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We investigate time dependent solutions (S-brane solutions) for product manifolds consisting of factor
spaces where only one of them is non-Ricci-flat. Our model contains a minimally coupled free scalar field
as a matter source. We discuss a possibility of generating late-time acceleration of the Universe. The
analysis is performed in conformally related Brans-Dicke and Einstein frames. Dynamical behavior of our
Universe is described by its scale factor. Since the scale factors of our Universe are described by different
variables in both frames, they can have different dynamics. Indeed, we show that with our S-brane ansatz
in the Brans-Dicke frame the stages of accelerating expansion exist for all types of the external space (flat,
spherical, and hyperbolic). However, applying the same ansatz for the metric in the Einstein frame, we
find that a model with flat external space and hyperbolic compactification of the internal space is the only
one with the stage of the accelerating expansion. A scalar field can prevent this acceleration. It is shown
that the case of hyperbolic external space in the Brans-Dicke frame is the only model which can satisfy
experimental bounds for the fine-structure constant variations. We obtain a class of models where a pair of
dynamical internal spaces have fixed total volume. This results in a fixed fine-structure constant. However,
these models are unstable and external space is nonaccelerating.
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I. INTRODUCTION

Recent astronomical observations abundantly evidence
that our Universe underwent stages of accelerating expan-
sion during its evolution. There are at least two such stages:
early inflation and late-time acceleration. The latter began
approximately at the redshift z ~ 1 and continues until
now. Thus, the construction and investigation of models
with stages of acceleration is one of the main challenges of
the modern cosmology.

Among such models, the models originating from fun-
damental theories (e.g. string/M theory) are of the most of
interest. For example, it was shown that some of the space-
like brane (S-brane) solutions have a stage of the acceler-
ating expansion. We remind the reader that in the
D-dimensional manifold Sp-branes are time dependent
solutions with (p + 1)-dimensional Euclidean world vol-
ume and, apart from time, they have (D — p —
2)-dimensional hyperbolic, flat, or spherical spaces as
transverse/additional dimensions [1]:

ds? = —e20dr2 + a%(r)(dx% +...+ dxiﬂ)

+aj(nd2f,_, ) (1.1)
where y(7) fixes the gauge of time, aq(7) and a,(7) are
time dependent scale factors, and o = —1, 0, +1 for

hyperbolic, flat, or spherical spaces, respectively.'
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'A slightly generalized ansatz where the (D — p—
2)-dimensional transverse space consists of the k-dimensional
hyperspace 3, , and (¢ — k)-dimensional Euclidean space was
considered in [2]. Here, D — p —2 =k + gq.
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Obviously, p = 2 if the branes describe our 3-dimensional
space. These branes are known as SM2-branes if original
theory is 11-dimensional M theory and SD2-branes in the
case of 10-dimensional Dirichlet strings. For this choice of
p, the evolution of our Universe is described by the scale
factor a,. In general, the scale factor a; can also determine
the behavior of our 3-dimensional Universe. Hence, D —
p — 2 = 3 and we arrive at the SM6-brane in the case of M
theory and the SD5-brane for the Dirichlet string. Usually,
Sp-brane models include form fields (fluxes) and massless
scalar fields (dilatons) as matter sources. If SD p-branes are
obtained by dimensional reduction of 11-dimensional M
theory, then the dilaton is associated with the scale factor of
a compactified 11th dimension.

