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Resolution of a paradox in classical electrodynamics
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It is an early result of electrostatics in curved space that the gravitational mass of a charge distribution
changes by an amount equal to Ues=c

2, where Ues is the internal electrostatic potential energy and c is the
speed of light, if the system is supported at rest by external forces. This fact, independently rediscovered in
recent years in the case of a simple dipole, confirms a very reasonable expectation grounded in the mass-
energy equivalency equation. However, it is an unsolved paradox of classical electrodynamics that the
renormalized mass of an accelerated dipole calculated from the self-forces due to the distortion of the
Coulomb field differs in general from that expected from the energy correction, Ues=c

2, unless the
acceleration is transversal to the orientation of the dipole. Here we show that this apparent paradox
disappears for any dipole orientation if the self-force is evaluated by means of Whittaker’s exact solution
for the field of the single charge in a homogeneous gravitational field described in the Rindler metric. The
discussion is supported by computer algebra results, diagrams of the electric fields distorted by
gravitation, and a brief analysis of the prospects for realistic experimentation. The gravitational correction
to dipole-dipole interactions is also discussed.
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I. INTRODUCTION

It appears that the earliest publication on the problem of
electrostatics in curved space was that by Enrico Fermi,
published when he was a third year student at the Scuola
Normale Superiore at Pisa [1]. In this paper, Fermi dis-
cussed the correction to the electric field of a single point
charge held at rest within a gravitational field to first order
in the gravitational acceleration. The problem of the single
charge seems to have been completely forgotten until a few
years later, when Edmund T. Whittaker solved it exactly
both in the homogeneous gravitational field and in the
Schwarzschild geometry cases with no mention of
Fermi’s previous work [2]. His analysis was further devel-
oped by E. T. Copson, who produced an expression still
used today [3].

The topic was again forgotten, except for very brief
mentions of it [4,5], until its rediscovery over 30 years
ago, with no reference to any of the above papers [6]. The
electric field lines of the single charge in the Schwarzschild
geometry were calculated a short time later [7]. In more
recent times, Linet has shown that the Copson potential
does not in fact satisfy the correct boundary conditions at
infinity and that a term corresponding to an additional
charge inside the event horizon must be added to it [8].
This contribution marks the start of the modern phase of
interest in this problem that continues uninterrupted to the
present day [9].

Fermi’s early goal was not only to obtain the electric
field of a single charge held at rest in a gravitational field
but to also prove that, to within the adopted approxima-
tions, the magnitude and orientation of the needed external
force are but a manifestation of the gravitational equivalent
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of the electrostatic potential energy of the interacting
charges. For instance, in the case of a simple dipole
made of two charges �q separated by a distance s,
Fermi’s argument would state that an effective lifting
self-force is expected, equal to �gq2=sc2, corresponding
to an effective decrease in the gravitational mass of the
system due to its negative potential energy and produced
by the interaction of each charge with the distorted electric
field of the other in curved space. This force manifests
itself as a decrease in the magnitude of the external force
permanently holding the dipole at rest in the gravitational
field.

In recent years, Fermi’s original result that the gravita-
tional mass correction one expects from energy consider-
ations does coincide with the electrostatic self-force on a
system of supported charges has been rediscovered, again
to first order and in the particular case of a dipole perpen-
dicular to the gravitational acceleration [10]. Interestingly,
an attempt to generalize this important example to the case
of a dipole accelerating in any direction, for instance
longitudinally, has been unsuccessful and the problem is
presently characterized in the literature as an ‘‘unsolved
paradox’’ [11,12]. These latter authors have compared the
‘‘energy-derived’’ mass of an accelerated dipole, mu �
�q2=sc2, to the inertia offered by such a system under
the action of an external force, referred to as the ‘‘self-force
derived’’ mass, ms. Their result that mu � ms only if the
dipole is accelerating perpendicularly to its orientation
[11] certainly defies the very reasonable expectation that
this should instead occur regardless of the geometrical
distribution of the charges and it also contradicts Fermi’s
earlier results, which were not cited by these authors.

