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I. INTRODUCTION

In this paper we study solutions of supergravity equa-
tions generated by stringlike sources moving with the
speed of light. Study of solutions of the Einstein equations
for objects moving with the velocity of light has long story.
In 1934 Tolman [1] obtained solutions for the gravitational
field of beams of light in the linear approximation. The
exact solutions of the nonlinear Einstein equations for this
problem were obtained later [2–4]. For the infinitely small
cross-section of the beam and for the delta-type distribu-
tion of the light-pulse in time, these solutions reduce to the
Aichelburg-Sexl metric [5]. These 4-dimensional solutions
were generalized to the case the matter of beam is either
charged or spinning by Bonnor [6,7] in 1970. Higher-
dimensional generalizations of the solutions of Einstein
equations for spinning relativistic beamlike sources (gyra-
tons) were obtained and studied in [8,9]. Solutions for
charged higher-dimensional gyratons and for gyratons
moving in an asymptotically anti–de Sitter space were
found in [10,11], respectively. The aim of this paper is to
discuss generalization of electrically charged gyraton so-
lutions to the theory of supergravity. More concretely, we
study solutions of higher-dimensional gravitational equa-
tions with the rank 3 antisymmetric Kalb-Ramon field
generated by stringlike sources moving with the velocity
of light. The basic equations, the metric and field ansatz are
presented in Secs. II and III, respectively. In Sec. IV we
demonstrate, that the field equations for the problem under
consideration reduce to the set of linear equations in a flat
Euclidean space. Special solutions of these equations for
ringlike string gyratons are obtained in Sec. V. Section VI
contains brief summary and discussions.
II. BASIC EQUATIONS

We consider the massless bosonic sector of supergravity.
We restrict ourselves by discussing what is called the
common sector. The fields in the common sector are the
metric g��, the Kalb-Ramond antisymmetric field B�� and
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the dilaton field�. The corresponding action, which is also
the low-energy superstring effective action, is
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Here G is the D-dimensional gravitational (Newtonian)
coupling constant, and Sm is the action for the string matter
source. The string coupling constant gs is determined by
the vacuum expectation value of the dilaton field �0, gs �
exp��0�. The 3-form flux

H��� � @�B�� � @�B�� � @�B�� (2)

is the Kalb-Ramond (KR) field strength and B�� is its
antisymmetric 2-form potential. The fieldH��� is invariant
under the gauge transformation

B�� ! B�� � @��� � @���: (3)

J�� is the antisymmetric tensor of the current which plays
the role of a source for the KR field. For example, for the
interaction of the KR field with a fundamental string
described by the action
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Here �ab is the antisymmetric symbol, �a � �	; 
� are
parameters on the string surface and the functions X� �
X���� determine the embedding of the string worldsheet in
the bulk (target) spacetime. The parameter q is the ‘‘string
charge’’. The current J�� is tangent to the worldsheet of the
string, J���X��;c � 0.

We shall study a special class of gyraton solutions for
which the dilaton field is constant, i.e., e� � gs. In this
case the field equations are
-1 © 2006 The American Physical Society
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R�� �
1

2
g��R � T�� � g2

s�T ��; (6)
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�
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Here the stress-energy tensor for the 3-form flux is
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�
; (8)

and � � 8�g2
sG. T �� which enters the Eq. (6) is the

stress-energy of the matter (string) which we shall specify
later.

Let � be a �D� 2�-dimensional spacelike surface, and
@� be its boundary. We define the charge of the funda-
mental string intersecting � by Gauss’s law as

Q :�
Z
@�
d
D�3 �D H3 �

Z
d
���H���: (9)

By using the Stoke’s theorem and ((7)) one has

Q �
Z
d
��J

�� � 8�q: (10)

Here d
�1			�n
:� i�1

	 	 	 i�n
��1� in which �1 is the vol-

ume form of D-dimensional spacetime and i�: �pT� !

�p�1T�, i�dx�1 ^ 	 	 	 ^ dx�p � p���1
� dx�2 ^ 	 	 	 ^ dx�p�.

