�0H�k�0 �

1

2
Hk00H�k

�

	 k2 �h0i�2H
00
k H�k0i �Hk0iH�k�

	 �hij

�
1

2
kikjH

��
k H�k�� 	 k2Hki�H�kj

�

�
1

2
k2HkijH�k �

1

4
kikjHkH�k

� �ijk2

�
�

1

4
H��

k H�k�� 	
1

8
HkH�k

��
; (45)

where the integral over momentum k has been suppressed,
and because of the multipole expansion, �h�� is evaluated at
�x0;Xcm�. Given this term, it is easy to show that
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Fig: 6c �
im1m2

8m3
Pl

Z
dx0

Z
k
e�ik
�x1�x2�

1

k4

�
3

2
k2 �h00

	
1

2
k2 �hii � kikj

�hij

�
: (46)

Using

Z
k
e�ik
x

kikj

k4 �
1

8�jxj

�
�ij �

xixj
jxj2

�
; (47)

as well as the equations of motion for x1;2�t� from the order
Lv0 effective action, we find

Fig : 6c �
i
mPl

Z
dx0

�
3GNm1m2

2jx1 � x2j
�h00

�
1

2

X
a

maxai �xaj �hij

�
: (48)

Adding together the result of Eq. (44) plus its mirror image
under 1$ 2 and Eq. (48) to Eq. (43) we find the complete
NRGR action at order

����
L
p

v5=2,

Lv5=2 � �
�h00

2mPl

�
1

2

X
a

mav2
a �

GNm1m2

jx1 � x2j

�

�
1

2mPl

ijkLk@j �hi0 	

1

2mPl

X
a

maxaixajR0i0j:

(49)

There are several things to notice about this equation. First,
we find that �h00 couples at this order in v to the Newtonian
gravitational energy of the bound system. At this order in
the expansion this is a constant of the motion, as is the
orbital angular momentum, which couples to �hi0.
Consequently, neither of these quantities can radiate.
This is in accordance with the expectation that �h00, �hi0
do not correspond to physical graviton polarizations, and
should not be emitted by a graviton source. It should be
possible to give a general diagrammatic proof that the
diagrams in the matching involving one external �h00 are
related in a simple way to the diagrams with no external
radiation gravitons, i.e., the diagrams that contribute to the
total energy, as required by general covariance.

Also, note that this Lagrangian is manifestly gauge
invariant under infinitesimal gauge transformations. This
is obvious for the last term in Eq. (49), which involves the
(linearized) Riemann tensor. For the first term, use the fact
that the Newtonian energy is (at this order) time indepen-
dent, so that, under the transformation �h00 ! �h00 	 2@0�0,
this term in the Lagrangian transforms into a total time
derivative. Likewise, under �hi0 ! �hi0 	 @i�0 	 @0�i, the
coupling of �hi0 to the angular momentum transforms into a
total time derivative. We expect that the requirement of
gauge invariance should provide strong constraints on the
form of the NRGR Lagrangian. In particular, the derivation
of the O�v2� radiation couplings presented here could have
been significantly shortened had we imposed gauge invari-
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ance. In practice, one can reduce the amount of work by
keeping only the terms from the multipole expansion and
fixing the remaining terms by demanding gauge invariance
of the radiation couplings.

It is interesting to note that, in order for the couplings of
the radiation gravitons to preserve gauge invariance, it is
crucial that we include the diagrams of Figs. 6(b) and 6(c).
These diagrams, which arise due to the non-Abelian nature
of the gravitational interactions, represent the fact that in
gravity it is not just the ensemble of NR particles that acts
as a source of gravitons, but also the energy stored in the
gravitational field that it sets up. To obtain consistent
results, such nonlinear effects must be included. Without
the velocity power counting rules of the EFT, it would have
been difficult to ascertain whether such nonlinear diagrams
contribute already at this order in the velocity expansion. In
the classical general relativity approach to calculating the
power emitted in gravitational waves by a NR source, this
nonlinearity appears in the expression for the far-zone
gravitational field as an expansion in moments not only
over the stress tensor T�� of the matter, but also over a
suitable (nonunique) stress-energy ‘‘pseudotensor’’ ��� for
the gravitational field itself. This pseudotensor is defined in
such a way that @�T�� 	 @���� � 0, and physically plays
the same role as the diagrams of Figs. 6(b) and 6(c) do in
our formalism. As an aside, we also note that the necessity
to include diagrams involving gauge particle self-
interactions in order to derive the couplings of radiation
to sources has an analog in the worldline approach to NR
bound states in QCD [31]. For instance, to show that the
color dipole moment of a Q �Q bound state couples to the
full color electric field, it is not enough to keep diagrams
with gluons emitted from the quark world lines. One also
needs to keep diagrams involving the three-gluon vertex,
which can be shown to contribute at the same order in the
velocity [32].

III. DIVERGENCES, RG FLOWS AND FINITE SIZE
EFFECTS

The coefficients of the relativistic point-particle theory
of Eq. (5) exhibit nontrivial RG flows, even at the classical
level (RG flows in classical field theories coupled to ex-
tended spatial sources have been analyzed in [33]). The
nontrivial RG structure of the theory is associated with
logarithmic UV divergences which arise due to the singular
nature of the point-particle limit. To renormalize the the-
ory, we consider a single particle at rest at x � 0 and
compute the diagrams that contribute to the terms in the
effective action for a background gravitational field that are
linear in the background h�� � g�� � ���. If we ignore
for now the nonminimal curvature couplings of Eq. (5), this
is given by diagrams such as those of Fig. 7 with a single
external graviton and any number of insertions of the
worldline proper time coupling, each proportional to the
particle mass (we restrict ourselves to tree diagrams, which
-10



FIG. 7. Some contributions to the background graviton effec-
tive action in the relativistic point-particle theory. Diagram (b)
has a power divergent term. Diagrams (c) and (d) are both power
and logarithmically divergent. Two other diagrams that arise as
permutations of (c) are not shown.
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are the ones that remain in the limit mPlr� 1, with r �
jxj).