Starting from [1], the S-brane solutions were also found,
e.g., in Refs. [2—5]. It was quite natural to test these models
for the accelerating expansion of our Universe. Really,
it was shown in [6] that the SM2-brane and the SD2-
brane have stages of the accelerating behavior. This result
generalizes conclusions of [7] for models with hyperbolic
compact internal spaces. Here, the cosmic acceleration
(in the Einstein frame) is possible due to a negative curva-
ture of the internal space that gives a positive contribution
to an effective potential. This acceleration is not eternal
but has a short period and the mechanism of such short
acceleration was explained in [8]. It was indicated in [6]
that the solution of [7] is the vacuum case (the zero flux
limit) of the S-branes. It was natural to suppose that, if
the acceleration takes place in the vacuum case, it may
also happen in the presence of fluxes. Indeed, it was con-
firmed for the case of the compact hyperbolic internal
space. Even more, it was found that periods of acceleration
occur in the cases of flat and spherical internal spaces due
to the positive contributions of fluxes to the effective
potential.
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It is worth noting that accelerating multidimensional
cosmological models have been widely investigated for
the last few years for different types of models. In general,
such models can be divided into two main classes.” The
first class consists of models where the internal spaces are
stabilized and the acceleration is achieved due to a positive
minimum of an effective potential which plays the role of a
positive cosmological constant. The general method for
stabilization of the internal spaces was proposed in [10]
and numerous references can be found, e.g., in Refs. [11—
13]. Models where both external (our) space and internal
spaces undergo dynamical behavior constitute the second
class of models. These models were considered, e.g., in
[14-16] where a perfect fluid plays the role of a matter
source and the cosmic acceleration happens in the Brans-
Dicke frame. Obviously, the S-brane accelerating solutions
belong to the second class of models. Along with Ref. [6]
mentioned above, the accelerating S-brane cosmologies (in
the Einstein frame) were obtained and investigated, e.g., in
Refs. [17-21]. Accelerating solutions closely related to
them were also found in Refs. [22,23] (see also the general
discussion on inflationary cosmologies with the sum of
exponential effective potentials in [24]; the complete clas-
sification of solutions for such models according to their
late-time behavior is given in [25]). It should be noted that
some of these solutions are not new ones but either redis-
covered or written in different parametrizations (see cor-
responding comments in Refs. [3,23]). For example, the
first vacuum solution for a product manifold [consisting of
(n — 1) Ricci-flat spaces and one Einstein space with non-
zero constant curvature] was found in [26]. This solution
was generalized to the case of a massless scalar field in
Refs. [28,29]. Obviously, solutions in Refs. [26,28,29] are
the zero flux limit of the Sp-branes and the result of [7] is
the special case of [29].* Some of the solutions in [20,22]
coincide with corresponding solutions in Refs. [26,28—-30].
An elegant minisuperspace approach for the investigation
of the product space manifolds consisting of Einstein
spaces was proposed in [31]. Here, it was shown that the
equations of motion have the most simple form in a har-
monic time gauge® because the minisuperspace metric is
flat in this gauge. Even if the authors of the above-
mentioned papers were not aware of it, they intuitively
used this gauge to get exact solutions. New solutions also
can be generated (from the known solutions) with the help
of a topological splitting when the Einstein space with

2Apart from these models, interesting accelerating cosmolo-
gies following from nonlinear models were proposed in [9].

3The first quantum solutions as well as the Euclidian classical
solution for this model in the presence of a massless minimally
coupled scalar field were obtained in [27].

“However, the period of accelerating expansion was not
singled out in [29].

SFor Eq. (1.1), it reads y = (p + 1)Inay + (D — p — 2)Ina,.
In the harmonic time gauge, time satisfies the equation A[g]7 =
0 [31].
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nonzero curvature is split into a number of Einstein spaces
of the same sign of the curvature (see Refs. [32,33]). This
kind of solution was found, e.g., in Refs. [20,22].

Our paper is devoted to a model with the product of n
Einstein spaces where all of them are Ricci-flat except for
one with positive and negative curvature. We include a
massless scalar field as a matter source. As we mentioned
above, the general solutions for this model were found in
our papers [28,29]. Here, all factor spaces are time depen-
dent. Obviously, these solutions are the zero flux limit of
the Sp-branes. The aim of the present investigations is
twofold.

