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Static charged distributions in 2� 1 gravity
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Circularly symmetric charged perfect-fluid distributions are studied in three-dimensional gravity with a
cosmological constant. We derive the Tolman-Oppenheimer-Volkoff equation of hydroelectrostatic
equilibrium, and we discuss its applicability. A class of charged fluid distributions for p � �� is
considered. In this case, a particular model is obtained which represents a charged distribution whose
mass is entirely of electromagnetic origin.
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I. INTRODUCTION

Properties of gravitation in �2� 1� dimensions have
received considerable attention in recent years. This
three-dimensional Einstein gravity provides a model for a
better understanding of the �3� 1�-dimensional classical
and quantum gravity. For many years, the study of classical
solutions to �2� 1�-dimensional gravity has received spe-
cial attention. Of particular interest are static gravitational
fields. A great number of works have been dedicated to
the study of three-dimensional Bañados-Teitelboim-
Zanelli (BTZ) black hole solutions [1,2]. The three-
dimensional black hole is quite similar to its �3� 1� coun-
terpart—the Kerr solution. It has an ergosphere and an
upper bound in angular momentum for any given mass [3].
Its geodesic structure was studied in detail in [4]. It was
shown that a slight modification of this three-dimensional
black hole solution yields an exact solution to string theory
[5]. We can also list point mass solutions [6–8], static
electrovacuum solutions [9,10], and static Einstein-
Maxwell solutions with a cosmological constant (including
charged black holes) [1,11–15]. Black hole solutions were
also obtained in the framework of the nonlinear electro-
dynamics [16,17].

It is worthwhile to point out that the literature on interior
solutions of �2� 1� gravity is rather scarce. For example,
perfect-fluid sources have been considered in Ref. [18],
where the authors have shown that, in �2� 1� gravity, one
is able to determine all static circularly symmetric perfect-
fluid solutions with the cosmological constant. On the
contrary, there are no general static �3� 1�-dimensional
perfect-fluid solutions with a linear or a polytropic baro-
tropic equation of state. In many cases, numerical calcu-
lations are required. Stationary circularly symmetric
space-times have also been considered. In Ref. [19] the
author derived interior solutions for a rigidly rotating
perfect fluid in the presence of a cosmological constant,
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while all stationary space-times containing perfect-fluid
sources with a constant energy density and a linear or a
polytropic barotropic equation of state are found in
Ref. [20].

Three-dimensional charged interior solutions have not
been studied before in the literature as far as we know. In
�3� 1�-dimensional gravity a great number of works have
been dedicated to this topic. The case of charged dust has
received considerable attention. For example, Ref. [21]
considered the general solution in which the fluid density
equals the norm of the invariant charged density. Recently,
new static charged dust solutions were found for the case of
constant energy density [22]. The Schwarzschild interior
solution of constant density has also been generalized to
the case of a charged perfect fluid [23]. An interesting and
new simple classification scheme of charged static spheri-
cally symmetric perfect-fluid solutions is given in
Ref. [24].

For charged fluid spheres the gravitational field in the
exterior region is described by Reissner-Nordström space-
time, the unique asymptotically flat and spherically sym-
metric solution of the Einstein-Maxwell equations. Certain
interior charged space-times which have the same form of
the exterior Reissner-Nordström have been considered in
Ref. [25]. This implies that the interior charged fluid
distribution will have a natural matching on the boundary
with the exterior Reissner-Nordström space-time.

In this paper we shall study circularly symmetric distri-
butions of charged matter within the context of three-
dimensional general relativity with a cosmological con-
stant. For distributions with a negative cosmological con-
stant, the exterior region is described by the electrovacuum
BTZ solution.

We discuss the general conditions to obtain fluid charged
distributions under hydrostatic equilibrium. In order to find
exact solutions, we restrict ourselves to the simplified
model where the fluid obeys the equation of state p �
��, which represents in some special cases electromag-
netic mass models, previously discussed in four-
dimensional gravity [25].
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Specifically, we shall consider �2� 1� space-times with
metrics having the same form of the exterior three-
dimensional electrovacuum solutions in order to have a
natural matching on the boundary.