This surprising conclusion has led to the comment that
[11] ‘‘in the light of the present paper Boyer was fortunate
to have chosen transverse motion’’ (their Note [3]).
-1 © 2006 The American Physical Society
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Technically it is worthwhile to point out that the efforts
leading to this paradox have made use of elementary trans-
formations of the appropriate electric and magnetic fields
in different reference frames, whereas Fermi had employed
an action approach to obtain a field equation for the elec-
trostatic potential. This raises legitimate doubts about the
correctness of the more recent, ‘‘simplified’’ treatments
since more sophisticated methods have in fact removed a
similar paradox that existed for spherical charge distribu-
tions [11,13].

The goals of this paper are twofold. First, we obtain
Whittaker’s potential field equation for a single charge
supported in a homogeneous gravitational field to all or-
ders and we verify previous first-order results for any
dipole orientation. We show that no paradox exists and
we suggest its appearance was due to coordinate trans-
formation errors. Secondly, we further generalize these
findings to more complex charge distributions and we treat
the classical dipole-dipole interaction in curved space. This
provides the foundation for a brief outline of the prospects
for realistic observation of these phenomena by means of
trapped atom interferometry. Since the computations yield
very unwieldy results, appropriate use has been made of
computer algebra systems and of graphical representations
of the distorted electrostatic fields to best elucidate and
check the results we report herein.

II. WHITTAKER’S SOLUTION

Here we obtain Whittaker’s field equation by adopting
the metric (also employed by Fermi) [1,3,4,9,14]:

ds2 �

�
1�

gz

c2

�
2
c2dt2 � �dx2 � dy2 � dz2�; (1)

where the gravitational acceleration g is oriented towards
the negative z-axis and c is the speed of light.

As originally observed by Eddington [15,16] and
pointed out by Copson (see Ref. [6], footnote on p. 186),
the field equation for the single charge in a homogeneous
gravitational field can be written by formally assuming the
charge to be immersed in a medium of dielectric permit-
tivity and magnetic permeability �0, and �0, respectively,
given by ([17] (Sec. 90, Problem), [18]):

�0 � �0 �
1�������
g00
p ; (2)

where g00 is given by our metric at Eq. (1).
The Laplace equation within a medium of dielectric

permittivity �0 � 1=
�������
g00
p

� 1=�1� gz=c2� is:

r �D � r � ��0E� � �r �
�

1

1� g z
c2

r�
�

� �
1

1� g z
c2

r2��
g

c2

@�
@z

1

�1� g z
c2�

2 � 0; (3)

or, equivalently:
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r2��
g

c2

1

1� g z
c2

@�
@z
� 0: (4)

The connection between the above coordinate system and
the primed coordinate system, (t0, x0, y0, z0) used by
Whittaker, which describes in Schwarzschild coordinates
the homogeneous gravitational field in the neighborhood of
a point far away from the mass [9], is given by the trans-
formation�

1�
gz

c2

�
2
� 1�

2gz0

c2 ; t� t0; x� x0; y� y0:

(5)

By applying this transformation to the above field equa-
tion, we find:

@�
@z
�
@�
@z0

@z0

@z
�
@�
@z0

�
1�

gz

c2

�
�
@�
@z0

������������������
1�

2gz0

c2

s
; (6)

@2�

@z02

�
1�

2gz0

c2

�
�
@�
@z0

g

c2 : (7)

By substituting into Eq. (4), we obtain:

@2�

@x02
�
@2�

@y02
�
@2�

@z02

�
1�

2gz0

c2

�
� 0 (8)

in the absence of charges, which is Whittaker’s Eq. (13).
By comparing this field equation to that valid in cylindrical
coordinates in flat space (see the appendix), Whittaker
obtains the solution for a charge located at the origin:

VW�r0; 0� � q
1� gz0

c2 �
g2

2c4 �x02 � y02���������������������������������������������������������������������������
r02 � g

c2 z0�x02 � y02� �
g2

4c4 �x02 � y02�
q ;

(9)

where r0 �
������������������������������
x02 � y02 � z02

p
. Let us now rewrite Eqs. (5)

as:

1�
gz

c2 �
g2z2

2c4 � 1�
gz0

c2 (10)

and rewrite the numerator of Eq. (9) as:

1�
gz0

c2 �
g2

2c4 �x
02 � y02� � 1�

gz

c2 �
g2

2c4 r
2: (11)