For a straight string along Z-axis in Minkowski space-
time with coordinates �T; Z; Xi�, (i � 3; . . . ; D) one has

HTZi �
Q

AD�3

ni

�
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i�3 X

2
i �
�D�3�=2

; (11)

the other components vanish. Here ni is a unit vector
normal to the surface

PD
i�3 X

2
i � const, and

A n � 2�n=2=��n=2� (12)

is the surface area of a unit n-dimensional sphere.
In what follows, we consider the gravitational and KR

fields outside the sources, that is in the region where T�� �
0 and J�� � 0. The relation (10) will be used to relate the
parameters which enter a solution to the charge of the
string.
III. ANSATZ FOR SUPERGRAVITY GYRATON

A. Metric

We shall study special solutions of the supergravity
Eqs. (6) and (7) which are generated by sources moving
with the speed of light. We are interested in solutions
which have finite energy, angular momentum, KR charge,
and finite duration in time. Following [8–10] we call such
ultrarelativistic objects with spin gyratons and use for its
gravitational field in the D � n� 2 dimensional space-
time the following metric ansatz (Brinkmann metric [12])

ds2 � d �s2 � 2�audu� aadxa�du: (13)
104028
Here au � au�u; x
a�, aa � aa�u; x

a�, and

d �s2 � �2dudv� dx2 (14)

is the D-dimensional flat metric, the transverse spatial part
of the metric dx2 � �abdxadxb in the n-dimensional hy-
persurface is flat. We use the Greek letters for indices
which take values 1; 	 	 	 ; D, while the Roman low-case
indices take value 3; 	 	 	 ; D. The form of the metric (13)
implies that

det�g��� � �1: (15)

The field

a� � au�
u
� � aa�

a
� (16)

is the gravitational analogue of the electromagnetic poten-
tial. It is easy to see that the metric is invariant under the
following gauge transformation

v! v� ��u; x�; a� ! a� � �;�; (17)

and the quantity

f�� � @�a� � @�a� (18)

is gauge invariant.
The metric (13) admits a null Killing vector l � l�@� �

@v, which is parallelly propagated l�;� � 0. One also has

l�dx� � �du; l�a� � l�f�� � 0: (19)

The flat metric d �s2 and the metric (13) are related as

�g �� � g�� � l�a� � l�a�; (20)

�g �� � g�� � l�a� � l�a� � l�l�a�a�: (21)
B. KR field

For the KR field potential we use the ansatz similar to
the one adopted for the electromagnetic gyratons [10].
Namely we postulate that B�� � B���u; x� and

l�B�� � 0: (22)

It is easy to check that

l�H��� � 0: (23)

The imposed constraints imply that the only nonvanishing
components of B�� are Bua�u; x� and Bab�u; x�, and of
H��� are Huab�u; x� and Habc�u; x�. Moreover, to preserve
the constraint (22) under gauge transformation, we should
impose

@v�� � @��v � 0: (24)

Using (20) and (21) it is easy to derive the relation
between the contravariant tensors raising their indices
from the same covariant one by using the metric (13) and
the flat metric (14) respectively. Especially, for 3-form flux
-2
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we have

�H��
� � H��

� � l�a�H��
�; (25)

�H�
�� � H�

�� � a��l
�H�

�� � l�H�
���; (26)

�H ��� � H��� � a��l
�H��� � l�H��� � l�H����:

(27)

Here the quantities with bar are the ones with respect to the
flat metric.

One also has

�H ���
�H�

�� � H���H�
��; (28)

H2 
 �H���
�H��� � H���H���: (29)

These equations will be useful in solving the field
equations.

Moreover, the constraint (23) implies that

H2 � H2 
 HabcHabc: (30)

Note that the indices a, b, c in the above relations are raised
by the flat metric �ab since gua � �gua � 0 and gab �
�gab � �ab.

C. Gyrating matter

We discuss now the ansatz for T �� which enters the
Eq. (7). We require that this tensor obeys the conservation
low

T ��
;� � 0; (31)

and is aligned to the null Killing vector l�

T �� � l��p��; l�p� � 0: (32)

The last condition guarantees that the trace of T �� van-
ishes, T �

� � 0. For the metric (13) these conditions are
satisfied when

p� � p��u; xa�; pa;a � 0: (33)

This can be checked by using the condition l�;� � 0.
Bonnor [7] called such matter in 4-dimensional spacetime
spinning null fluid.
IV. REDUCED EQUATIONS

Calculations show [9] that for the metric (13) the only
nonvanishing components of the Ricci tensor are

Rua �
1

2
fab

;b; (34)

Ruu � ��au�
;a
;a �

1

4
fabf

ab � @u�aa
;a�: (35)

These relations imply
104028
R � 0; (36)

which together with the fact T �
� � 0 the field Eq. (6)

yields

T�� � 0: (37)

By taking trace of (8) the vanishing trace of the stress
tensor then implies

H 2 � 0; (38)

and hence Habc � 0 except for D � 6 case. However,
since in additoin all the spatial components of the Ricci
tensor vanish, this result follows even in D � 6 case.

