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We discuss the gravitational wave background produced by bouncing models based on a full quantum
evolution of a universe filled with a perfect fluid. Using an ontological interpretation for the background
wave function allows us to solve the mode equations for the tensorial perturbations, and we find the
spectral index as a function of the fluid equation of state.
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I. INTRODUCTION

The theory of cosmological perturbations [1] relies es-
sentially on two assumptions, namely, that the background
is described by pure classical general relativity (GR), while
the perturbations thereof stem from quantum fluctuations,
although they are subsequently evolved classically. Quite
apart from the computational usefulness of this scheme,
this state of affairs is rather incomplete, and one would
expect instead a fully quantum treatment of both the back-
ground and the perturbations to be achievable. In fact, the
overwhelming majority of classical backgrounds possess
an initial singularity at which the classical theory is ex-
pected to break down. In recent years, many quantum
background cosmological models have been proposed,
which share the attractive property of exhibiting neither
singularities nor horizons [2–4], leading the evolution of
the Universe through a bouncing phase due to quantum
effects, and a contracting phase from infinity before the
bounce. These new features of the background introduce a
new picture for the evolution of cosmological perturba-
tions: vacuum initial conditions may now be imposed when
the Universe was very big and almost flat, and effects due
to the contracting and bouncing phases, which are not
present in the standard background model, may change
the subsequent evolution of perturbations in the expanding
phase. Hence, it is quite important to study the evolution of
perturbations in these quantum backgrounds. The aim of
the present paper is to provide a step in this direction by
considering tensor perturbations in quantum minisuper-
space background solutions. Interpreting the quantum the-
ory in an ontological way [5,6] allows one to define
quantum scale factor trajectories, which can then be used
in the second order tensorial modes perturbation equations
as shown in Ref. [7].
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Note that such models may be viewed as alternatives to
the standard inflationary paradigm [8]. Most known alter-
natives [9,10] to inflation present a primordial bouncing
phase [11,12]. Note that such a phase can also be seen as a
complementary ingredient necessary for a complete cos-
mological scenario to make actual sense, i.e. not to be
plagued with a singularity [13], or to avoid facing any
trans-Planckian problem [14] if, for instance, the bounce
occurs at a scale such that all relevant cosmological scales
now never went trans-Planckian. The bounce phase has
recently been the subject of a lot of attention, in particular,
in view of the fact that, in many instances, it was found to
have the ability to modify the primordial spectrum of scalar
perturbations, thus paving the way to confront them to the
observational data [15]. In the case of bounces in quantum
cosmological models, although the evolution equations for
the perturbations may be constructed [16], they are rather
complicated due to the fact that the background does not
satisfy classical Einstein equations. Hence, all works in
this area had to rely on a semiclassical approximation.

In this paper, we calculate the gravitational wave back-
ground spectrum produced at the bounce transition when
this phase is described by a perfect fluid and the theory is
fully quantized: this is the first time such a calculation, not
involving any semiclassical approximation, is performed.
The restriction to gravitational waves stems from the fact
that the perturbation equations for this type of mode can be
substantially simplified, even when the background is
quantized [7]. Scalar and vector modes, however, exhibit
technical difficulties which have not been solved yet, so
that tensor modes are, for the time being, the only modes
that can be studied in a completely quantum way.

The paper is organized as follows. Recalling in Sec. II
how the ontological interpretation allows a simple separa-
tion between the background and the perturbations, we
explain in Sec. III how the Bohmian trajectories for the
scale factor are derived, and discuss their generality. Then,
Sec. IV, which is the core of this work, provides the
tensorial modes indices in the known cases. We end in
Sec. V with conclusions and discussions.
-1 © 2006 The American Physical Society
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II. THE MODE EQUATION

The action we shall begin with is that of GR with a
perfect fluid, the latter being described by the formalism
due to Schutz [17], i.e.