The organization of the paper is as follows: In Sec. II we
present the field equations for circularly symmetric distri-
butions of charged matter. The corresponding Tolman-
Oppenheimer-Volkoff (TOV) equation is also derived. In
Sec. III the hydroelectrostatic equilibrium and boundary
conditions are discussed. In Sec. IV general results for
three-dimensional space-time are discussed which have
the same form of the circularly symmetric electrovacuum
exterior solution, and a particular solution corresponding to
an electromagnetic mass model is presented.
II. 2� 1 FIELD EQUATIONS

We shall consider circularly symmetric static space-
times only. This means that the metric can be written in
the form

ds2 � e�dt2 � e�dr2 � r2d�2; (1)

where � and � are functions of the radial coordinate r only,
0 � r � 1, and 0 � � � 2�.

We choose the �2� 1�-dimensional comoving frame

��0� � e�=2; ��1� � e�=2; ��2� � r: (2)

The self-consistent Einstein-Maxwell equations with the
cosmological constant � for a charged perfect-fluid distri-
bution are given by

R������ �
1
2Rg������ ��g������ � �	�T

PF
������ � T

EM
�������;

(3)

where

TPF
������ � �p� ��u���u��� � pg������ (4)

and

TEM
�
���� � �

1

4�

�
F�
�

���F������ �
1

4
g�
����F������F������

�

(5)

are the energy-momentum tensors for a perfect fluid and
the electromagnetic field, respectively, and

F
�;� � �4�J
; (6)

where J
 is the current three-vector defined by

J
 � ��r�u
; (7)

��r� being the proper charge density of the distribution and
u � u�dx� � u������� the three-velocity of the fluid. Here
�, p, and F
� are the energy density, the isotropic pressure,
and the Maxwell tensor, respectively.

In our case the three-velocity is given by u��� � �0
� and

the Maxwell tensor by
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F � 1
2F
�dx


 ^ dx� � Erdr ^ dt � E�r���1� ^ ��0�; (8)

where Er and E�r� are the coordinate and the triad electric
field, respectively, and they are functions of the radial
coordinate. From (8) it is clear that the triadic component
of the electric field E�r� � Ere

�����=2.
This implies that the Einstein-Maxwell equations take

the form

�G�0��0� � �
1

2r
�e���0 � 8��� E2 ��; (9)

�G�1��1� �
1

2r
�0e�� � 8�p� E2 ��; (10)

�G�2��2� �
e��

2

�
�00 �

1

2
��02 � �0�0�

�
� 8�p� E2 ��;

(11)

and

��r� �
e��=2

4�r
�rE�0; (12)

where E 	 E�r� and the prime denotes d=dr.
From Eq. (12), for a given charge density ��r� one

obtains that the electric field is given by

E�r� �
4�
r

Z r

0
x��x�e��x�=2dx: (13)

A self-consistent solution is found by solving Eqs. (9)–
(12), but we shall solve the considered field equations by
replacing Eq. (11) by the TOVequation. The TOVequation
for a charged perfect fluid may be derived from the con-
servation equation T
�;
 � 0, where T
� � TPF


� � TEM

� .

Then we have

dp
dr
� �

1

2
��� p��0 �

1

8�r2 �r
2E2�0: (14)

Since the exterior electric field is given by E � qe=r, we
shall write the interior electric field in the form

E�r� �
q�r�
r
; (15)

where

q�r� � 4�
Z r

0
x��x�e��x�=2dx: (16)

By using (15) and (16) the TOV equation can be written as

dp
dr
� �

1

2
��� p��0 �

1

8�r2 �q
2�r��0: (17)

From Eq. (9) we have

e��r� � e���r� � M�r� ��r2; (18)

where
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M�r� � C� 16�
Z r

0
x��x�dx� 2

Z r

0
xE2�x�dx: (19)

By demanding regularity of the metric coefficient e��r� at
r � 0, in order to include the origin to be part of the space-
time, we obtain that C> 0, since M�r� ��r2 > 0 for 0 �
r � a, where a is the radius of the charged sphere.

Now, from Eq. (10) we have

�0 �
2�8�p� E2 ���r

M�r� ��r2 ; (20)

and, introducing it into Eq. (17), we finally obtain for the
TOV equation

dp
dr
� �

��� p��8�p� E2 ���r

M�r� ��r2 �
1

8�r2 �q
2�r��0:

(21)

Before studying particular interior solutions we analyze
the behavior of charged perfect fluids in hydrostatic equi-
librium using some general results derived from the TOV
equation. Note that, in order to have a finite pressure
gradient, the second term on the right-hand side of
Eq. (21) must be finite in the range 0 � r � a. In particu-
lar, if the charge within the fluid distribution varies with r
obeying the constraint q�r� � rn, then n 
 3=2.
III. HYDROELECTROSTATIC EQUILIBRIUM AND
BOUNDARY CONDITIONS

A. The general case for hydroelectrostatic equilibrium

In the following we find general conditions to have
charged fluid distributions in hydrostatic equilibrium in
2� 1 dimensions, which are valid irrespective of the equa-
tion of state p � p��� considered for the perfect fluid and
of the form of the charge density ��r�.