Therefore, the only nonvanishing component of H���

areHuab�u; x�. This means thatH��� � l��P���, so that the
field strength H��� is aligned to the null Killing vector l�.

Using (15) one has

H��
�

;� � H��
�
;�; (39)

and the field Eqs. (6) and (7) reduce to

�au�
;a
;a � @u�aa;a� �

1

4
�fabfab �HuabHu

ab� � �pu; (40)

fab
;b � ��pa; (41)

Hua
b
;b � 8�Jua: (42)

The last two relations are linear differential equation in the
n-dimensional Euclidean space (n � D� 2). They can be
solved for fab and Huab once the source Jua and the
distribution for the source for gravito-magnetic field fab
is given. After this we can solve the first equation for au,
which for a given right-hand-side is also linear.

On the other hand, we can also solve the constraint
Habc � 0 by the following ansatz for the 2-form potential

B�� � A�l� � A�l�: (43)

From l�B�� � 0, we have

l�A� � 0: (44)

This is equivalent to choose a gauge so that the only non-
vanishing component of B�� is Bua � Aa�u; x�, and of
H��� is

Huab � @bAa � @aAb 
 Fba: (45)

Note that the constraints (23) and (44) are preserved by
the gauge transformation

A� ! A� � @���u; x�: (46)

Let us denote

� � 2au; a � aa; f � fab (47)
-3
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A � Aa; F � Fab; J � Jua; p � pa:

(48)

In these notations the gyraton metric is

ds2 � d �s2 ��du2 � 2�a; dx�du; (49)

and the field Eqs. (40) and (42) reduce to

��� 2@u�r 	 a� �
1

2
�f2 � F2� � 2�pu; (50)

�A� r�r 	A� � 8�J: (51)

Here r � @a, and � is the Laplacian operator in the
n-dimensional Euclidean space.

Using the coordinate, (17), and electromagnetic, (46),
gauge transformations one can put

r 	A � 0; (52)

r 	 a � 0: (53)

For these gauge fixing conditions the Eqs. (41), (50), and
(51) take the form

�� �
1

2
�f2 � F2� � 2�pu; (54)

�a � �p; (55)

�A � 8�J: (56)

It is interesting to note that the magnetic and gravito-
magnetic terms enter the right-hand-side of (54) with the
opposite signs. A special type of solutions is the case when
these terms cancel one another, so that the equation for �
outside the matter source becomes homogeneous. We call
such solutions saturated. The condition of saturation is

f 2 � F2 (57)

which can be achieved by letting p � 8J as suggested by
(55) and (56).
V. RING-STRING GYRATONS

A. Green functions

The system of Eqs. (56)–(58) is well defined for distrib-
uted sources pu, p, and J. In a general case, solutions for
the Eqs. (54)–(56) can be obtained by using the Green
function of the Laplace operator. A solution of the equation

� � j�u; x� (58)

is

 �u; x� � �
Z
dx0Gn�x; x0�j�u; x0�: (59)

Here Gn�x; x0� is the Green’s function for the
n-dimensional Laplace operator
104028
�Gn�x; x0� � ���x� x0�; (60)

which can be written in the following explicit form

G 2�x; x0� � �
1

2�
lnjx� x0j; (61)

G n�x; x
0� �

gn
jx� x0jn�2 ; n > 2; (62)

where gn � 1=��n� 2�An� and An is given by (12). It
should be emphasized that the retarded time u plays the
role of the external parameter if a source term depends on
it. The dependence of the field on u can be obtained by
solving ‘‘static’’ equations. After one obtains a solution of
static equations one can simply make the coefficients
which enter the solution to be u-dependent.

Since the Eqs. (55) and (56) are linear, one can solve
them for the limiting case when the size of the source tends
to zero. However, because the presence of the terms qua-
dratic in F and f in the right-hand-side of Eq. (54), its
solution by the transition to the point like limit of sources
may be not uniquely determined and depend on detailed
structure of the sources. In what follows we restrict our-
selves by considering the saturated solutions where this
problem does not occur. We also assume that the source of
the gyraton field is a string which has a form of a ring and is
moving with the speed of light in the direction orthogonal
to the plane of the ring. Let us consider this case in more
details.