S � SGR � Sfluid

� �
1

6‘2
Pl

Z �������
�g
p

Rd4x�
Z �������
�g
p

pd4x; (1)

where ‘Pl � �8�GN=3�1=2 is the Planck length in natural
units (@ � c � 1), and p is the perfect fluid pressure whose
density � is provided by the relation p � !�, ! being a
constant. The metric g in Eq. (1) is of the Friedman-
Lemaı̂tre-Robertson-Walker (FLRW) type, whose line ele-
ment we choose to be given by

d s2 � N2���d�2 � a2
phys�����ij � wij�dx

idxj; (2)

i.e. we assume it is perturbed to first order and restrict
attention to tensorial perturbations only, withwij

jj � 0 and
wii � 0, indices being raised and lowered by means of the
background metric �ij of the spacelike hypersurfaces (the
bar denotes a covariant derivative with respect to this
metric); the lapse function N���, once fixed, defines the
gauge.

After inserting Eq. (2) into the action (1), and perform-
ing Legendre and canonical transformations, the Hamil-
tonian up to second order reads (see Ref. [7] for details)

H � NH0
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wijw

ij
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;

(3)

which is nothing but the Hamiltonian of Ref. [16] ex-
pressed for a perfect fluid. In Eq. (3) and in what follows,
we shall denote by K the spatial curvature (K � 0, �1
for flat, open and closed space, respectively) in order to
avoid confusion with the wave number k below. The quan-
tities Pa, �ij,PT are the momenta canonically conjugate to
the scale factor, the tensor perturbations, and to the fluid
degree of freedom, respectively. These quantities have
been redefined in order to be dimensionless. For instance,
the physical scale factor aphys can be obtained from the
adimensional a present in (3) through aphys � ‘Pla=

����
V
p

,
where V is the comoving volume of the background space-
like hypersurfaces. This Hamiltonian, which is zero due to
the constraintH0 � 0, yields the correct Einstein equations
both at zeroth and first order in the perturbations, as can
be checked explicitly. In order to obtain its expression,
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no assumption has been made about the background
dynamics.

In the quantum regime, this Hamiltonian can be sub-
stantially simplified through the implementation of the
quantum canonical transformation generated by

U � exp�iGq� � exp
�
i

12
�̂aQ̂

�
; (4)

where �̂a �
1
2 �P̂aâ� âP̂a� and Q̂ �

R
d3x�1=2ŵijŵij are

the self-adjoint operators associated with the correspond-
ing classical variables, yielding, for a particular factor
ordering of (3) (see Ref. [7] for details),
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: (5)

As we are here also quantizing the background, the
quantization procedure is now to impose Ĥ0��a; wij� �
0. The Wheeler-DeWitt equation in this case reads
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where we have chosen T as the time variable, which is
equivalent to imposing the time gauge N � a3!. Note that
such a choice is possible in the case at hand because we are
considering a perfect fluid, for which one can use the
variable which describes the fluid as a clock [18,19].

Now, if one uses an ontological interpretation of quan-
tum mechanics like the one suggested by de Broglie and
Bohm [5], and makes the separation ansatz for the wave
functional �	a; wij; T
 � ’�a; T� 	a; wij; T
, with
 	a;wij; T
 �  1	wij; T


R
da’�2�a; T� �  2	wij; T
,

then Eq. (6) can be split into two, yielding

i
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and
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Using the Bohm interpretation, Eq. (7) can now be
solved as in Refs. [2–4], yielding a Bohmian quantum
-2
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trajectory a�T�, which in turn can be used in Eq. (8).
Indeed, since one can view a�T� as a function of T, it is
possible to implement the canonical transformation gen-
erated by

U � exp
�
i
�Z

d3x�1=2
_awijw

ij

2a

��
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i
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d3x
�wij�ij ��ijwij
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ln
� ������

12
p

a

���
; (9)

where, as a�T� is a given quantum trajectory coming from
Eq. (7), Eq. (9) must be viewed as the generator of a time-
dependent canonical transformation to Eq. (8). It yields
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Through the redefinition of time a3!�1dT � d�, we obtain

i
@ ��ij; ��

@�
�
Z

d3x
�
�

1

2�1=2
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This is the most simple form of the Schrödinger equation
which governs tensor perturbations for a quantum minis-
uperspace model with a fluid matter source.