In the standard case, i.e. for a positive fluid pressure, the
following physically reasonable conditions are generally
assumed:
(1) T
he pressure p must vanish at the boundary of the
fluid distribution r � a.
(2) T
he pressure p and the density � must be mono-
tonically decreasing functions of r.
(3) T
he energy condition p � � must be verified.

Evaluating Eq. (21) at the boundary of the fluid distri-

bution, r � a, where the pressure p is zero, and consider-
ing that M�r� ��r2 > 0, we obtain

dp
dr

��������r�a
�
��Q2=a2 ���a

M�a� ��a2 �
1

4�a2 Q
dq�r�
dr

��������r�a
; (22)

where Q is the total proper charge inside the fluid distri-
bution, given by

Q � �4�
Z a

0
x2��x�e��x�=2dx: (23)

In order to have hydrostatic equilibrium, the pressure
104026
gradient must be negative throughout the distribution.
Since the sign of the charge is the same throughout the
fluid distribution, then q2�r� always increases as r in-
creases, and the second term on the right-hand side of
Eq. (22) is positive. Thus we have that �Q2=a2 ���< 0
which implies the constraint

�<�Q2=a2: (24)

So we conclude that � must be negative. In other words,
hydrostatic equilibrium of charged perfect-fluid distribu-
tions with positive pressure exists only in anti–de-Sitter
spaces.

This result is more restrictive than the noncharged case.
As was demonstrated in [26], noncharged perfect fluids are
in hydrostatic equilibrium even when � � 0
(dp=drjr�a � 0). Nevertheless, in that case, the central
pressure is not related to the mass of the fluid distribution,
which means that there is no possibility of gravitational
collapse for any finite values of the mass and the radius
[26,27]. This follows from the fact that gravity does not
propagate in 2� 1 dimensions, since the Weyl tensor is
zero.

The presence of the electric charges in the fluid produces
repulsive effects, which means that the hydrostatic equi-
librium is possible only if an attractive force, generated by
a negative cosmological constant, is included in order to
balance the repulsive effects.

Now we shall briefly discuss some physical consequen-
ces of Eq. (21). The second term on the right-hand side
represents the Coulomb repulsion of the charged distribu-
tion [28]. This term helps to stabilize the charged fluid
sphere against collapse. In the Newtonian scheme, the
Coulomb repulsion, due to the presence of electric fields,
is always opposed to the gravitational force. Nevertheless,
in general relativity all forms of energy are sources of
gravitation. A consequence of this fact is visualized
when the first term on the right-hand side of Eq. (21) is
analyzed. The electric field tends to decrease the numerator
but, on the other hand, also tends to decrease the denomi-
nator [see Eq. (19)], helping the gravitational attraction
[29].

B. Linear barotropic equation of state

A widely used equation of state for fluid distribution is
that corresponding to a linear barotropic fluid

p � 
�; (25)

where the constant state parameter 
 ranges over �1 �

 � 1 in order to hold the dominant energy conditions.
Introducing Eq. (25) into Eq. (21) we obtain

dp
dr
� �

p�1=
� 1��8�p� E2 ���r

M�r� ��r2 �
1

8�r2 �q
2�r��0:

(26)

At the boundary r � a, Eq. (26) becomes
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dp
dr

��������r�a
�

1

4�a2 Q
dq�r�
dr

��������r�a
; (27)

which means that the pressure gradient is always positive at
the boundary. So, in order to have a fluid distribution in
hydrostatic equilibrium, the pressure must be negative and
the pressure gradient must be positive within the entire
charged distribution. This implies that the pressure is an
increasing function of r. The expression p�1=
� 1� is
always positive for �1 � 
 � 1, so the sign of the first
term of Eq. (26) depends on the sign of the expression
�8�p� E2 ��. By demanding that the pressure be
negative, i.e. p � � j p j� 0, we obtain that �1 � 
 <
0, and the first term of Eq. (26) is positive if 8� j p j
�E2 �� 
 0. In this case we can have a positive or a
negative cosmological constant.