While the diagram with a single mass insertion is finite,
diagrams with more mass insertions have UV divergences.
For instance, the diagram with two powers ofm in Fig. 7(b)
contains a piece which has a power divergence of the form
�
R
dd�1q=q2, as can be seen by counting powers of

momentum from the internal propagators and the graviton
self-interaction vertex. An explicit calculation shows that
this linearly divergent piece, which vanishes in dimen-
sional regularization, just renormalizes the bare mass pa-
rameter m appearing in the point-particle action. Besides
this power divergent piece, the diagram of Fig. 7(b) also
gives rise to a finite, nonanalytic term in the background
field effective action [34] of the form

��g��� �
1

mPl

Z d4k

�2��4
h����k�T

��
�2� �k� 	 
 
 
 ; (50)

where, in background field gauge with a gauge fixing term
for the ‘‘quantum’’ graviton field H�� of the form SGF �

� 1
2

R
d4x

���
g
p

����, �� � D�H�
� �

1
2D

�H�
� , one finds

T�2����k� � �2����k0�
m2

2m2
Pl

�
�

7

32
����k2 � k�k��

	
1

32
k2v�v�

�Z d3q
�2��3

1

q2�q	 k�2

� �2����k0�
m2

16m2
Pljkj

�
�

7

32
����k

2 � k�k��

	
1

32
k2v�v�

�
(51)

where v� � �1; 0� is the particle four-velocity. As ex-
pected by background field gauge invariance, we have
k�T

��
�2� �k� � 0. In fact, since ��g��� must be covariant

with respect to the background gravitational field, the
above result is sufficient to completely fix all terms in
the effective action that are proportional to two powers of
m and any number of powers of the background field h��.

Although the power divergences that arise in the calcu-
lation of T��

�2� �k� have no physical consequences, logarith-
mic divergences can give rise to measurable effects since,
by dimensional analysis, in a massless field theory the
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logarithm of the cutoff is always accompanied by a loga-
rithm of the external momentum. Consider the diagrams
with three insertions of the particle mass. They give rise to
a term in the effective action of the form

��g��� �
1

mPl

Z d4k

�2��4
h����k�T

��
�3� �k� 	 
 
 
 ; (52)

where we find, from Figs. 7(c) and 7(d),

T��
�3� �k� �

1

3!

�
�

im
2mPl

�
3 2

mPl
�2����k0�I0�k�

�
1

16
�1� 2
�

� �k2��� � k�k�� �
1

8

�
1�

21

2


�
k2v�v�

�
:

(53)

As a nontrivial check of this result, we note that gauge
invariance with respect to the background field,
k�T

��
�3� �k� � 0, does not hold diagram by diagram, but is

only manifest after the terms in Figs. 7(c) and 7(d) are
combined. To obtain this equation, we worked out the
necessary background field gauge Feynman rules [26] in
d dimensions, and performed an expansion in 
 � �4�
d�=2, keeping only the terms that do not vanish as 
! 0.
T��
�3� �k� contains a UV logarithmic divergence, as can be

seen by power counting the integral

I0�k� �
Z dd�1p
�2��d�1

dd�1q
�2��d�1

1

q2p2�q	 p	 k�2
; (54)

which evaluates to

I0�k� �
����
�
p ��4� d�

�4��d�1

��d=2� 3=2�2��d� 3�

��d=2� 1���3d=2� 9=2�

�
k2

2

�
d�4

�
1

32�2

�
1

2

	 ln�4�� � �	 3� ln

k2

�2

�
	O�
�:

(55)

In the second line, we have expanded about d � 4� 2

and introduced an arbitrary subtraction scale �. Inserting
this expression back into Eq. (53), we see that the set of
diagrams with three mass insertions has a 1=
 pole which
cannot be absorbed by a shift in the mass parameter m of
the minimal point-particle action, whose Feynman rule is,
for a particle moving on a straight line trajectory with
constant four-velocity v�,

�
im

2mPl
�2����k 
 v�v�v�: (56)

However, the nonminimal operators of Eq. (5) contribute
terms to ��g��� of the form �1=mPl��R
d4k=�2��4h����k�T

��
ct �k�, with

T��ct �k� � �2����k0��cR����k2 � k�k�� 	 1
2cVk

2v�v��;

(57)

where we have dropped terms proportional to k0 which
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vanish due to the delta function. Because the divergent
terms in Eq. (53) have the same dependence on k and v as
the contribution from the curvature couplings, we see that
the 1=
 poles can be subtracted away by a proper choice of
coefficients cR;V . In the MS scheme, the renormalized
O�m3h� term in the effective action now becomes

T��
�3� �k� � �2����k

0�

�
����k2 � k�k��

�
cR��� 	

G2
Nm

3

12

�

�
2� ln

k2

�2

��
� k2v�v�

�
�

1

2
cV��� 	

G2
Nm

3

6

�

�
75

32
� ln

k2

�2

���
; (58)

where cR;V��� are the renormalized couplings.
Since the renormalization scale � introduced above is

arbitrary, we must have �d��g���=d� � 0 (since the
classical field h�� does not pick up an anomalous dimen-
sion). Thus the explicit dependence of the logarithm in
Eq. (58) on the subtraction scale � must be canceled by
allowing the coefficients cR;V to vary with scale. Our theory
therefore exhibits nontrivial classical RG scaling,

�
dcR
d�
� �

1

6
G2
Nm

3; (59)

�
dcV
d�
�

2

3
G2
Nm

3: (60)

As a consistency check, we may use the linear term in
��g��� to calculate the spacetime metric generated by a
point mass at rest, up to order �GNm=r�

3. Fixing the gauge
������ � 0 for the background field h��, this is simply
given by g�� � ��� 	 h��, where, in momentum space,

h���k� �
i

k2 P��;�	
i
mPl

���g�
�h�	��k�

��������h�0
: (61)

Using our results for T��
�i� �k�, we find, dropping delta

function contributions which first arise at order m3,

g00 � 1�
2GNm
r
	 2

�
GNm
r

�
2
	 2

�
GNm
r

�
3
	 
 
 
 ; (62)

gij � ��ij

�
1	

2GNm
r
	 5

�
GNm
r

�
2
�

2

3

�
GNm
r

�
3

	 8
�
GNm
r

�
3
�
cR���

G2
Nm

3 	
1

6
ln�r	

�
6

��

	
xixj
r2

�
7
�
GNm
r

�
2
�

4

3

�
GNm
r

�
3
	 24

�
GNm
r

�
3

�

�
cR���

G2
Nm

3 	
1

6
ln�r	

�
6

��
	 
 
 
 ; (63)

and g0i � 0. It is straightforward to show that this metric
satisfies the vacuum Einstein equations R�� � 0 away
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from the point x � 0 where the point-particle source is
located, independently of the value of the renormalized
parameter cR���. This is consistent with Birkhoff’s theo-
rem, which states that the space of static, rotation invariant
solutions of the vacuum Einstein equations is one dimen-
sional, parametrized by the massm. Alternatively, one may
check the validity of our result for g�� by constructing a
coordinate transformation to the more familiar harmonic
coordinates �x�, with �g��� �x����� �x� � 0, which in terms of
our coordinates x� are given by, up to O�G4

Nm
4=r4� terms,

�x 0 � x0; (64)

�xi � xi
�

1	 2
�
GNm
r

�
2
�

7

3

�
GNm
r

�
3

	 4
�
GNm
r

�
3
�
cR���

G2
Nm

3 	
1

6
ln�r	

�
6

��
: (65)

Thus, as required by general arguments, the parameters
cR;V��� are not observable in the long range field of
isolated static sources.