The equation for the modes �k � !k=a which can be
derived from Eq. (11) reads (from that point on, the k index
will be omitted)

�00 �
�
k2 � 2K�

a00

a

�
� � 0; (12)

which has the same form as the one obtained for classical
backgrounds (see Ref. [1]), with the important difference
that the function a��� is no longer the classical solution for
the scale factor, but the quantum Bohmian solution. In this
way, we can proceed with the usual analysis, with the
quantum Bohmian solution a��� coming from Eq. (7) act-
ing as the new pump field.
III. THE BACKGROUND BOHMIAN
TRAJECTORIES

In order to obtain the background quantum solutions, we
choose the following factor ordering for the kinetic term
of the background Schrödinger equation (from now on
T � t):
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(13)

which is the factor ordering yielding a covariant
Schrödinger equation under field redefinitions [20].

The quantum Bohmian trajectories are obtained from the
solutions of Eq. (13). There are two distinct situations:
whether the spacelike hypersurfaces are flat or not.

A. Flat spatial sections

With the factor ordering chosen in Eq. (13) with K � 0,
we can change variables to 	 � 2

3 �1�!�
�1a3�1�!�=2, ob-

taining the simple equation

i
@’
@t
�

1

4

@2’

@	2 : (14)

Note that this is just the time reversed Schrödinger equa-
tion for a one dimensional free particle constrained to the
positive axis. As a and 	 are positive, solutions which have
unitary evolution must satisfy the condition

’�
@’
@	
� ’

@’�

@	

��������	�0
� 0 (15)

(see Ref. [4] for details).
We will choose the initial normalized wave function

’0�	� �
�

8

t0�

�
1=4

exp
�
�
	2

t0

�
; (16)

where t0 is an arbitrary constant which determines the
width of the Gaussian and hence the probability amplitude
of initial scale factors. The Gaussian ’0 satisfies condition
(15). It is a commonly used initial condition when the time
gauge is fixed and one gets a Schrödinger equation of the
type of Eq. (14) [2,4,18], and even when the time gauge is
not fixed when constructing wave packets [3,21].

Using the propagator procedure of Refs. [2,4], we obtain
the wave solution for all times in terms of a:

’�a; t� �
�

8t0
��t2 � t20�

�
1=4

exp
�
�4t0a

3�1�!�

9�t2 � t20��1�!�
2

�

� exp
�
�i
�

4ta3�1�!�

9�t2 � t20��1�!�
2

�
1

2
arctan

�
t0
t

�
�
�
4

��
: (17)

Because of the chosen factor ordering, the probability
density ��a; t� has a nontrivial measure and it is given by
��a; t� � a�1�3!�=2j’�a; t�j2. Its continuity equation com-
ing from Eq. (13) reads
-3
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@�
@t
�

@
@a

�
a�3!�1�

2

@S
@a
�
�
� 0; (18)

which implies in the Bohm interpretation that

_a � �
a�3!�1�

2

@S
@a
; (19)

in accordance with the classical relations _a � fa;Hg �
� 1

2a
�3!�1�Pa and Pa � @S=@a.

Inserting the phase of (17) into Eq. (19), we obtain the
Bohmian quantum trajectory for the scale factor:

a�t� � a0

�
1�

�
t
t0

�
2
�

1=	3�1�!�

: (20)

Note that this solution has no singularities and tends to the
classical solution when t! �1. Remember that we are in
the gauge N � a3!, and t is related to conformal time
through

Ndt � ad�) d� � 	a�t�
3!�1dt: (21)

The solution (20) can be obtained for other initial wave
functions (see Ref. [4]).
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B. Curved spatial sections

In this case, only for! � 1
3 (radiation) are there analytic

solutions available. Here, t � �, and there is no factor
ordering ambiguity in the kinetic term. Equation (7) [or
(13)] reduces to the time reversed Schrödinger equation for
harmonic or anharmonic oscillators. Now the condition for
unitary evolution reads

’�
@’
@a
� ’

@’�

@a

��������a�0
� 0; (22)

and the probability density ��a; t� is the trivial one, namely
��a; t� � j’�a; t�j2, satisfying the continuity equation
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@S
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�
� 0; (23)

yielding the guidance relation

_a � �
1

2

@S
@a
: (24)

Given the same initial wave function as before, we
obtain (see Ref. [2]),
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(25)
(we change t0 to �0 when ! � 1
3 ).