The dust case, i.e. p � 0 (
 � 0), cannot be studied
from Eq. (26), but this case is included in the consider-
ations of the above subsection.

In the considered situation, the hydroelectrostatic equi-
librium exists only for negative pressures since the equa-
tion of state (25) is a very strong condition on the energy
density. Effectively, at the boundary r � a the energy
density vanishes as well as the pressure.

The fact that a simple equation of state, such as Eq. (25),
does not allow us to have a charged fluid distribution in
hydroelectrostatic equilibrium with physically reasonable
conditions (such as monotonically decreasing pressure and
energy density as functions of r) indicates that the interior
solutions for �2� 1�-charged stars must be described by
nontrivial equations of state. As an example, let us consider
a slight modification of the above studied constraint on the
energy density and pressure. If we consider, for example,
the equation of state of the form [24,30] � � �0 � p=
,
with �0 
 0 and 
 � 0, then at the boundary r � a the
energy density does not vanish, and from Eq. (21) we
obtain

dp
dr

��������r�a
�
�0�Q2=a2 ���a

M�a� ��a2 �
1

4�a2 Q
dq�r�
dr

��������r�a
:

(28)

It is clear that in this case we can have charged fluid
distributions in hydroelectrostatic equilibrium with either
positive or negative pressures. Within the entire charged
distribution the pressure gradient must be negative or
positive, respectively.

The case 
 � �1 will be studied in more detail.

C. A particular case: p � ��

We shall now consider the equation of state

p�r� � ���r� (29)

for the charged fluid distribution. In this case we have a
negative pressure and the condition (2) is no longer valid. If
p � �� < 0, Eq. (21) becomes
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dp
dr
�

1

8�r2

dq2�r�
dr

; (30)

for 0 � r � a. Notice also that in this case our previous
conclusion, that hydroelectrostatic equilibrium is only pos-
sible if a negative cosmological constant is included, is no
longer valid. In this case the first term on the right-hand
side of Eq. (21) becomes zero, which implies that the
effects of the cosmological constant disappear.

On the other hand, since p�r� is negative and it must
vanish at r � a, the pressure must be an increasing func-
tion of r. This means that its derivative dp=dr is positive in
the range 0< r< a and, since dq2�r�=dr is also positive,
hydroelectrostatic equilibrium is guaranteed in this case.
Clearly in this case d�=dr < 0 and then the energy density
decreases as r increases.

Notice that for C � 1 the total gravitational mass has
exclusively an electromagnetic origin. The mass is derived
completely from the charge of the electromagnetic fields.
Effectively, from the TOV Eq. (30) we see that p�r� is
defined from the charge q�r�, and then the energy density �
also. Such space-times are called relativistic electromag-
netic mass models.

D. The matching conditions

As was proven above, charged spheres with positive
pressure may exist in hydrostatic equilibrium only if a
negative cosmological constant is included. This implies
that, for anti–de-Sitter distributions of charged matter, the
electrovacuum exterior solution corresponds to a charged
BTZ black hole field which has the metric given by

ds2 � ��m��r2 � q2
e lnr�dt2 �

dr2

�m��r2 � q2
e lnr

� r2d�2; (31)

where m and qe are constants of integration, and � �
�1=l2 < 0. In this case, for qe � 0, the constant m is the
total gravitational mass of the space-time. For qe � 0 the
quasilocal mass at the spatial infinity is

M�1� � m� q2
e lnr: (32)

If the surface of the charged distribution is located at r �
a, any interior solution given by the metric (1) and valid for
r � a must satisfy at the boundary the relations

e��a� � e���a� � �m��a2 � q2
e lna (33)

for the metric functions

p�a� � 0 (34)

for the pressure, and

q�a� � qe (35)

for the expression (16). Since the radius of the charged
fluid distribution extends up to a, for r > a we have the
-4
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electrovacuum solution (33). At the boundary r � a, con-
sidering Eq. (18), we have

e���a� � M�r�jr�a ��r2jr�a

� m� q2
e lnrjr�a ��r2jr�a: (36)

Then for the mass we get

m � M�r�jr�a � q2
e lnrjr�a; (37)

where M�r� is given by Eq. (19).

IV. GENERAL RESULTS FOR THE CASE e� � e��

From the general form of a circularly symmetric gravi-
tational field (1) we see that the electrovacuum solution
(31) satisfies the condition

e� � e��()g00g11 � �1: (38)

Tiwari et al. in Ref. [25] have considered spherically
symmetric interior solutions which satisfy the condition
(38), in order to have a natural matching with the Reissner-
Nordström exterior solution.