B. KR field of a ring string

We choose coordinates x in the transverse to the motion
plane in such a way that the string ring is located in the
�x3 � x4�-2-plane, and denote the coordinates in the or-
thogonal subspace by y � �yA�, A � 5 . . .D. Let ��; � be
polar coordinates in the string 2-plane

x3 � � cos; x4 � � sin: (63)

The ring-string worldsheet is defined by the following
equations

v � 	; u � u0; X3 � �0 cos
;

X4 � �0 sin
;
(64)

and XA � 0. The nonvanishing component of the current
J�� is J � Jva

J �
1

2
q��u�I; I � Îê; (65)

e ̂ � � sine3̂ � cose4̂; (66)

Î �
���� �0�

�0
�D�4�y�: (67)

Here ê is a unit vector in the -direction, eâ are unit
-4
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vectors along the axes xa, and ��u� � ��u� u0�. If the
string source is not localized at u � u0 but is smeared in
time, the function ��u� is smooth. We assume that ��u� is
normalized so that

R
du��u� � 1.

The solution of the Eq. (56) is [13]

A �u; x� �
�
� 1

2gD�2Q��u�
R dx0I�x0�
jx�x0jD�4 ; for D> 4;

1
4�Q��u�

R
dx0I�x0� lnjx� x0j; for D � 4:

(68)

Here the charge Q is given by (10) and

jx� x0j � ��� �2 � �02 � 2��0 cos�� 0��1=2; (69)

and � � jy� y0j2 (for D> 4) and � � 0 (for D � 4).
Since the geometry is cylindrically symmetric, it is

sufficient to calculate A at  � 0. Since the azimuthal
integrations in (68) is symmetric about 0 � 0, the compo-
nent of the current in the direction e3 does not contribute.
This leaves the only component in the direction of e4,
which is Â. Since ê � �@ one has A � ��1Â. Thus
we have

A � �
1

2�
gD�2Q��u�BD; for D> 4; (70)

A �
1

4��
Q��u�

Z 2�

0
d0 cos0 lnF0; D � 4; (71)

where

F� � �� �2 � �2
0 � 2��0 cos�0�; � � y2; (72)

B D �
Z 2�

0

d0 cos0

F�D�4�=2
�

: (73)
1. 4D case

In the 4-dimensional case, D � 4, the integral (71) can
be easily taken and the answer is

A � �
Q��u�

2�0
����0 � �� � ��0=��2���� �0��; (74)

where � is the Heaviside step function. In this case the
only nonvanishing component of the 3-form flux

Hu� � A;� � Q��u�
�0

�3 ���� �0�: (75)

The flux vanishes for � < �0 and it is discontinuous at � �
�0. However, the jump of the flux value at � � �0 is finite
and proportional to the charge Q.

2. Even dimensional case

ForD> 4 we consider first the case whenD is even. We
put D � 2m� 6, then BD � Hm, where
104028
Hm �
Z 2�

0

d0 cos0

Fm�1
�

: (76)

The calculations give

H0 �
�
��0

�
�� �2 � �2

0�������������������������������������������������������������������
��� ��� �0�

2���� ��� �0�
2�

p � 1
�
:

(77)

For m> 0 one has

Hm �
��1�m

m!

dmH0

d�m
: (78)

Note that the above solutions are singular at the location of
the ring string, i.e., at � � �0 and y � 0.

3. Odd dimensional case

Let D � 2m� 5, then BD � Jm, where

Jm �
Z 2�

0

d0 cos0

Fm�1=2
�

: (79)

The calculations give

J0 �
2��2� k2�K�k� � 2E�k��

k
���������
��0
p ; (80)

k2 �
4��0

�� ��� �0�
2 � 1: (81)

Note that k � 1 only at the location of the ring string, and
k� 1 far away from the ring string or near the � � 0 axis.

In the above E�k� and K�k� are the complete elliptic
integrals defined by

K�k� :�
Z �=2

0

dz������������������������
1� k2sin2z

p ;

E�k� :�
Z �=2

0
dz

������������������������
1� k2sin2z

p
:

Note that E�k� is a monotonically decreasing function from
E�0� � �=2 to E�0� � 1, and K�k� is a monotonically
increasing function from K�0� � �=2 to K�1� � 1. Note
that K�k�  ln�1� k� as k! 1.

For m> 0 one has

Jm � ��1�m
2m

�2m� 1�!!

dmJ0

d�m
: (82)

The complete elliptic integrals possess the properties

dK�k�
dk

�
E�k�

k�1� k2�
�
K�k�
k

; (83)

dE�k�
dk

�
E�k� � K�k�

k
: (84)

For this reason the expression Jm for any m has the same
structure
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Jm � AmK�k� � BmE�k�; (85)

where Am and Bm are some algebraical functions of k and
��0, which can be found by using (83) and (84).