First, we give the detailed analysis for the accelerating
behavior of the external (our) space. At this stage, both the
Ricci-flat space and nonzero curvature space may play the
role of our Universe. The investigation is conducted in the
Einstein frame as well as the Brans-Dicke frame. The
transition between these two frames is performed with
the help of the conformal transformation of the metric of
the external space-time. Such transformation does not
destroy either the factorizable structure of the
D-dimensional metric ansatz or the topology of factor
spaces. However, scale factors of our Universe are de-
scribed by different variables in the Brans-Dicke and
Einstein frames. These variables are connected with each
other via conformal transformation (see the Appendix).
Moreover, synchronous times are also different in both
frames. Obviously, these different scale factors may be-
have differently with corresponding synchronous times. It
is precisely this interpretation we bear in mind when we
write about the different behavior of our Universe in differ-
ent frames. For example, we show that in the Brans-Dicke
frame, stages of the accelerating expansion exist for all
types of the external space (flat, spherical, and hyperbolic).
However, in the Einstein frame, the model with flat exter-
nal space and hyperbolic compactification of the internal
space is the only one with the stage of the accelerating
expansion, in agreement with the results of Refs. [7,20]. A
new result here is that the scalar field can prevent the
acceleration in the Einstein frame.

Second, we investigate the variation of the fine-structure
constant in our model. It is well known that dynamical
internal spaces result in the variations of the fundamental
constants (see, e.g., Refs. [11,15] and references therein).
For example, the fine-structure constant is inversely pro-
portional to the volume of the internal space. However,
there are strong experimental restrictions for the variations
of the fundamental constants (see, e.g., [34]). Thus, any
multidimensional cosmological models with time depen-
dent internal spaces should be tested from this point of
view. In our paper, we show that the examined models run
into significant problems related to the too large variations
of the fine-structure constant. The case of the hyperbolic
external space in the Brans-Dicke frame is the only possi-
bility to avoid this problem, if there is no other way to
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explain the constancy of the effective four-dimensional
fundamental constants in multidimensional models. For
example, we propose models with the hyperbolic or spheri-
cal external space and two Ricci-flat internal spaces where
the total volume of the internal spaces is the constant. Here,
the dynamical factors of the internal spaces mutually can-
cel each other in the total volume element. Thus, the
effective fundamental constants remain indeed constant
in spite of the dynamical behavior of the internal spaces.
However, these models are unstable and the external space
is nonaccelerating. Anyway, such models are of special
interest because they indicate a possible way to avoid the
fundamental constant variations in higher-dimensional
theories.

The paper is structured as follows. In Sec. 11, we explain
the general setup of our model and present the exact
solutions for a product manifold consisting of two factor
spaces where only one of them is non-Ricci-flat. These
solutions are carefully investigated in Sec. III (spherical
factor space) and Sec. IV (hyperbolic factor space) for the
purpose of the accelerating behavior of the external space.
In Sec. V, we compare the rate of variations of the fine-
structure constant in our accelerating models with the
experimental bounds. In Sec. VI, we obtain and discuss a
solution with three factor spaces where two dynamical
internal spaces have the fixed total volume. The main
results are summarized in the conclusion in Sec. VIL.

II. THE MODEL AND SOLUTIONS

In this section we present our model and give a sketchy
outline of the derivation of exact solutions. A more detailed
description can be found in our papers [27-29].

We consider a cosmological model with a slightly gen-
eralized metric (1.1) in the form

n—1
g=—edredr + Z e2B'(1) g(0),
i=0

Q2.1

which is defined on a multidimensional manifold M with

product topology
M=RXMyX...XM,_,. 2.2)

Let manifolds M; be d;-dimensional Einstein spaces with
metric g, i.e.

Rmfn,»[g(i)] = )\igﬁ,i)ini, myn; =1,...,d, 2.3)
and
R[g®] = Ad; =R, (2.4)

In the case of constant curvature spaces, parameters A’ are
normalized as A’ = k;(d; — 1) with k; = *1, 0.

With total dimension D=1+3"1d;, «} a
D-dimensional gravitational constant, ¢ a massless mini-
mally coupled scalar field, and Sygy the standard York-
Gibbons-Hawking boundary term, we consider an action of
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the form

1
S yes ]M dPxy1gl(R[g] — &"Vayeane) + Syn:
D
2.5)

This action encompasses the truncated bosonic sectors
of various supergravity theories. For example, for D = 11
and in the absence of a scalar field, it represents the low
energy limit of the M theory, and for D = 10, it relates to
the 10-dimensional supergravity. However, for generality,
we perform the analysis with arbitrary D in the presence of
a scalar field, specifying the value of D only for illustration
of particular examples. For our cosmological model, the
scalar field is homogeneous and depends only on time.