The Bohmian quantum scale factor obtained through the
substitution of the phase of Eq. (25) into Eq. (24) reads

a��� � a0

�
1�
�1�K�2

0�sin2�
������
K
p

��

K�2
0

�
1=2

� a0

�
cos2�

������
K
p

�� �
sin2�

������
K
p

��

K�2
0

�
1=2
: (26)

For K � 0 and radiation, we can obtain the wave solu-
tion and Bohmian trajectories either by taking the respec-
tive limits from Eqs. (17) and (20) or Eqs. (25) and (26).
The resulting Bohmian scale factor is

a � a0

����������������������
1�

�
�
�0

�
2

s
: (27)

Note that, for the curved space section solutions to be
realistic, they must have a long epoch after the bounce
when the scale factor recovers its classical evolution and
the curvature is negligible, i.e. when the scale factor in
Eq. (26) can be approximated in some large interval of � to
a��� / � in order for the model to be compatible with
standard nucleosynthesis and cosmological observations.
This can be accomplished if �0 
 1. It means that the
initial wave function (16) must be a very centered Gaussian
around zero. The flatness problem is then translated to the
quantum cosmological language to the following question:
why is an initial Gaussian wave function of the Universe so
centered around a null value for the scale factor?

IV. TENSORIAL MODES PROPAGATION

Having obtained in the previous sections the propagation
equation for the full quantum tensorial modes, namely,
Eq. (12), in the Bohmian picture with the scale factor
assuming the form (20) or (26), it is our goal in this section
to solve this equation in order to obtain the gravitational
wave power spectrum as predicted by such models. The
first two subsections deal with the flat spatial section case
for � 1

3 <!< 1. The final one treats the curved spatial
cases for ! � 1

3 .

A. Power spectrum for a flat spatial section

Our first task consists of going from the conformal time
� to the more convenient time variable t stemming from
the change (21). With a dot indicating a derivative with
respect to t, the mode potential reads
-4



FIG. 1 (color online). Time evolution of the mode function �v
for the equation of state ! � 0:1 and wave number ~k2 � 5�
10�8. The solid line is j �v�x�j=

��������������
1� x2
p

� �=a and thus directly
provides the power spectrum. The symmetric curves are back-
ground functions: the dashed curve is the conformal time poten-
tial a00=a as given by Eq. (28), the dotted curve is the term
proportional to ~k2 in Eq. (29), and the solid curve is �1� x2��2.
The horizontal thin straight line gives the value of ~k2 used to
compute the figures. The top panel shows the full time evolution
which was computed. For x < 0, there are oscillations only in the
real and imaginary parts of the mode, so the amplitude shown is
a non-oscillating function of time. However, it acquires an
oscillating piece after the bounce has taken place. The bottom
panel is merely a zoom for smaller time scales also showing
�xM (the dotted vertical line) and xexit (the solid vertical line,
indistinguishable on that scale with the axis). One clearly sees
that, even though the mode indeed starts oscillating, it does so on
a time scale such that it is approximately constant all the way to
xM.
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a00

a
� a2�1�3!�

�
�a
a
� �1� 3!�

�
_a
a

�
2
�
; (28)

and Eq. (12) transforms into

�v�
�
k2 � 2K

a2�1�3!�
�

3

4
�1� 3!��1�!�

�
_a
a

�
2

�
3

2
�1�!�

�a
a

�
v � 0; (29)

in which we have defined v � a�1=2�=�1�3!��. Specializing
to the flat K � 0 case and setting

v � ‘Pl

����
t0
p

�v;

x �
t
t0

and ~k �
k
�k0

with �k0 � �t0a
3!�1
0 ��1;

we obtain

d2 �v

dx2
�

�
~k2�1� x2�	2�3!�1�
=	3�1�!�
 �

1

�1� x2�2

�
�v � 0;

(30)

which is in a useful form for the practical purpose of
numerical resolution. We shall assume the usual vacuum
state initial condition for the modes, i.e. we set [1]

�ini �

���
3
p
‘Pl���
k
p exp	�ik��� �ini�
; (31)

where �ini is an arbitrary (and physically irrelevant as was
checked numerically) constant conformal time, which we
set to zero in what follows without loss of generality.
Figures 1–3 show the actual mode calculated numerically
with Eq. (30).