As we argue in the next section, it is likely that the value
of the matching coefficients cR;V��0� are themselves of
order G2

Nm
3. In this case, it is easy to see using the NRGR

power counting rules that diagrams with one insertion of
the nonminimal operators in Eq. (5), for instance the
diagram of Fig. 9(a), lead to corrections to the two-body
interaction Lagrangian which are suppressed by a power of
v6 relative to the leading Newton interaction. However, it
can be shown that the worldline operators

R
d�R,R

d�R�� _x� _x� can be removed by a local redefinition of
the metric tensor (that is, the coefficients cR;V can be
shifted arbitrarily by these transformations). Given that
any possible signature of internal structure that may arise
at v6 must be encoded in these two operators within a
point-particle description, we conclude for spinless objects
there are no finite size effects up to order v6.

Even though all values of � give rise to the same
physics, in practice certain choices may be more conve-
nient when doing actual computations. In general, this
leads to renormalization group equations which can be
used to simplify the calculation of logarithmically en-
hanced terms in the perturbative expansion. We will give
an example in Sec. V of how to exploit the freedom in
choosing � for the unphysical couplings cV;R to simplify
the calculation of certain contributions to the v6 two-body
potentials that are enhanced by a logarithm of � � rs=r,
where rs is a length scale that characterizes the size of the
extended object. The calculation of logarithms for physical
tidal couplings, which involve the Riemann tensor, is
completely analogous to this case.

Any choice for the couplings cR;V��� can be trivially
expressed in terms of the parameters at some fixed scale�0

by solving the RG equations, giving
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cR��� � cR��0� �
1

6
G2
Nm

3 ln
�
�0

;

cV��� � cV��0� 	
1

3
G2
Nm

3 ln
�
�0

:

(66)

(As we will see later, at higher order in the velocity
expansion, the coupling constant flows show more inter-
esting behavior than is depicted in these equations.) If the
couplings cR;V��0� had any physical content, in order to fix
them, say, at a scale of order the characteristic size rs
requires model-dependent information about the details
of the short-wavelength physics that resolves the point-
particle divergences. This will be true for the physical tidal
couplings as well. This physics is independent of the NR
two-body dynamics, so that no PN formalism based on
point particles can, by itself, give rise to a full prediction
for the gravitational wave observables. In the next section
we will explain how, given this short distance model, it is
possible to perform a matching calculation that fixes the
values of the worldline operator coefficients in terms of the
parameters (size, equation of state, . . .) that characterize
the extended object.

An interesting question arises as to the size of the
matching coefficients for the physical tidal couplings. If
it turned out that these coefficients were anomalously
large,8 then the Newtonian result would no longer be
leading order, and the PN expansion would cease to be
valid. Although it seems rather unlikely that this constraint
is violated, it is interesting to note that, within the EFT
formalism here, we would retain calculability given a
model for the short distance physics, but we would have
to change our power counting scheme in order to accom-
modate the lack of a Newtonian gravity limit.
IV. MATCHING ONTO THE POINT-PARTICLE
THEORY

A. Outline of the matching procedure

If one works at high enough of an order for the worldline
operators to become relevant, i.e. beyond v6, then given
that PN theory has nothing to say about the actual values of
the worldline operator coefficients, one needs a model of
the internal structure. Otherwise the best one can do is to
express the predictions for the gravitational wave observ-
ables in terms of the parameters of the EFT and use the
gravitational wave data to obtain information about the
magnitude of the coefficients. Alternatively, if one does
have information about the structure of the binary constit-
uents, one can fix the values of the couplings in the
effective action at a renormalization point �� 1=rs. In
this case the data can, in principle, be used to test one’s
assumptions regarding the structure of the binary star
8An explicit example of this arises in some models of branes
embedded in higher-dimensional spacetimes [35].
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sources. In this paper we will not perform the matching
calculation, but instead just sketch how such a calculation
would lead to an unambiguous prediction for the gravita-
tional wave observables. We will illustrate how this works
within the context of a specific toy model which captures
the essential physics.

The matching procedure is standard within effective
theories [16], but to keep the discussion self-contained
we will review here the basic concepts. The idea is simply
to compare observables such as Green’s functions in the
‘‘full’’ (valid at short distances) and effective theories and
adjust the value of the EFT couplings in such a way that the
effective theory reproduces the results of the full theory.
The effective theory is designed to reproduce the long
distance physics, characterized by nonanalytic behavior
about zero external momentum, but it may get the short
distance, which is analytic in the momentum (that is, local
in coordinate space), wrong (hence the divergences).

Consider for instance the matching of one-point func-
tions in the full theory (consisting of an extended source
interacting with gravitons) and the EFT. In the full theory,
the one point function of the graviton is of the form

G�1��k2� �
1

k2 F�k
2; �i�; (67)

where F�k2; �i� is, in general, a complicated function of the
external momentum k as well as some dimensionful pa-
rameters �i which describe internal structure. For simplic-
ity we assume in the discussion that the only relevant scale
is the size of the object rs. The EFT is valid in the kine-
matic regime k2r2

s � 1, so, in order to match, one expands
the function F�k2r2

s� about this point. In the simplest
situations, this expansion takes the form

G�1��k2� �
1

k2 �P�k
2r2
s� 	Q�k

2r2
s� ln�k

2r2
s��; (68)

where P�z�, Q�z� are polynomials. In general, the non-
analytic dependence on the momentum may be more com-
plicated, involving polynomials times more general
functions of lnk2r2

s ; however, we focus on this case for
simplicity. In practice, since we are interested in a low
energy expansion, we need to keep only the first few terms
in the polynomials P�z�, Q�z�. Provided that the point-
particle coupled to gravity properly reproduces the IR
(long distance) physics, the EFT result must be of the
same general form as the above,

G�1�EFT�k
2� �

1

k2

�
�P�k2; ci���� 	 �Q�k2; ci���� ln

k2

�2

�
; (69)

where the parameters ci��� are the coupling constants of
the EFT defined by some suitable renormalization pre-
scription, which in the point-particle theory are the particle
mass and the curvature couplings. The functions �P, �Q are
polynomials of k2 whose coefficients are products of the
ci���. Note that the log divergence arises because we have
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taken the singular limit rs ! 0. Since this logarithm arises
in the full theory from the light degrees of freedom which
the EFT must also contain, it is crucial that the nonanalytic
momentum dependence in Eq. (69) coincides with that of
Eq. (68). In order for the EFT to reproduce the results of the
full theory (at least to some fixed order in the small
parameter k2r2

s), we then tune the coefficients cR;V��� so
that G�1��k2� � G�1�EFT�k

2� in the limit k2r2
s � 1.