We restrict our consideration to the case when only one
of the spaces M; is not Ricci-flat: Ry # 0, R; =0, i =
1,...,n — 1. Taking into account the homogeneity of our
model, the action S is reduced to the form

S = ,U,[Ldr
1 s
= ,u,fdr{ie“VU[Gij,B’,B/ + @] — eVVOU}, (2.6)

where

U= —Le?"Rye 2" (2.7)
is the potential, yo = Y""| d;B', G;; = d;6;; — d;d;
(i,j=0,...,n—1) is the minisuperspace metric, u =
[T Vi/k?, and V; = I, ddfy(det(gﬁ,@),n, 1/2) is the vol-
ume of M; (modulo the scale factor of the internal space).

It can be easily seen that the Euler-Lagrange equations
for the Lagrangian (2.6) as well as the constraint equation
dL/dy = 0 have the most simple form in the harmonic
time gauge ¥ = yo = >} d, 8" [31]. The corresponding
solutions can be found in [27-29]. For simplicity we
consider a model with two factor spaces (n = 2). All our
conclusions can be easily generalized to a model with n >
2 factor spaces. For the two-component cosmological
model, the explicit expressions for the scale factors and
scalar field as functions of harmonic time read

a(7) = exp(B°(7)) = a(p exp<_ dof—l 1 T) 8 g+1(7')’

a,(1) = exp(B'(7)) = A, exp(g—i T>,

d
¢(r) = p’r+q, (2.8)
where
g+ = cosh/D(&7),  (moo <7< +00), (29)
for Ry > 0 and
g =sinh/=D(g]r), (71> 0), (2.10)
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for Ry<0. Here, agy = Ag(2e/IRo|)V/2do~1, ¢ =
[di(dy — 1)/(D = 2)]"2p!, & = [(dy — 1)/d0]1/2(28)1/2,
and 2e = (p')? + (p?)?. Parameters A, A;, p', p?, and g
are the constants of integration and Ay, A; satisfy the
following constraint: AgOA”lll = Ag. It was shown in [27]
that p! and p? are the momenta in the minisuperspace (p'
is related to the momenta of the scale factors and p? is
responsible for the momentum of the scalar field) and &
plays the role of energy.

In what follows, we consider the case of positive & and,
without loss of generality, we choose 2 = 1 = (p')? +
(p*)? =1. We also put ¢ = 0. It is also convenient to
consider the dimensionless analogs of the scale factors:
ao(t) — ag(7)/a.) and a;(7) — a,(7)/A,. This choice
does not affect the results but simplifies the analysis. So,
below we investigate these dimensionless scale factors
denoting them by the same letters as the dimensional scale
factors.

The solution (2.8) is written in the harmonic time gauge.
The synchronous time gauge (in other words, the proper
time gauge) corresponds to y = 0. This choice takes place
in the Brans-Dicke frame. In the Einstein frame the syn-
chronous gauge is different. The relation between these
gauges in different frames is presented in the Appendix and
it depends on the choice of the external and internal spaces.
In our analysis both My and M, can play the role of the
external and internal spaces.

The dynamical behavior of the factor spaces is charac-
terized by the Hubble parameter

a;(1) :
= ) =01 2.11
a;(t) l @1
and the deceleration parameter
di;(1) .
. t = — , = 0, 1, 212
q;(1) ) i (2.12)

where the overdots denote the differentiation with respect
to the synchronous time ¢ which is connected with the
harmonic time 7 as follows:

dt = f(r)dr = 1(r) = fiw f(r)dr, (2.13)

where the function f(7) is defined in accordance with
Egs. (A6) and (A7) and we fix the constant of integration
in such a way that t — 0 for 7 — —oo. In Egs. (2.11),
(2.12), and (2.13), the quantities a; and t are related to
both the Brans-Dicke and the Einstein frames and the exact
form of f(7) depends on the choice of the frame (in the
Einstein frame it depends also on the choice of the external
space). Since in our model f(7) > 0, the synchronous time
t(7) is a monotone increasing function of the harmonic
time. The expressions for the parameters H; and ¢; can be
rewritten with respect to the harmonic time:
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1 d 1 da;(7)