The power spectrum can now be defined as [1]

k3P h �
2k3

�2

���������a
��������2
; (32)

leading to

k3P h �
2~k3

�2
�k2
0

j �vj2

1� x2

�
‘Pl

a0

�
2
; (33)

which, although being a time-dependent quantity in gen-
eral, happens to be constant in the expanding phase for the
time period we are interested in. Therefore, it suffices to
solve Eq. (30) with the initial condition (31) to obtain the
gravitational wave power spectrum we are seeking. This is
how we obtained the figures.

B. Piecewise approximation and matching in the flat
spatial section case

1. Asymptotic behaviors

Given Eq. (20) and the relation (21) between the two
time parameters, one has
104017
� � a1�3!
0 2F 1

�
1

2
;

3!� 1

3�!� 1�
;
3

2
;�

�
t
t0

�
2
�
t; (34)

where 2F 1 is a hypergeometric function and we have
assumed a common origin for both times (i.e. � � 0 for
t � 0). This can be simplified by considering that one is
mostly interested, either for setting initial conditions or for
-5



FIG. 2 (color online). Same as Fig. 1 with ! � 0:3. The
oscillations are visible on the top panel and the detailed view
of the bottom panel emphasizes that there is no discontinuity on
the mode. It also shows both matching points.

FIG. 3 (color online). Same as previous figures with ! � 0:7
and two different wave numbers, ~k � 2� 10�3 (top panel) and
~k � 10�6 (bottom panel).
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observing the resulting power spectrum, in times much
larger than the typical bounce duration, i.e. for t� t0.
Then, one recovers the usual perfect fluid power-law solu-
tion for the scale factor, allowing us to write

k� � �
3�1�!�
1� 3!

~kjxj�1�3!�=	3�1�!�
; (35)

where the sign is to be determined by that of x.
Equation (12) with K � 0 has a potential for gravita-

tional waves that is written Vgrav � a00=a, and which can be
expressed in terms of the x variable as

Vgrav � A�1� x2�4=	3�!�1�
	�3!� 1�x2 � 3�!� 1�
;

(36)

where the constant A is given by

A � �
2

9

�
a1�3!

0

�!� 1�t0

�
2
:

For large values of �, hence of x, and provided ! � 1
3 , one
104017
gets

Vgrav � �3!� 1�Ax	2�3!�1�
=	3�!�1�
; (37)

which vanishes asymptotically for all cases of practical
interest (� 1=3 � ! � 1).

The case ! � 1=3 is a very special and simple one: the
time t is conformal time �, Eq. (29) is identical to Eq. (12),
and a��� � a0	1� ��=�0�

2
1=2. In a different context, this
same mode equation (with K � 0) was treated in
Ref. [22], yielding an spectral index k3P h / knT given by
nT � 2.

2. Matching points

Let us determine the end of the potential domination
point, denoted by xM in what follows, i.e., the time at which
k2 � a00�xM�=a�xM�. This is

xM �

�
9�1�!�2

2j1� 3!j
~k2
�
	3�!�1�
=	2�1�3!�


: (38)
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This point will also be used to match different solutions
and thus propagate the mode through the bounce.

It is interesting to note that the corresponding point for
the evolution of �v, namely, the point obtained by annihilat-
ing the bracket in Eq. (30), called xexit, is

xexit �
�������������������������������
~k�3=2�=�!�1� � 1

p
’ ~k�3=4��!�1�;

so that the ratio is

xexit

xM
/ ~k�9=4�	�1�!�2=�1�3!�
 
 1; (39)

which, for long wavelengths (~k
 1), is much less than 1
(recall that �1=3<!< 1). Therefore, the modes we
consider in the numerical solution have no time to start
oscillating before reaching xM.

3. Solutions

Putting Eq. (37) into Eq. (12) and using (35), we arrive at
the conclusion that, sufficiently far from the bounce, the
perturbation mode satisfies

�00 �
�
k2 �

2�3!� 1�

�1� 3!�2�2

�
� � 0; (40)

whose solution is

� �
����
�
p
	c1�k�H

�1�

 �k�� � c2�k�H

�2�

 �k��
; (41)

with


 �
3�1�!�
2�3!� 1�

;

c1 and c2 being two constants depending on the wave-
length, and H�1;2� being Hankel functions.