For instance, in the previous section, we had �P�
m=mPl 	 cR;V���k

2=mPl and �Q�G2
Nm

3k2=mPl, hence in
the full theory that resolves the point-particle singularities,
we expect Q�z� �G2

Nm
3z=r2

smPl for z! 0 (we are ignor-
ing finite, nonanalytic power corrections of the form

�����
k2
p

from Fig. 7(b), which are not relevant to this discussion).
Comparing Eqs. (68) and (69) in this case we obtain a
relation

cR;V��� � c0 	G2
Nm

3 ln��rs�; (70)

where c0 is a full theory parameter obtained from the
expansion of P�z� to linear order. To avoid large logs which
could hinder our perturbative expansion, we choose ��
1=rs. This is the boundary value of the solution to the RG
equation, Eq. (66). Actually, this equation ignores the
presence of scheme-dependent constants (which are not
relevant to physical predictions) which are of the same
magnitude as the coefficient of the logarithm. Thus even if
the short distance parameter c0 were much smaller than
G2
Nm

3, we would find cR;V��0� �G
2
Nm

3.

B. A toy model of the short distance physics

In this section we illustrate the general remarks above in
the context of two simple toy models. The matching of the
worldline operator coefficients which carry information
about the static properties is conceptually similar to the
matching in a model consisting of a self-interacting scalar
field � coupled to a point-particle source. To match point-
particle couplings which carry dynamical information
about the binary star constituents, for instance a tidal
operator of the form

R
d�R���	R���	 that may appear

in the point-particle EFT, requires matching amplitudes
with more than one external graviton. We will consider
an analog of this in electrodynamics, where we will de-
scribe the matching onto the point-particle operatorsR
d�F��F��,

R
d� _x� _x�F��F�� which encode the dy-

namical response of a charge distribution to applied low
frequency electromagnetic fields. Explicit calculations of
the counterterms needed to fix the operator coefficients for
the point-particle EFT as a gravitating compact object are
currently in progress [36].

First consider a self-interacting massless scalar field
��x� in four dimensions coupled to a localized source ��x�,

L �
1

2
�@��2 �


4!
�4 � ��x���x�; (71)
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and imagine that through some unspecified dynamics,
there is a frame in which the source ��x� acquires a profile
of the form

��x0;x� �
�g

�3=2r3
s

exp��x2=r2
s�; (72)

where �g and rs are constants that parametrize the short
distance physics. Although this model is unrealistic in the
sense that the profile ��x� does not arise dynamically but is
rather put in by hand, it is adequate for our purposes here.

In the limit where only long-wavelength modes of the
field ��x� are accessible, the detailed structure of the
source ��x� becomes irrelevant. As far as long distance
modes are concerned, one may replace the localized source
with a point particle that has suitable local couplings to the
field ��x�.

Seff � S��� �m
Z
d�� g

Z
d��	 
 
 
 ; (73)

where S��� is the bulk scalar field action, and we have
suppressed higher-dimension worldline couplings involv-
ing more powers of � or its derivatives. The coupling g
appearing in this equation is a function of the parameters �g,
rs of the short distance source model, which we determine
by matching amplitudes in the low energy EFT with those
obtained from Eq. (71). At lowest order in , this is trivial.
Consider for instance the amplitude for vacuum ! �. In
the full theory

i�2����k0�Afull � �i
Z
d4x��x�hkj��x�j0i (74)

so that

iAfull � �i �g exp��k2r2
s=4�; (75)

which essentially is the form factor associated with the
source distribution ��x�. In the EFT,

i�2����k0�AEFT � �ig
Z
d�hkj��x�j0i

� �i�2����k0�g: (76)

The two amplitudes agree in the limit k2r2
s ! 0 if we set

g � �g. At higher order in the momentum expansion we
would also need operators of the form

R
d�@2n� in the low

energy theory to reproduce the full theory amplitude.
Similarly, by matching the vacuum to vacuum amplitudes,
we find m � �1=4

�������
2�
p

� �g2=rs.
Note that in the point-particle EFT, there are logarithmic

divergences in the vacuum ! � amplitude at O�g3�,
from a diagram analogous to the one in Fig. 7(d),

iAEFT � �ig	
ig3

3!
I0�k�

� �ig��� 	
ig3

192�2

�
3� ln

k2

�2

�
; (77)
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where I0�k� was defined in the previous section, and as
before we have used dimensional regularization plus the
MS scheme to renormalize the divergent amplitude. If the
EFT is to be a correct description of the low energy
physics, the nonanalytic dependence on the momentum
in this equation should reproduce a similar log in the full
theory amplitude. Indeed, calculating in the full theory and
including insertions of the�4 interaction we find, dropping
terms subleading in k2r2

s � 1,

iAfull ’ �i �g	
i �g3

48

Z d3q
�2��3

e�q2r2
s=4

q2jq	 kj

! �i �g�
i �g3

192�2

�
ln

k2r2
s

4
	 �� 1

�
; (78)

which agrees with the claimed universal result, Eq. (68).
Therefore

g��� � �g	
 �g3

192�2

�
ln
�2r2

s

4
	 �	 2

�
; (79)

which indicates that, to avoid large logarithms that may
render perturbation theory invalid, we should match at a
scale �� 1=rs, so that g�1=rs� ’ �g. Then we can use the
RG equation

�
dg
d�
�

g3

96�2 (80)

to sum logarithms of k2r2
s . Even though we phrased the

matching problem using quantum field theory language,
we stress that our discussion here applies also in the
classical regime. This can be seen by matching not scat-
tering amplitudes, but the one-point functions h��x�i, in
the presence of the point-particle source, which have an
obvious classical interpretation.

How does this model bear on the matching problem for
the point particle coupled to gravity? As in the gravita-
tional case, our toy scalar field model exhibits UV diver-
gences in the point-particle limit. In both cases, we expect
those divergences to be resolved by the finite extent of the
distribution which sources the field. We saw this explicitly
in the scalar field theory, where we learned that the match-
ing procedure fixes the couplings of the point particle at a
length scale of order the size of the source. We expect that
the same will occur in the gravitational problem.