H(I(T))__Ei FDaln) dr (2.14)
and
L (a1 df) da
4:(1() fQ(T)ai(T)< dr? f(r) dr dr )
(2.15)

With the help of these equations we can get a qualitative
picture of the dynamical behavior of the factor spaces in
synchronous time via the solutions (2.8) in the harmonic
time gauge. More detailed information can be found from
the exact expressions for a;(f). To get this, we should
calculate the integral (2.13) which provides the connection
between harmonic and synchronous times. However, the
function f(7) is a transcendental function and the integral
(2.13) is not expressed in elementary functions. Hence, we
shall analyze Egs. (2.14) and (2.15) and asymptotic ex-
pressions for a;(t) to get information about the dynamics of
the factor spaces in synchronous time. To confirm our
conclusions graphically, we shall use MATHEMATICA 5.0 to
draw the dynamical behavior of a;(¢) for a full range of
time ¢ (for a particular choice of parameters of the model).

III. SPHERICAL FACTOR SPACE

In this section we investigate models where the factor
space M, has the positive curvature Ry, > 0. We split our
consideration into two separate subsections where calcu-
lation will be done in the Brans-Dicke and Einstein frames,
respectively.

A. Brans-Dicke frame

In the case of spherical space M, the scale factors (2.8)
have the following asymptotic forms:

156 7_)’

O

()| = 210D exp( G.1)

a1 (D = exp(i ) (3.2)
1
where we use the condition &, > 0. It can be easily seen
that the asymptotic behavior depends on signs of &; = &,
and fl
The comparison of Egs. (2.13) and (A6) gives the ex-
pression for the function f(7):

exp(——L-7)
f(7) = fipp(r) = e = a(z)loa?] = %’
gL (7

3.3)
T E (—00, +)

with the asymptotes

F+80(T)| oo = 2%/d0™1 6Xp< &1 = doty T). (3.4)
0

d_
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FIG. 1.
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a1

1 2 3

Typical form of the external (left panel) and internal (right panel) scale factors in the Brans-Dicke frame in the case of the

spherical external space M. Specifically, it represents the zero flux limit of the SD5-brane with dy = 3, d; = 6, and p' = —0.8.

Thus, from Eq. (2.13) we obtain the asymptotic expression
for the synchronous time
d() - 1

~ _zdo/(do—l)
&1+ doé

t— tOlq-—»+oo ~ e_[(§l+d0§2)/(d0_1)]7"

(3.5)

which enables us to rewrite the asymptotes (3.1) and (3.2)
in the synchronous time gauge:

(do&y + &)ty — )& +6)/(E1+doés)
240/ do=1)(dy — 1) }

>

(), = 21/%—1)[

(3.6)
(doé&y + &)ty — 1) [é1do—1)/di(£1+doé)]
al(t)lt—>t0 = |: do/(dy—1) :| .
2do/\do (do —-1)
3.7
Additionally, it can be easily seen that conditions
—doér < &1 < dpé (3.8)

provide the convergence of the integral (2.13) for any value
of 7 from the range (— oo, +00). Thus, the infinite range of
7 is mapped onto the finite range of . We remind the reader
also that the synchronous time #(7) is a monotone increas-
ing function of the harmonic time.

Now, with the help of the expression (3.3) for f, zp(7),
the Hubble and the deceleration parameters are easily
obtained from Egs. (2.14) and (2.15):

1 &) + & tanh(&,7)

Hy=— , 39
0 f+8p(7) dy— 1 G

& &+ & tanh(§,7)
= 3.10
% f2+BD(T) do—1 ( )

for the factor space M| and
1 &

H, = =, 3.11
: f+p(T) d, ( .
g = &1 (D —=2)& + dyd, &, tanh(£,7)) (3.12)

28p(7) di(dy — 1)

for the Ricci-flat factor space M.

The following analysis depends on the choice of the
external space. Therefore, we consider two separate cases.