This solution applies asymptotically, where one can
impose initial conditions on the mode, as well as in the
matching region for which Vgrav � k

2, provided ~k2 
 1.
Demanding the Bunch-Davies vacuum normalization (31)
then implies

c1 � 0 and c2 � ‘Pl

�������
3�
2

s
e�i��=2��
��1=2��:

The solution can also be expanded in powers of k2

according to the formal solution [1]

�
a
�O�kj�4� � A1�k�

�
1� k2

Z t d ��

a2� ���

Z ��
a2� ����d ���

�

� A2�k�
�Z � d ��

a2 � k
2
Z � d ��

a2

Z ��
a2d ���

�
Z ��� d ����

a2

�
; (42)

where A1 and A2 are two constants depending only on the
wave number k through the initial conditions. Neglecting
the O�k2� terms, for the expanding phase, the A2 term is
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known as the decaying mode, and the power spectrum (32)
can then be approximated accurately by a constant; this
constant power spectrum is the one we are looking for.
Although this form is particularly valid as long as k2 

a00=a, i.e. when the mode is below its potential, Eq. (42)
should formally apply for all times. In the matching region,
the O�k2� terms may give contributions to the amplitude,
but they do not alter the k dependence of the power
spectrum.

For the solution (20), the leading order of the solution
(42) reads

�
a
� A1 � A2t0a

3�!�1�
0 arctanx

� A1 � A2t0a
3�!�1�
0

�
�
2
�

1

x

�
;

) �� ~A1x
2=	3�1�!�
 � ~A2x

�3!�1�=	3�1�!�
; (43)

where in the last steps we have taken the limit x! �1
and identified the leading orders in x, with ~A1 � A1a0 �
�
2 a

3!�2
0 t0A2 and ~A2 � �a3!�2

0 t0A2. Propagating this solu-
tion on the other side of the bounce, in the expanding
epoch, yields the required power spectrum, i.e. the limit
for x! �1, namely

�
a

��������const
�A1 �

�
2
a3�!�1�

0 t0A2 �
1

a0
� ~A1 � � ~A2�; (44)

where we have taken only the constant part of the modes.

4. Matching and spectrum

In order to get the spectrum of gravitational waves
produced by our bouncing model, it suffices to match �
and �0 at �M, corresponding to xM given by (38) through
(35). At this point, the mode function (41) and its derivative
read

���M� �
C���
k
p and �0��M� � D

���
k
p
; (45)

where the constants C and D are given by

C � c2

����������
k�M

p
H�2�
 �k�M�; (46)

and

D �
c2

2

�
H�2�
 �k�M�����������

k�M

p �
����������
k�M

p
	H�2�
�1�k�M�

�H�2�
�1�k�M�


�
; (47)

with

k�M �

���������������������
2j1� 3!j

p
1� 3!

:

This is also expressed as
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FIG. 4 (color online). Power spectra for different values of the
state parameter !. The dashed lines represent the approximation
(51) with the power index given by Eq. (52), while the solid lines
are the spectra obtained by numerically solving Eq. (30). Shown
in the bottom panel are solutions for ! 2 f0:2; 0:3; 0:4; 0:5; 0:6g.
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���M� �
~C���
~k
p and �0��M� � ~D

���
~k

p
; (48)

with ~C �
����
t0
p

a�3!�1�=2
0 C and ~D � a�1�3!�=2

0 D=
����
t0
p

.
Matching � [Eqs. (43) and (45)] and its derivative with

respect to conformal time, namely �0 � a1�3!t�1
0 d�=dx,

one obtains, to leading order,

~A 1 �

�
3!� 1

3��!� 1�
~C� a3!�1

0 t0� ~D
�

~k	3�1�!�
=	2�3!�1�
;

(49)

~A 2 �

�
2

3��1�!�
~C� a3!�1

0 t0� ~D
�

~k	3�!�1�
=	2�3!�1�
;

(50)

with

� �
�

9�1�!�2

2j1� 3!j

�
�1=�1�3!�

and

� �
�

9�1�!�2

2j1� 3!j

�
�1�3!�=	2�1�3!�


:

The coefficients ~A1 and ~A2 each contain power-law
behaviors in k. Because !< 1, the power in ~A2

[Eq. (50)] is negative definite and that in ~A1 [Eq. (49)] is
positive definite. Therefore, ~A2 is the dominant mode and
gives the spectral index, while ~A1 provides the subdomi-
nant mode that happens, incidentally, to correspond to an
unaltered propagation of the initial conditions. One then
gets the spectrum (44), and finally the spectral index nT

writing

k3P h / knT ; (51)

and we get

nT �
12!