However, there are several aspects of the gravity prob-
lem that are not captured by this simple model. In the scalar
field theory, the UV divergences associated with the point-
particle singularities affect the leading order couplingR
d�� itself, and thus the point g � 0 is a (trivial) fixed

point in the RG sense. In the gravitational case, on the other
hand, the structure of the RG flow is such that, even if the
curvature couplings were equal to zero at �� 1=rs, non-
zero values would get induced at longer wavelengths.
Second, in the scalar model, the order g3 correction to
the long range field encodes information about the internal
104029
structure of the extended object that couples to �. For a
source in isolation coupled to gravity, Birkhoff’s theorem
states that the curvature couplings cannot generate long
range static forces that could carry information about the
short distance dynamics. Nevertheless, Birkhoff’s theorem
does not prohibit the momentum space off-shell graviton
one-point function from having sensitivity to the internal
structure. Thus, in principle, one could still match the
graviton one-point functions (or the quantities T��

�i� �k� ap-
pearing in the background field action), although, in prac-
tice, it may be difficult to compare in a gauge invariant
manner. Because of this, it may be simpler to match by
comparing gauge invariant quantities, such as the ampli-
tudes for fields to scatter off the geometry of the extended
source versus the scattering amplitude in the point-particle
theory.

Fixing the coefficients of the operators that measure
tidal effects in the point-particle EFT will require matching
amplitudes with more external gravitons. A similar situ-
ation arises in electrodynamics, where dynamical effects
such as induced dipole moments are encoded in the photon
two-point function (equivalently, the response to an exter-
nal field). Consider, for instance, the effective point-
particle action that describes the interactions of the elec-
tromagnetic field with a perfectly conducting grounded
sphere of radius rs. Since by definition the times scales
associated with the dynamics of a perfect conductor are
short compared to those of the electromagnetic fields it
interacts with, the electrodynamic analog of Eq. (5) is then

Spp � �m
Z
d�	 eQ

Z
dx�A� 	

�
2

Z
d�F��F

��

	
	
2

Z
d� _x� _x�F��F�� : (81)

Imagine putting this system in a constant background
electromagnetic field F ��. Expanding the field about F
in the point-particle EFT, the fluctuating photon field A�
acquires a vacuum expectation value which is given, in the
Feynman gauge, by

hA��x�i �
eQ

4�jxj
��0 �

�
2�

xi

jxj3
F �i 	

	
4�

��0
xi

jxj3
F 0i:

(82)

Imposing the appropriate boundary conditions for a perfect
conductor, the ‘‘microscopic’’ model predicts

hA��x�i � �
r3
s

2

xi

jxj3
F �i 	

3r3
s

2
��0

xi

jxj3
F 0i; (83)

so matching fixes the gauge invariant EFT coefficients to
be Q � 0, 	 � 6� � 6�r3

s . In this particular model, all
higher-dimension operators built out of more derivatives or
powers of F�� have vanishing coefficients.
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FIG. 9. One potential graviton exchange diagrams contributing
to the two-body Lagrangian at v6 ln�. The heavy dot indicates
an insertion of the

R
d�R or

R
d�R�� _x� _x� vertex with cR;V���

evaluated at �� 1=r. Similar diagrams with 1$ 2 are not
shown.
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V. LOGARITHMICALLY ENHANCED
POTENTIALS

Although the operators
R
d�R and

R
d� _x� _x�R�� can be

removed by a redefinition of the metric and thus never
contribute to physical observables, it is instructive to use
these operators to illustrate the general procedure for cal-
culating the contributions to the two-body potential which
are enhanced by a logarithm of � � rs=r. Such terms are
independent of the details of the short distance dynamics.
Although these terms have been obtained in a different
gauge by conventional PN methods in Refs. [11], here we
give a derivation that exploits the RG scaling of the co-
efficients in the EFT to simplify the calculations.

The idea is that, because the amplitudes in the EFT are
independent of the subtraction scale �, we can choose any
convenient value for it. In particular, if one chooses� to be
of order the orbital scale 1=r, then the terms in the two-
body potential that involve logarithms of �jx12j (which
arise from taking the Fourier transform of diagrams in-
volving subgraphs such as those in Figs. 7(c) and 7(d)) are
minimized. In this case the log enhanced contribution to
any amplitude can be obtained entirely from diagrams with
insertions of the local operators

R
d�R,

R
d� _x� _x�R��, with

coefficients cR;V evaluated at a scale �� 1=jx12j. This
procedure amounts essentially to removing the short dis-
tance modes of the gravitational field with wavelengths
between the internal distance rs and the orbital scale r.

For example, consider the diagram shown in Fig. 8,
which contributes to the v6 ln� terms in the potential.
Schematically, it contains terms of the form

Fig : 8�
Z
dx0 GNm2v

2

jx1 � x2j
3 �c��� 	G

2
Nm

3
1 ln��jxj12�;

(84)

where c��� denotes the contributions that arise due to
insertions of the nonminimal curvature couplings and the
logarithmic piece arises from a calculation similar to that
of the O�m3� terms of the background graviton effective
action in Sec. III. Although it is hard, in general, to
calculate those logarithmic pieces, their argument is in-
variably of the form �jx12j, so by choosing �� 1=jx12j
FIG. 8. Sample contribution to two-body potentials at v6 ln�.
All particle vertices are the leading order mass v0 mass insertion.
The � denotes an insertion of the potential graviton kinetic term.
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we may eliminate these pieces in favor of the effective
couplings c�1=jx12j�. These in turn may be obtained in
terms of the bare parameters c�1=rs� by using the RG
equations for the couplings in cR;V in Eqs. (59) and (60),

c�1=r� � c�1=rs� 	G2
Nm

3 ln�: (85)

Since the validity of the velocity expansion requires
c�1=rs� � G2

Nm
3, the logarithmic term gives the dominant

contribution to the two-body potential at this order in v.
Following this line of reasoning, we can obtain the

model-independent v6 ln� terms by calculating the dia-
grams of Figs. 9 and 10 and evaluating the coefficients
cR;V��� at the scale �� 1=jx12j. We find

Lv6 ln� � �4GN�m2c
�1�
R �jx12j� 	m1c

�2�
R �jx12j�

�
v1 
 v2

jx12j
3

�
3�v1 
 x12��v2 
 x12�

jx12j
5

�
	

�
4GNm2c

�1�
R �jx12j�

�

�
v2

2

jx12j
3 �

3�v2 
 x12�
2

jx12j
5

�
	 �1$ 2�

�

�
4G2

Nm1m2

jx12j
4 �c�1�R �jx12j� 	 c

�2�
R �jx12j��: (86)

In this equation, the first and second terms follow from the
diagrams with a single graviton exchange in Fig. 9, while
the last term comes from the diagrams with two- and three-
graviton vertices, Fig. 10. For the diagrams involving in-
sertions of the operator