Similarly the denominator becomes:

r02 �
g

c2 z
0�x02 � y02� �

g2

4c4 �x
02 � y02�

� x2 � y2 � z2

�
1�

g

2c2 z
�

2
�
gz

c2

�
1�

gz

2c2

�
�x2 � y2�

�
g2

4c4 �x
2 � y2�

� r2

�
1�

gz

c2

�
�
g2

4c4 r
4: (12)
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Therefore Whittaker’s solution can be expressed in these
coordinates as:

VW�r; 0� �
q
r

1� gz
c2 �

g2

2c4 r2������������������������������
1� gz

c2 �
g2

4c4 r2
q : (13)

The next step is to generalize this solution to the case in
which the charge is not located at the origin, but at a
generic position r0 � �x0; y0; z0�. Let us then carry out a
temporary transformation of our metric at Eq. (1) to the
coordinates T, X, Y, and Z:

t�
1

1�gz0

c2

T; x�X� x0; y� Y� y0; z� Z� z0;

(14)

or

ds2 � c2dT2

�
1�

2gZ

c2

1

1� gz0

c2

�
g2

c4

Z2

�1� gz0

c2 �
2

�
� dR2;

(15)

where dR2 � dX2 � dY2 � dZ2. Let us now define the
quantity:

GW �
g

1� gz0

c2

; (16)

which allows us to rewrite the metric as:

ds2 � c2

�
1�

GW

c2 Z
�
dT2 � dR2: (17)

Since this is formally equivalent to Eq. (1), it is immediate
to write the general solution:

VW�R� �
q
R

1� GWZ
c2 �

G2
W

2c4 R2�����������������������������������
1� GWZ

c2 �
G2
W

4c4 R2
q ; (18)

where R �
�����������������������������
X2 � Y2 � Z2
p

. Substitution of Eqs. (17) and
(19) yields:

V0W�r; r0� �
q

jr� r0j

	
1� g�z�z0�

c2 � g2

2c4 
j�� �0j
2 � �z2 � z2

0��

�1� gz0

c2 �
������������������������������������������������������������
1� g

c2 �z� z0� �
g2

4c4 jr� r0j
4

q ;

(19)

where r0 � xi0 (i � 1; . . . ; 3) is the charge position, jr�
r0j

2 � �x� x0�
2 � �y� y0�

2 � �z� z0�
2, and j��

�0j
2 � �x� x0�

2 � �y� y0�
2.

Finally, we must transform this primed expression V 0W
back to the reference frame in which the metric is given by
Eq. (1). Since the electrostatic potential represents the
zeroth component of the four-vector potential, as seen
from Eq. (14) it transforms as ([17], Sec. 88)
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VW �
@T
@t
V 0W �

�
1�

gz0

c2

�
V 0W: (20)

The final result, valid to all orders, is therefore:

VW�r; r0� �
q

jr� r0j

	
1� g�z�z0�

c2 � g2

2c4 
j�� �0j
2 � �z2 � z2

0��������������������������������������������������������������
1� g

c2 �z� z0� �
g2

4c4 jr� r0j
4

q :

(21)

As expected, this expression approaches the standard, flat-
space Coulomb potential as g! 0.
III. RESOLUTION OF THE PARADOX

In order to fully appreciate the unfamiliar effects caused
by the ‘‘drooping field lines’’ of the single charge field
[19], let us now consider the net force acting on a classical
point dipole in a noninertial reference frame. This can be
done by introducing two equal and opposite charges,�q—
one located at rA and the other one at rB in the accelerated
frame described by the metric of Eq. (1). In principle, the
computation is relatively simple as all that is needed is the
evaluation of the force, FAB � �qEA�rB� due to the field
produced by the first on the second charge, and, vice versa,
the force FBA � �qEB�rA�, where the electric fields can
be calculated from the potential according to the usual
prescription [1], E � �r�. The two forces thus found
must then be added to obtain the net force acting on the
point dipole in three-dimensional space. In flat space, this
procedure would of course always yield a vanishing net
force, but the noncentral nature of the distorted potential
alters this result of basic electrostatics.