Note that the above solutions are singular on the location
of the ring string due to the divergence of K�k� at k � 1.

C. Gravito-magnetic potential a

Since the equation for the gravito-magnetic potential a,
(55), differs from the (56) only by a constant coefficient
one can directly obtain a solution for a from A. For the
source p � j�u�I it is sufficient to make the following
substitution 4q��u� ! j�u� in the expression for A. For
saturated solutions we shall further require j�u� � 4q��u�.

D. Potential �

The Eq. (54) for � is linear. Let us write its solution in
the form

� � ’�  ; (86)

where

� � 2�pu: (87)

Assuming that the mater source is localized on the ring
string, one has

pu � "�u�Î: (88)

The corresponding solution is

 �u; x� �
�
�2gD�2�"�u�CD; for D> 4;
�"�u�
� C4; for D � 4:

(89)

Here

C D>4 �
Z 2�

0

d0

F�D�4�=2
�

; (90)

C 4 �
Z
d0 lnF0: (91)
1. 4D case

In the 4-dimensional case, the integral (91) can be easily
taken and the answer is

C 4 � �4�
�

ln�; for � > �0;
ln�0; for � < �0:

(92)
2. Even dimensional case

ForD> 4 we consider first the case whenD is even. We
put D � 2m� 6, then CD � Nm,

Nm �
Z 2�

0

d0

Fm�1
�

: (93)

The calculations give
104028
N0 �
2��������������������������������������������������������������������

��� ��� �0�
2���� ��� �0�

2�
p : (94)

For m> 0 one has

Nm �
��1�m

m!

dmN0

d�m
: (95)

3. Odd dimensional case

Let D � 2m� 5, then CD � Lm,

Lm �
Z 2�

0

d0

Fm�1=2
�

: (96)

The calculations give

L0 �
2kK�k����������
��0
p ; (97)

where k is given by (81).
For m> 0 one has

Lm � ��1�m
2m

�2m� 1�!!

dmL0

d�m
: (98)

Using this relation and relations (83) and (84) it is possible
to write Lm as

Lm � CmK�k� �DmE�k�; (99)

where Cm and Dm are some algebraical functions.
For the saturated ring-string solutions ’ � 0, so that

� �  . As for the KR field, the higher dimensional (D>
4) solutions of � are singular at the location of the ring
string. The obtained relations in this section allow one to
write the gyraton metric (13) and the 3-form flux (45) in an
explicit form. The solutions contain 2 arbitrary function of
u, ��u� and "�u�, which are related to the angular momen-
tum (string current) and energy density of the ring-string
source. For nonsaturated case, one needs in addition to
obtain a solution of the equation

�’ �
1

2
�f2 � F2� (100)

with an explicitly known right-hand-side. The relation (59)
gives the integral representation for the solution.

VI. CONCLUSIONS

In general it is difficult to obtain analytically in an
explicit form a solution of the Einstein equations for a
moving extended graitating object because of the nonline-
arity the equations. In this paper we achieve the goal by
constructing the full supergravity solution due to a boosted
closed string coupled to the Kalb-Ramond field. We basi-
cally generalized the method of constructing of solutions
for the point charged gyraton moving with the speed of
light [10] to the string case. The gyraton metric has the
special property that all the curvature invariants con-
-6
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structed from the curvature and its covariant derivatives
vanish [8,9]. As a pecial case, we considered a ring-string
source moving with the speed of light in a D-dimensional
spacetime. The full metric and the KR field due to its back
reaction are analytically constructed, and the quantities in
the solutions related to angular momentum and energy
density are identified. The configurations are singular at
the location of the ring-string source for D> 4 cases but
not for D � 4. Physically, our special ring-string solution
is the theoretical realization of the boosted closed string
produced in the high energy experiments, and the time-
dependent background variation could, in principle, be
detected by the gravitational wave interferometers.

The generalization of our construction to the p-brane
gyratons is straightforward, especially the 3-brane gyraton
of the vacuum supergravity solution is the generalization of
the pp-wave background [14,15]. However, the explicit
104028
solutions corresponding to the the boosted p-brane of
special shape are model dependent. It will be interesting
to examine the string theory in the vacuum 3-brane gyraton
background and its dual picture in Yang-Mills theory.
Finally, we would like to mention that the solutions found
in [16,17]by boosting the black ring are related to the
solution found in this paper. It will be also interesting to
explore the connection.
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