R
d�R�� _x� _x� one finds that the

one-graviton exchange diagrams vanish identically while
the diagrams from Fig. 10 cancel, so that the two-body
potential is independent of the coefficients c�a�V . We have
dropped parts of diagrams that give rise to a contact delta
function potential that does not generate long range forces,
as well as terms that can be expressed as a total time
derivative and therefore do not contribute to the equations
of motion. Note, in particular, that had we not chosen the
subtraction scale � to cancel the logarithms coming from
the divergent integrals we would have needed, in order to
obtain Eq. (86), a contribution from a diagram involving
the quintic vertex in H�� from the Einstein-Hilbert
Lagrangian. By choosing �� 1=jx12j, this piece of the
potential arises instead from the diagram in Fig. 10(c),
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FIG. 10. Two- and three-potential graviton exchange diagrams contributing to the two-body Lagrangian at v6 ln�. Similar diagrams
with 1$ 2 are not shown.
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which is much easier to calculate.9 To see this, note that the
insertion of the part of the operator

R
d�R that is quadratic

in Hk�� in the diagram of Fig. 10(c) is related by gauge
invariance to the short distance piece (the divergent log)
that is generated in Fig. 7.

Defining the binding energy of the binary system in
terms of the two-body Lagrangian as E �

P
ava 


�@L=@va� � L we find for a circular orbit of radius r in
the CM frame

P
amaxa � 0

Ev6 ln� �
1

3

�
GNm
r

�
4
�
�
1�

3�
m

�
ln
r
r0
; (87)

where � � m1m2=m, m � m1 	m2, and r0 is a length
scale of order the radii of the binary star constituents,
which we assume for simplicity to be of similar size.
One can check that this result agrees with the energy of a
test particle of mass � in circular motion around a
Schwarzschild black hole of mass m (in the coordinates
used in Sec. III) in the limit �! 0. This requires knowl-
edge of the logarithmic term in g00�r� proportional to 1=r4,
g00 � 1	 
 
 
 	 4

3 �GNm=r�4 ln�r.
Because r is not a physical quantity, it is more natural to

express the binding energy E in terms of the orbital fre-
quency !, which can be measured by observers at infinity.
A short calculation shows that the contribution to E�!� due
to the coefficients cR;V��� exactly cancels, which by RG
invariance also implies that the logarithmic dependence on
� must disappear. This follows from the metric field
redefinitions alluded to earlier. If we write the metric g��
in terms of a new metric �g�� as

g���x� � �g���x�
�

1	
�

2m2
Pl

Z
d�
�4�x� x�������

�g
p

�
; (88)

we find that to linear order in �

�2m2
Pl

Z
d4x

���
g
p
R�g� � �2m2

Pl

Z
d4x

���
�g

p
R� �g�

	 �
Z
d�R; (89)

so that the theory with curvature coupling cR is equivalent
to a theory with coupling cR 	 �. Since � can be chosen
arbitrarily without affecting physical predictions, it can be
9This is true at least when the RG equations, Eqs. (59) and
(60), are calculated in background field gauge, as in the previous
section.
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set to � � �cR, in which case the effects of the operatorR
d�R are completely removable.10 Similar field redefini-

tions can be performed to remove cV . This conclusion can
also be reached at the level of Eq. (86). Since to derive
Eq. (86) we had to fix a choice of gauge, a shift in the
metric becomes equivalent to a gauge transformation. It is
then easy to see that if we let xa ! xa 	 �xa (a � 1, 2),
with �x1 � �4GNc

�2�
R ���x12=jx12j

3 and �x2 �

4GNc
�1�
R ���x12=jx12j

3, the shift in the leading order
Newtonian Lagrangian cancels the v6 potentials calculated
above.

Beyond these spurious operators, any other operator
involving the Ricci tensor is also removable by suitable
metric redefinitions. This means that only operators built
from the Weyl tensor have any physical content. The
simplest physical operators that can be written down in a
theory of spinless particles are then
Z
d�C���	C���	;

Z
d� _x� _x�C����C����;

Z
d� _x� _x	 _x� _x�C���	C����; (90)

where we did not build any operators using the four-
acceleration a�, since such terms can be set to zero by a
redefinition of the point-particle world line. The NRGR
power counting rules then indicate that these operators do
not give finite size contributions to the gravitational wave
observables until at least order v10. This is consistent with
Newtonian expectations. A complete account of finite size
effects in the point-particle EFT must also involve a dis-
cussion of absorptive effects, which for spinless black hole
binaries in the extreme mass limit are known to arise first at
order v8 [18]. Such effects are also encoded in point-
particle operators, although there are subtleties involved
in the construction which we will discuss in a separate
paper.

VI. CONCLUSIONS

In this paper, we have reformulated the NR expansion
for binary star systems, an important class of signals for the
gravitational wave detection experiments, in the language
10Note, however, that the shift in Eq. (88) induces in the two-
body sector contact interactions of the form

R
d��4�x1��� �

x2����=
���
g
p

which are physical, although irrelevant in classical
processes.
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of effective field theory. The EFT approach is useful for the
binary problem because it allows the different length scales
that arise in the binary star to be treated independently. In
particular, it is possible to separate the model-dependent
aspects of the problem which involve the internal structure
of the binary constituents from the gravitational dynamics
that governs the orbital evolution and radiation emission.
Using the EFT formulation, it is easy to show that the
divergences which arise at v6 in the PN expansion can be
attributed to the existence of new operators in the effective
point-particle description. However, these operators can be
removed via a point transformation of the metric tensor and
thus never contribute to physical quantities. This leads to
the conclusion that there are no finite size effects at order
v6. Practically, this means that whenever one encounters a
log divergent integral at order v6 in the potential, one may
simply set it to zero. Its value cannot affect physical
predictions.

Beyond order v6, a new set of operators, which are
quadratic in the curvature and whose role is to describe
tidal deformations (induced moments), contribute at v10.
The magnitude of such tidal forces is consistent with
conventional Newtonian estimates of their size. However,
in the EFT these conclusions follow from general prin-
ciples (dimensional analysis and general covariance) with-
out the need to carry out any calculations. As will be
discussed in a future publication, the calculations neces-
sary to determine the coefficient of these operators (which
encode the finite size effects) are relatively straightfor-
ward, since they can be done for a compact object in
isolation without the need to include superfluous informa-
tion about the complete two-body problem. This is the
beauty of working within an EFT formalism.