We shall also assume this condition to be valid inside a
charged perfect-fluid distribution of radius a, and then we
will have a natural matching on the boundary r � a with
the electrovacuum �2� 1� solution (31).

From Eqs. (9) and (10) we obtain

e��

2r
��0 � �0� � 8���� p�; (39)

which implies that, for any solution of the form e� � e��,
the condition (29) must be satisfied. It is interesting to note
that Eq. (39) contains no charge term.

Since we are interested in finding solutions which have
the form (38), we have that G�0��0� � G�1��1� and the con-
straints (29) and (30) are valid for the pressure and its
gradient. Therefore, we have a set of three differential
equations (9) or (10), (12), and (30) containing four un-
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known functions. This means that we can solve the system
when one more relation among the functions ��r�, ��r�,
E�r�, and ��r� is furnished.

In this case, the metric functions satisfy the condition
e��r� � e���r�, where e���r� is given by Eqs. (18) and (19).

A particular solution

As an example we introduce the charge density in the
form

��r� � �0e
��=2: (40)

Then we have

q�r� � 2��0r2; (41)

E�r� � 2��0r; (42)

��r� � ��2
0�a

2 � r2�; (43)

p�r� � ��2
0�r

2 � a2�; (44)

e��r� � e���r� � C� 2�2�2
0r

2�4a2 � r2� �
r2

l2
; (45)

where � � �1=l2. In general, the total gravitational mass
of this model has an electromagnetic origin only if the
constant C � 1, i.e. for a charged distribution which gen-
eralizes the anti–de-Sitter space, for which we have

e��r� � e���r� � 1�
r2

l2
:

When C � 1, we have a space-time with an angular lack or
an angular excess. This implies that the space-time has a
conic nature.

The matching at r � a of the obtained solution implies
that the exterior BTZ electrovacuum takes the form
ds2 �

�
���C� 6�2�2

0a
4 � 4�2�2

0a
4 lna� �

r2

l2
� 4�2�2

0a
4 lnr

�
dt2

�
dr2

����C� 6�2�2
0a

4 � 4�2�2
0a

4 lna� � r2

l2 � 4�2�2
0a

4 lnr�
� r2d�2; (46)
where

m � �C� 6�2�2
0a

4 � 4�2�2
0a

4 lna (47)

is the mass of the interior charged fluid distribution.

V. CONCLUDING REMARKS

We have studied circularly symmetric distributions of
charged matter in 2� 1 dimensions. We have found that
hydroelectrostatic equilibrium for a charged fluid with the
equation of state p � p��� and p > 0 occurs only in anti–-
de-Sitter spaces. In that case the exterior region is de-
scribed by the electrovacuum BTZ solution. We call
them ‘‘charged stars,’’ since the possibility of collapse for
certain finite values of the mass and radius is not ruled out.

Nevertheless, in the particular case p � �� we have a
distribution in hydroelectrostatic equilibrium, but there is
no possibility of collapse. In this case we may have space-
times corresponding to electromagnetic mass models. On
the other hand, their simplicity allows us to obtain a
-5
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particular solution when an appropriate form of the charge
density is considered.

Lastly, although we have considered here static distri-
butions, we want to note that the main motivation of this
study is oriented to use the discovered similarities between
�2� 1� and �3� 1� gravity in order to provide some in-
sights into the study of �3� 1�-stationary interior solu-
tions. Since the discovery of the Kerr metric, many
attempts have been made to find interior solutions for
isolated rotating bodies. Since Schwarzschild, Kerr, and
Kerr-Newman solutions are Petrov type D, most attempts
were accomplished within Petrov type D stationary axi-
symmetric space-times. However, the search for a physi-
cally adequate interior Kerr (Kerr-Newman) solution is
still a challenging problem in general relativity. The �3�
1� counterpart to the solution considered here is also a
Petrov type D. So we are looking for the generalization
of the �2� 1�-obtained solution to the stationary case. This
stationary version will be matched to the exterior rotating
104026
BTZ solution. We hope that these considerations in �2� 1�
gravity will provide a procedure for constructing a sta-
tionary interior solution, with a Schwarzschild (Reissner-
Nordström) static form, which will be adequately matched
to the Kerr (and Kerr-Newman) exterior solution. This
work is in progress.
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