To reduce the possibility of manipulation errors, all
calculations were carried out by means of a computer
algebra system and its results were first checked against
known results in the literature. Only special cases repre-
sentative of interesting geometries in the gravitational field
are given here as the general results valid to all orders are
usually impractically long to reproduce [20]. Whittaker’s
potential at xi due to a charge at rA is found to be, to first
order in gxi=c2:

VW�r; rA� ’ q
�
1

r
�

g

2c2

z� zA
r

�
: (22)

The corresponding electric field is:

Ex�r; rA� �
q

r3

�
�x� xA� �

g

2c2 �x� xA��z� zA�
�

; (23)

Ey�r; rA� �
q

r3

�
�y� yA� �

g

2c2 �y� yA��z� zA�
�

; (24)
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FIG. 1. Electric field of a single charge; gravitational accel-
eration is down.

FIG. 2. Electric dipole of a point dipole; dipole moment and
gravitational field are down.
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Ez�r;rA� �
q

r3

�
�z� zA� �

g

2c2 
j���0j
2� 2z0�z� z0��

�
:

(25)

If the charge is located at the origin (r0 � 0), these ex-
pressions reduce to those found by Fermi [1] to first order.
Our first-order potential VW is also equivalent to that used
in the computation of the effect of a gravitational field on
the eigenstates of a hydrogen atom supported at the origin
[21].

The resulting net force on the dipole obtained by follow-
ing the procedure outlined at the beginning of this section
is, to third order in the gravitational field:

Fnet;z � �
q2

r
g

c2 �
q2

r
3j�� �0j

2 � 2�z� z0�
2

8

�
g

c2

�
3
:

(26)

This result shows that, in general, Fermi’s prediction that
the gravitational equivalent of the electrostatic potential
energy will manifest itself as a decreased effective gravi-
tational attraction on the dipole is fully confirmed to sec-
ond order by our direct calculation based on Whittaker’s
solution regardless of dipole orientation and location, thus
resolving the heretofore ‘‘unsolved paradox’’ [11]. In this
connection, it is perhaps worthwhile to notice that the final
step of our calculation leading to Eq. (21) is of critical
importance. Had we omitted to treat the electrostatic po-
tential as the zeroth component of the four-vector potential,
and had we proceeded to calculate the self-force on the
dipole by means of Eq. (19), we would have rediscovered
exactly the same ‘‘paradox,’’ that is, the self-force would
have incorrectly been given as F0net;z � q2�j�� �0j=r

2�	
�g=c2�, thus implying that Fermi’s prediction would be
correct only if the two charges are placed transversally to
the direction of acceleration, or of the gravitational field,
where j�� �0j � r. This leads one to speculate that some-
how the multiplicative factor 1� gz0=c2, corresponding to
this transformation, enters the treatment leading to the
formulation of the paradox by those authors incorrectly.
In fact, it is suggestive to recall that the four-acceleration of
a charged particle in gravitational and electromagnetic
fields, which lies at the foundation of their approach, is
given by the covariant derivative Du�=ds �
�q=mc2�F��u�, where F�� is the electromagnetic field
tensor and u� is the four-velocity. In a gravitational field,
even for an observer at rest, or for an observer comoving
with an accelerating particle because of the Principle of
Equivalence, u0 � 1=

�������
g00
p

[17], again leading to the same
important factor introduced at Eq. (20).

IV. EXAMPLES OF DISTORTED FIELDS

The field lines of a single positive charge in a homoge-
neous gravitational field are shown at Fig. 1, where the
effect has been made evident by choosing appropriate
numerical values (q � 1; g=c2 � 0:4). The electric field
104020
lines were calculated from direct numerical integration of
the differential equations dx=dt � Ex, dz=dt � Ez to all
orders which, depending on the geometrical details, can be
numerically intensive [22]. Since the field is no longer
radial, the interaction between two equal and opposite
charges is not central and self-forces arise. The electric
and potential fields of a dipole oriented downwards are
shown in Fig. 2, which makes it clear that the field is not
symmetric by reflection around the x-axis when the gravi-
tational field is present. Finally, the potential fields for
dipoles at different angles with respect to the gravitational
-4



FIG. 3. Equipotentials of a dipole oriented downward, 30 de-
grees from the vertical.
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field are shown at Figs. 3 and 4 where it becomes evident
that all symmetry has disappeared. For instance, the po-
tential field of a point dipole of vertical moment qZA
placed at the origin is given by:

Ud�r; 0� �
qZA
r3

�
z�

x2 � y2 � 2z2

2

�
g

c2

��
; (27)

which as usual coincides with its flat-space expression if
g! 0.