Several aspects of the formalism remain to be worked
out. Here we have not discussed logarithmic divergences
that may arise in NRGR due to graphs with internal radia-
tion graviton lines. Such divergences can be treated by the
same renormalization and matching procedure described in
this paper to deal with divergences in the calculation of
potential terms. In fact, we believe that the explicit decou-
pling of the orbital scale r and the radiation scale r=v will
make the evaluation of effects such as radiative tail terms,
which is difficult within conventional PN approaches [6,8],
simpler within our approach. (Tail effects have also been
handled by solving for the wave function of the graviton in
the presence of a 1=r gravitational potential in Ref. [37].)
Also, in our analysis so far, we have neglected the role of
spins or higher rank tensors carried by the point particles.
Such permanent moments encode the intrinsic, rather than
the tidally induced, shape of the binary star constituents. It
is important to extend the formalism, in particular, the
velocity power counting rules, to systematically include
the effects of these additional worldline degrees of freedom
on the pattern of gravitational waves seen by the detector.
We also expect that the inclusion of these dynamical
104029
quantities will allow the construction of a vastly larger
set of coordinate invariant worldline nonminimal cou-
plings than those considered in this paper, and lead to an
even richer structure of coupling constant RG flows.
Finally it should be interesting to apply the formalism to
work out the phenomenological signatures of theories of
gravity that predict deviations from general relativity, in-
cluding simple extensions with additional fields or more
speculative models that deviate from conventional gravity
in the far infrared [35,38].
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Note added.—While this paper was being reposted,
Ref. [40] appeared which discusses the same field redefi-
nitions for removing the operators

R
d�R,

R
d�v�v�R��

mentioned above.

APPENDIX A: POWER COUNTING L

In this appendix we show that any diagram contributing
to Seff�xa� scales at most as L1, up to powers of the velocity.
Consider a vacuum diagram with Ng graviton self-
interaction vertices from the Einstein-Hilbert action, Nm
insertions of the point-particle world line, and P graviton
propagators. Writing the graviton kinetic term as
�m2

Pl

R
d4x�@h�2, each graviton self-interaction scales as

m2
Pl, a coupling to the world lines scales as the particle

mass m, and each graviton propagator scales as 1=m2
Pl. Up

to powers of v, the only other scale that can appear in a
Feynman diagram is the orbital distance r. Thus a typical
diagram in the expansion of Seff�xa� has a magnitude

mNmm
2Ng
Pl m

�2P
Pl rNm	2Ng�2P; (A1)

since Seff�xa� is dimensionless. Using the virial theorem,
m�2

Pl � v
2r=m, so up to powers of v, this equation implies

that each diagram scales as �mr�Nm	Ng�P � LV�P, where
V � Nm 	 Ng is the total number of vertices in each
connected vacuum diagram that contributes to Seff�xa�.

Starting with the trivial diagram with V � 1, P � 0
(corresponding to a free world line) one can attach to it
enough vertices and graviton lines to build up a diagram
with arbitrary V, P. However, since the diagram obtained
in this way must be connected, for each new vertex we
must include at least one graviton line, so that V � P for
this new graph is bounded by unity. From this we conclude
-18
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that any diagram contributing to Seff�xa� scales as L1�‘,
with integer ‘ � 0.
APPENDIX B: FEYNMAN RULES

In this appendix we review the derivation of the
Feynman rules used to obtain the results of this paper. As
explained in the text, in our formalism all observables are
derivable from either the quantity Seff�xa� defined by
Eq. (6) or from the effective Lagrangian for the radiation
graviton mode, SNRGR� �h; xa�. Note that because there is no
propagator for the ‘‘fields’’ x�a ��� (as far as the gravitons
are concerned, these degrees of freedom are treated as a
fixed background) we have the following rule: iSeff�xa� is
the sum of Feynman diagrams that remain connected when
all particle world lines are removed. Thus diagrams like the
Newton exchange term in Fig. 2(a) are kept in the expan-
sion, but diagrams such as a ‘‘box’’ diagram with a pair of
world lines interchanging two gravitons do not arise in the
expansion of Seff�xa�. In fact, in our formalism the box
diagram corresponds to the product of two single exchange
terms, and is already accounted for by keeping just
Fig. 2(a).

The procedure for integrating out modes with wave-
lengths shorter than the radiation scale r=v involves com-
puting diagrams with one or more external radiation
gravitons and any number of internal potential gravitons.
This gives rise to the quantity SNRGR� �h; xa� defined in
Eq. (14). The rule for calculating this is as follows: A
term with n powers of the radiation field �h�� in
iSNRGR� �h; xa� is equal to the sum of Feynman diagrams
with n external radiation graviton lines. Because of the
multipole expansion, this quantity is guaranteed to be of
the general form SNRGR� �h;xa� �

R
dtL� �h�Xcm; t�;xa�, as

we explicitly saw in the derivation of the low order terms in
Seff� �h; xa�.

We now give the Feynman rules for computing the
diagrams in the expansion of iSeff�xa� and iSNRGR� �h; xa�.

1. Propagators and external gravitons

If we expand the metric perturbation h�� � g�� � ���
in terms of potential and radiation graviton modes as

h���x� � �h���x� 	
Z

k
Hk���x0�eik
x (B1)

then the propagators for Hk�� and �h�� can be read off the
terms in the gravitational action that are quadratic in the
fields. In order to get a well-defined propagator one needs
to fix the gauge, which is achieved by adding a term to the
action that explicitly breaks diffeomorphisms This proce-
dure is standard for gauge theories and can be found, for
instance, in chapter 16 of Ref. [39]. For gravity, this is
explained in the reviews [21,22]. Given the choice of gauge
fixing term for potential gravitons used in the text, Eq. (15),
the terms quadratic in the potential mode can be written as
104029
SH2 � �
1

2

Z
dx0

Z
k
H�k���x0�k2T��;�	Hk�	�x0�;

(B2)

with T��;�	 � 1
2�

����	 	 1
2�

�	��� � 1
2�

����	. The
propagator is then defined as a formal inverse to this
equation,

ik2T��;��hHk���x
0�Hq�	�x

00�i

� �2��3�3�k	 q���x0 � x00�I���	; (B3)

with I��;�	 � 1
2�

����	 	 1
2�

�	��� the identity on sym-
metric two-index tensors. Inverting we find Eq. (17),

hHk���x0�Hq�	�0�i � ��2��3�3�k	 q�
i

k2 ��x
0�P��;�	:

(B4)

The propagator for the radiation graviton also depends on
the choice of gauge fixing term in the action. For instance,
choosing a gauge fixing term of the form

SGF� �h� � m2
Pl

Z
ddx��� ��� ���; (B5)

with ��� � @� �h�� �
1
2@�

�h, the propagator is given by

h �h���x� �h�	�y�i � DF�x� y�P��;�	; (B6)

where the Feynman propagator DF�x� is given by

DF�x� �
Z ddk

�2��d
i

k2 	 i

e�ik
x: (B7)

In this equation, 
! 0	 defines a choice of contour for the
k0 integral. Given these results, the general rule for a given
Feynman diagram is then as follows:
(i) A
-19
n internal potential graviton line with label mo-
mentum k and connecting points at times x0 and x00

corresponds to an insertion of Eq. (B4).