1� 3!
: (52)

Note that the limit !! 1
3 of Eq. (52) gives the correct

index for radiation (see Ref. [22]), although the calcula-
tion, in this case, should not be valid; this is due to the
expected continuity of the spectral index with the equation
of state. The spectrum as calculated numerically is plotted
in Fig. 4 for various values of ! together with the approxi-
mation (52).

It is interesting to note that this result was also presented
in the semiclassical approximation (classical background
and quantum perturbations) in Ref. [23]. In Ref. [23], the
asymptotic behaviors both in the past and future infinities
are two, possibly different, power laws for the contraction
and expansion phases, whereas the type of bounces we
studied here is restricted to equal asymptotic behaviors,
i.e., for jtj � t0. Since the potentials in the equations for�
are smooth and large compared to k around the bounce, it
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looks like the full quantum effects and details of the
bounce do not significantly change the main spectral fea-
tures of the gravitational wave produced. It would be
interesting to verify if this result still holds for other
bounces, e.g. those having different asymptotic behaviors
and/or more complicated shapes of the potential for �. In
this last situation, and if the results of Ref. [12] apply, one
would expect the actual spectra to be different.

C. Power spectrum for curved spatial sections and
radiation

In this subsection we consider the power spectrum of
tensor perturbations for quantum cosmological back-
grounds with curved spatial sections. As mentioned in
Sec. III, only in the radiation case can one obtain analytic
solutions for the quantum background. Hence, we will
restrict ourselves to this fluid from now on.

Inserting Eq. (26) into Eq. (12), and noting that k2 �
m2 � 3K, where m is an integer greater than or equal to 3
-8
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FIG. 5. Amplitude amplification of the gravitational modes in
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for K � 1, and a real number greater than zero for K �
�1, we obtain

�00 �
�
m2 �

�2
0

	�2
0Kcos2�

������
K
p

�� � sin2�
������
K
p

��
2

�
� � 0:

(53)

The effective potential

Veff �
�2

0

	�2
0Kcos2�

������
K
p

�� � sin2�
������
K
p

��
2
(54)

has one maximum given by 1=�2
0 and goes to zero when

�! 1 for K � �1. It oscillates between 1=�2
0 and �2

0,
which are, respectively, a maximum and a minimum pro-
vided �0 < 1, when K � �1. Indeed, as we have seen in
Sec. III, in order for the background models to be realistic,
one must have �0 
 1. Hence, the maxima of the effective
potential are very high in both cases and the minima are
very small in the K � 1 case. Large wavelengths (small
m) will cross the effective potential and the perturbations
will be amplified at each bounce. This induces an insta-
bility of the model because this enhancement happens an
infinite number of times, and therefore, however small the
initial perturbation might have been, there is a time at
which the linear theory is no longer valid and the cosmo-
logical setup breaks down.

For K � �1, the situation is very similar to the flat
case. The conformal time (�M) of potential crossing is
given as the solution of the equation

sinh��M� � �

�������������������������
1

m�0
� 1

�s
�0���������������

1� �2
0

q ; (55)

which has a real solution provided m�0 < 1. Thus, the
mode crosses the potential only in this case. This constraint
is, however, satisfied for the situations we are interested in,
namely, �0 
 1 and m
 1. One then obtains

j�Mj � arcsinh
� ������
�0

m

r �
: (56)

We have two limiting cases, namely �0 � m and�0 
 m,
yielding, respectively,

j�Mj � ln	2��0=m�1=2
 (57)

and

j�Mj � ��0=m�
1=2: (58)

The effect of the potential for � is to increase its
amplitude by a factor shown in Fig. 5, as well as to mix
the exponential terms. This can be easily seen by the
following approximation. For �0 
 1, the maximum of
the effective potential at � � 0 is very large while for��
�0 it behaves like �2

0=sinh4���, which goes to zero when
�0 ! 0. Hence the effective potential (54) can be well
approximated to a Dirac delta in this limit. Its integration
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readsZ
Veff���d� �

1

�2
0

Z
d�
�

1�
�
1�

1

�2
0

�
sinh2�

�
�2

�
��2

0 � 1� sinh�2��

2	��2
0 � 1� � ��2

0 � 1� cosh�2��


�
1� �2

0

2�0
tan�1

�
tanh�
�0

�
; (59)

which implies

Z 1
�1

Veff���d� � 1�
1� �2

0

�0
tan�1 1

�0
’

�
2�0
�O��0�;

(60)

where in the last step we have assumed that �0 
 1.
Hence, one can approximate the effective potential by a

Dirac distribution [12]�����=2�0. The solution for� � 0
is then simply Eq. (31) with k substituted by m for �< 0,
and� � Aeim� � Be�im� for�> 0. Demanding that� be
continuous across the potential and imposing Eq. (53) then
leads to another matching condition, namely

�0�0�� ��0�0�� �
�

2�0
��0�: (61)

One then finds that

A � �
i�

���
3
p
‘Pl

4�0m
3=2
; B �

i�
���
3
p
‘Pl

4�0m
3=2
�

����
3

m

s
‘Pl; (62)

and finally, in the long wavelength approximation for
which m
 1, that � / m�3=2 sinm�. This is exactly
what is obtained numerically, as shown on Fig. 5. Note
also that when the curves reach the m�0 > 1 region, the
amplitude is the initial one: the mode has not crossed the
potential as explained above.
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Note incidentally that solution (62) is exactly the same
as the one obtained in Ref. [22] and in the present paper for
radiation with K � 0, where we used the matching
method. This is because, also in this case, one can approxi-
mate the potential to a Dirac distribution as V � �2

0=�
4

when �� �0, which goes to zero in the limit �0 ! 0.
However, for the parabolic scale factor a��� �
a0	1� ��=�0�

2
 also treated in Ref. [22], whose solutions
are quite different from (62), the potential is V � 1=��2 �
�2

0�, whose limit for �� �0 is 1=�2, independent of �0.
Hence, in this case, the effective potential cannot be ap-
proximated by a Dirac distribution, and the final spectrum
is very different. We thus confirm that the power spectrum
of perturbations through a bounce may depend signifi-
cantly on the details of the bounce itself.

With the coefficients (62), one can calculate the spec-
trum

m3P h �
2m3

�2

���������a
��������2
; (63)

for the two possible matching points (57) and (58), yielding
m3P h / m3ln2�m� and m3P h � m2. Note that, as ex-
pected, the case �0 
 m yields the same spectrum as the
flat case: the two scale factors are quite similar in that limit.

V. CONCLUSION

We have obtained the power spectrum of tensor pertur-
bations in bouncing quantum cosmological models with a
perfect fluid satisfying p � !� for flat spatial sections and
� 1

3 <!< 1, and for curved spatial sections with ! � 1
3 .

For flat spatial sections, the spectral index for large wave-
lengths is nT � 12!=�1� 3!�. The positive curved spatial
section model is unstable, while the negative curved spatial
section model amplifies the modes, changing the amplitude
104017
to a power index of nT � 3 or nT � 2, depending on the
parameters. All cases lead to oscillations in the primordial
spectrum.

The most interesting case is the one of radiation, which
is the best perfect fluid model for the early Universe (all
particles are ultrarelativistic). For almost flat spatial sec-
tions we have nT � 2, which is different from the predic-
tions of inflation. Hence, this model can be potentially
tested against inflation in future observations, especially
concerning the polarization of the cosmic microwave back-
ground, Planck observations, and gravitational wave de-
tectors if we calculate the amplitude of these perturbations.

The next step would be to calculate the spectrum of
scalar perturbations of these models. The dynamical equa-
tions for scalar perturbations are not, however, as simple as
Eq. (12). The steps we have taken in Sec. II in order to
arrive at Eq. (12) in the case where the background is also
quantized are not so simple in the case of scalar perturba-
tions, especially due to the matter terms. This is work in
progress. Attainment of the power spectrum of scalar
perturbations is crucial not only to test the model against
WMAP observations, but also to calibrate and obtain the
precise spectrum of tensor perturbations for possible com-
parisons with LIGO and VIRGO future data.
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