By calculating the distorted dipole electric field, it is
then possible to express the dipole-dipole force by means
of the usual expression F � �p � r�E. This goal can be
FIG. 4. Equipotentials of a dipole oriented downward, 60 de-
grees from the vertical.
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achieved by generalizing the usual flat-space procedure for
a point dipole of moment pA � piA, with k � 1; . . . ; 3,
located at rA [23]:

Udip;W�x
k; xkA� � piA

@VW�r; r0�

@xi0

��������rA

; (28)

so as to calculate the gravity-induced self-force acting on a
dipole pair. According to Fermi’s first-order argument, this
quantity is expected to be Fnet;z � �Wdd�g=c2�, where
Wdd is the flat-space dipole-dipole interaction energy. A
computer algebra evaluation for the self-force between two
dipoles of moments q�XA; YA; ZA� and q�XB; YB; ZB� yields
an extremely unwieldy expression which, to first order in
the gravitational field and for dipoles lying vertically upon
one another at a distance R, reduces to:

Fnet;z � �
q2

R3 �XAXB � YAYB � 2ZAZB�
�
g

c2

�
; (29)

while all other components vanish identically. This fully
confirms our expectation since, in fact, the factor multi-
plying ��g=c2� is the flat-space dipole-dipole interaction
energy [24]; this result remains unchanged if the two di-
poles are placed, for instance, horizontally next to one
another, in which case the term in parentheses becomes,
correctly, ��2XAXB � YAYB � ZAZB�.

An example of further investigation made possible by
the present approach is the calculation of the gravitational
correction to the dipole-dipole interaction energy itself,
which is found to be, for two dipoles arranged horizontally
next to one another at a distance R, to first order:

Wdd�rA; rB� � �
q2

R3 �2XAXB � YAYB � ZAZB�

�
q2

R2 �XAZB � XBZA�
�
g

c2

�
: (30)

The contour curves of the first-order term of this function,
which vanishes identically in flat space, are shown in Fig. 5
for two dipoles, one placed at the origin and the other
anywhere in space. Since this quantity depends on the
positions of the dipoles, we can independently calculate
the self-force on the pair simply as Fnet;z �
��@Wdd=@rA � @Wdd=@rB�, which is found to reduce to
the same result as above.

One last application we discuss briefly is the gravita-
tional correction to the van der Waals interaction energy
between two hydrogen atoms in their ground states. As is
known from elementary quantum mechanics [24], the term
in first-order perturbation theory, analogous to our Eq. (30)
in flat space, vanishes because of symmetry. The nonvan-
ishing second order van der Waals energy term is:
-5



FIG. 5. Contour curves of the gravity-induced dipole-dipole
interaction energy.
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UvdW � �
1

R6

e4

2EI
h A1;0;0 

B
1;0;0jW

2
ddj 

A
1;0;0 

B
1;0;0i

� �
6e2a5

0

R6
; (31)

which demands that we compute the classical term W2
dd.

By extracting the contribution to second order in the gravi-
tational field from a general result which features hundreds
of algebraic terms, we find, for two atoms placed vertically
at a distance R,

Fnet;z � �UvdW

�
g

c2

�
� �

6e2a5
0

R6

�
g

c2

�
(32)

regardless of the relative position of the two atoms. This is
an elegant confirmation that the original argument based
on mass-energy equivalence applies not only to classical
charge distributions but also to quantum mechanical
systems.
V. CONCLUSIONS

In the brief introductory note placed before Fermi’s first
and second papers (see Ref. [4], p. 1), his colleague and
friend Enrico Persico (1900–1969) comments: ‘‘Paper No.
2 determines, by the methods of general relativity, the
effect of a uniform gravitational field on a system of
electric charges. It turns out that the charges have a weight
equal to that of a material mass U=c2 (where U is the
electrostatic energy of the system), in perfect agreement
with Einstein’s principle of equivalence between mass and
energy.’’ The fact that the calculation of the gravitational
104020
mass of a system of charges must yield the quantityU=c2 is
such an entrenched expectation that, more recently, its
appearance has been hailed by the similar proclamation:
‘‘All works out perfectly’’ [10].