(ii) A
n internal radiation line connecting two points x

and y denotes a factor of Eq. (B6).

(iii) F
or each external radiation line starting at a vertex

located at a spacetime point x, one includes a factor
of the radiation field �h���x� and an integral

R
ddx

over x.
2. Vertices

The Feynman rules for general relativity contain an
infinite number of interaction vertices. This is because
the Einstein-Hilbert Lagrangian

���
g
p
R is an infinite series

in the graviton h��, so that the set of terms in this expan-
sion with n factors of h�� gives rise to an n-graviton vertex
in Feynman diagrams. In our theory, the expansion of the
point-particle couplings also generates an infinite set of
vertices that can be used to build up Feynman diagrams.
The method for deriving the vertex rules associated with
these interactions is straightforward, although in the case
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of graviton self-interactions arising from the gravitational
action the procedure gets messy due to the large number of
terms at a given order in h��. In this section we will
illustrate the procedure by deriving some of the vertex
rules used in the text. The derivation of more complicated
Feynman rules is directly analogous.

Consider first Feynman rules arising from insertions of
point-particle interactions. The simplest nontrivial term is
the vertex that arises in the calculation of the two-body
Newton interaction. Expanding the �m

R
d� term in the

action, there is a term of the form

Spp � �
m

2mPl

Z
dx0

Z
k
eik
x�x

0�Hk00�x
0� 	 
 
 
 : (B8)

This leads to a Feynman rule for the vertex shown in
Fig. 11,

�
im

2mPl

Z
dx0

Z
k
eik
x�x

0���0��0: (B9)

Then, for instance, the diagram of Fig. 2(a) is given by

Fig: 2a �
�
�
im1

2mPl

Z
dx0

Z
k
eik
x1�x0���0��0

�

�

�
�
im2

2mPl

Z
dx00

Z
k
eiq
x2�x00���0�	0

�

� hH��
k �x

0�H�	
q �x00�i; (B10)

which reduces to Eq. (22). Likewise, the term in the action,

Spp � �
m

2mPl

Z
dx0

Z
k
eik
x�x

0�vi�x0�Hk0i�x
0� 	 
 
 
 ;

(B11)

leads to the Feynman rule

�
im

2mPl

Z
dx0

Z
k
eik
x�x

0�vi�x0��i���0; (B12)

which can be used to calculate Fig. 4(b). The point-particle
action also has terms that are nonlinear in the graviton and
lead to vertices with more graviton lines. For instance, the
vertex in Fig. 5(b) involving two graviton lines arises from
a term in the action

Spp �
m

8m2
Pl

Z
dx0

Z
k;q
ei�q	k�
x�x0�Hk00�x0�Hq00�x0�:

(B13)
FIG. 11. Vertex associated with the Feynman rule in Eq. (B9).
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The Feynman rule for this term contains two identical
terms, which arise from the two independent ways of
contracting the two fields in the interaction with the exter-
nal graviton lines (in other words, of pairing the two
graviton lines with index pairs ��, �	 with the two fields
in the interaction),

im

4m2
Pl

Z
dx0

Z
k;q
ei�q	k�
x�x0��0��0� � �0��0	: (B14)

Using this vertex, we can then calculate the graph in
Fig. 5(b). Including the proper symmetry factors for the
diagram (see for instance chapter 4 of Ref. [39]) leads to
Eq. (39).

Besides the interaction vertices involving point-particle
sources, we also need to calculate the n-graviton vertices.
Consider for instance the three-point vertex for radiation
gravitons. Because of the large number of terms each with
a complicated tensor index structure, we do not display the
full Feynman rule here (it is more efficient to do the
calculations using an algebra manipulation computer pack-
age). Consider, however, one of the terms that gives rise to
the three-graviton Feynman rule. In the gauge of Eq. (B5)
all terms in this vertex derive from the cubic terms in the
expansion of

���
g
p
R. For instance, using

���
g
p
g�� � ��� 	 
 
 
 	

1

4m2
Pl

�
�h2 �

1

2
�h�	 �h�	

�
���

�
1

2m2
Pl

�h �h�� 	 
 
 
 ;

(B15)

there is a term in the Einstein-Hilbert Lagrangian of the
form

�2m2
Pl

Z
ddx

���
g
p
R � �

1

2mPl

Z
d4x

�
�h2 �

1

2
�h�	 �h�	

�
R�1�

	
1

mPl

Z
d4x �h �h��R�1��� 	 
 
 
 ;

(B16)

where R�1��� � 1
2 @�@�

�h�� 	
1
2@�@�

�h�� �
1
2 @

2 �h�� �
1
2@�@�

�h

and R�1� � ���R�1���. In coordinate space this particular
term leads to a contribution to the three-graviton vertex
of the form

i
mPl

Z
ddx

��
�

1

2
I�1�1

�
�I�2�2

	
	

	
1

4
I�1�1�	I

�	
�2�2

�
I�3�3���@

�
3@

�
3 � �

��@2
3�

	 I�1�1

�
�I�2�2�	

�
1

2
I�	�3�3

@3
�@3� 	

1

2
I���3�3

@3
	@3�

�
1

2
I�	�3�3

@2
3 �

1

2
I�3�3

�
�@�3 @

	
3

��
	 perms: (B17)

The tensor I���	 has been defined below Eq. (B3). In this
-20
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vertex, each incoming graviton is labeled 1, 2, or 3. The
partial derivatives in this particular term act on the propa-
gator of the graviton labeled 3 coming into the vertex. To
get the full Feynman rule from the term in Eq. (B16), Bose
statistics also demands that we include all permutations of
104029
the terms shown in the above expression under the inter-
change of the graviton labels. It is also useful to work in
momentum space, in which case the expression for this
piece of the three-graviton Feynman rule becomes (taking
all graviton momenta to be flowing into the vertex)
�
i
mPl
�2��d�d�k1 	 k2 	 k3�

��
�

1

2
I�1�1

�
�I�2�2

	
	 	

1

4
I�1�1�	I

�	
�2�2

�
I�3�3���k

�
3k

�
3 � �

��k2
3�

	 I�1�1

�
�I�2�2�	

�
1

2
I�	�3�3

k3
�k3� 	

1

2
I���3�3

k3
	k3� �

1

2
I�	�3�3

k2
3 �

1

2
I�3�3

�
�k�3 k

	
3

��
	 perms: (B18)

Feynman rules for potential self-couplings, or for potential-radiation couplings, are derived in the same way.
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