In this paper, we have explored a formulation of the
problem of the single charge held at rest in a homogeneous
gravitational field based on Whittaker’s field equation,
which offers great technical advantages over other simplis-
tic alternatives to analyze the complexity of any charge
distribution to all orders. In particular, we showed that the
paradox of the apparent inequality of the energy-derived
and self-force derived masses does not appear even in the
case of complex dipole-dipole interactions, thus confirm-
ing previous first-order results. We also calculated the field
lines for this system in some special cases.

Very recently, it has been shown that the present state of
the art in trapped atom interferometry can potentially probe
the self-induced forces produced by gravitation on trapped
atoms [25]. Although the vertical component of the van der
Waals force between two hydrogen atoms at Eq. (32) is
small, corresponding to relative accelerations 10�15g, it
is possible to vastly enhance these interactions by inducing
atomic dipole moments with external electric fields, as in
dipolar Bose-Einstein condensate (BEC) gases [26,27]. For
instance, one can show that excited Rydberg atoms can
undergo self-forces corresponding to accelerations
10�6g, well within the ultimate gravimetric sensitivity
with trapped atoms, 10�13 [28]. These findings are im-
portant because they indicate that this phenomenon, so far
believed to be completely inaccessible to experimentation
[10,19], may offer a new strategy to test the equivalency of
energy and gravitational mass by means of quantum phys-
ics in curved space. This is timely in view of the recent
remarkable verification of the equivalence of energy and
inertial mass [29].

In a masterful review of the problems of classical elec-
tron theory, which motivated much research relating to the
present paper, Pearle wrote that ‘‘[t]he state of the classical
electron theory reminds one of a house under construction
that was abandoned by its workmen upon receiving news of
an approaching plague. The plague in this case, of course,
was quantum theory.’’ [13]. It is therefore worthwhile to
notice that Whittaker’s solution for the single charge has
now been shown to solve a crucial paradox of classical
electrodynamics and to confirm, even for quantum sys-
tems, the validity of Fermi’s early expectation that self-
force methods and energy methods must be equivalent.
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APPENDIX

Here we briefly summarize Whittaker’s procedure [2] to
solve Eq. (8):

@2�

@x02
�
@2�

@y02
�
@2�

@z02

�
1�

2gz0

c2

�
� 0: (A1)

By carrying out a standard separation of variables [30], we
write the trial solution in cylindrical coordinates, as sug-
gested by the symmetry of the problem:

V0W��
0; �0; z0� � P�z0�Q��0����0�; (A2)

where (�0, �0, z0) are the appropriate cylindrical coordi-
nates. Direct substitution into the above field equation
yields the following solutions:

P�z0� �
�
1�

2gz0

c2

�
1=2
J1

�
ic2k
g

�
1�

2gz0

c2

�
1=2
�
; (A3)

���0� �
sinm�0

cosm�0
; (A4)

Q��0� � Jm�k�0�; (A5)

where k and m are the separation constants and Jm are the
104020
Bessel functions of order m. At this point, Whittaker
recalls that, in the absence of a gravitational field, the
single charge solution is proportional to 1=r, which, in
cylindrical coordinates, can be expanded by means of the
well-known integral [30]:

1

�02 � z02
�
Z 1

0
e�kz

0
J0�k�

0�dk: (A6)

By comparing our trial solution with the solution valid in
flat space, Whittaker conjectures a similar integral super-
position solution based on the integral [31]:

2al
Z 1

0
kI1�lk�K1�ak�J0�bk�dk

�
a2 � b2 � l2�������������������������������������������������

�a2 � b2 � l2�2 � 4a2l2
p ; (A7)

where

l �
c2

g
; a �

c2

g

�
1�

2gz0

c2

�
1=2

;

b � �0 �
������������������
x02 � y02

q (A8)

and I1 and K1 are the modified Bessel functions. By sub-
stituting appropriately, we find the expression at our
Eq. (9), to within the multiplicative constant q. Direct
substitution into the field equation confirms this is indeed
the correct solution for a point charge.
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