1. Spherical external space (SM6- and SD5-branes)

As it was marked in the Introduction, solutions in this
case describe the vacuum SM6-brane if D = 11, dy = 3
and scalar field is absent (p?> = 0 — |p'| = 1) and the zero
flux limit of the SD5-brane in the presence of scalar/dilaton
field if D = 10, dy = 3 and |p'| = 1.

Since we are looking for a solution with the dynamical
compactification of the internal space M, the parameter &;
should be negative: &, <0— p' <0 [see Eq. (3.11)].
Then, Egs. (3.9) and (3.10) show that the accelerating
expansion of the external space M| takes place for har-
monic times

(3 [51
== <tanh(&,7) < = (3.13)
1] =
which leads to the inequality
11> & =& <—& (3.14)

Additionally, it can be easily proven that the inequalities
(3.8) are also valid for this case (the right inequality is
obvious for negative £; and the left inequality follows from
the condition |p'| = 1). Therefore, the range of the syn-
chronous time ¢ is finite. Thus, with the help of the inequal-
ities (3.8) and (3.14) we arrive at the following conclusions.
First, from the asymptote (3.1) it follows that the factor
space M, expands from zero (7 — —o0) to infinity (7 —
+00) and it occurs for the finite range of the synchronous
time. This is the typical big rip scenario. At the same time,
the internal space M; contracts from infinity to zero [see
(3.2)]. Second, starting from the time tanh(&,7) = &,/|&1,
the acceleration never stops, lasting until the big rip®
[because | tanh(&,7)| < 1V 7 € (—00, +00)]. For example,
the accelerating expansion of the M|, at late synchronous
times can be directly observed from (3.6) because (&, +

“In the case of a pure imaginary scalar field the parameters ¢,
and &, can satisfy the inequality &, + dy&, < 0 because |p!| >
1. Then, starting from the time tanh(&,7) = &,/|&,| the external
space undergoes the eternal accelerating expansion. Here, the
synchronous time ¢ runs to +oo.
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&,) < 0. The typical behavior of the scale factors of the
external [ay(7)] and internal [a,(r)] factor spaces in the
synchronous time gauge is illustrated in Fig. 1. £°° denotes
the time of the beginning of the external space

acceleration.

2. Ricci-flat external space (SM2- and SD2-branes)

Let us consider now the factor space M, as the external
one. Solutions in this case describe the vacuum SM2-brane
if D=11,d, = 3,and p> = 0(|p'| = 1), and the zero flux
limit of the SD2-brane if D = 10, d; = 3, and [p'| = 1.

The demand of the external space M, expansion results
in the positivity of the parameter &; [see Eq. (3.11)]: &; >
0— 0 < p' = 1. We remind the reader that the parameter
&, is also positive. It is not difficult to verify that the
inequalities (3.8) are also valid for the considered case.
Thus, the infinite range (— oo, +00) of the harmonic time 7
is mapped onto the finite range of the synchronous time ¢.
According to Eq. (3.2), for this finite synchronous time, the
external space M, expands from zero value to infinity. So,
we have again the big rip scenario. The acceleration of the

D—-2¢ _

external space begins at the time
D—-2 ,
- — pl.
dod; & dod,

Starting from this time, the acceleration of M; never stops,
lasting until the big rip. For example, the accelerating
expansion of the M, at late synchronous times can be
directly seen from (3.7) because of the negative sign of
the exponent.

As it follows from the asymptote (3.1), concerning the
internal factor space M, we have two different scenarios
depending on the relation between &; and &,:

) &>6= 07 <p =1

Here, the internal space contracts from plus infinity
to zero for a finite synchronous time. This scenario
is realized e.g. for the case of the absence of a scalar
field: p' = 1 (see Fig. 2, solid lines).

2 0<& =6=0<p =[FA

In this case, the internal scale factor a, begins to

tanh(&,7,) =

(3.15)
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expand either from zero value for &; < &, or from
the finite value 2!/(% =1 for £, = &, until its turning
point at a maximum [at the time tanh(&,7) =
—&,/&,; see Eq. (3.9)] and then contracts to zero
value (see Fig. 2, dashed lines). Obviously, this
scenario takes place in the presence of a scalar field
because p! < 1.

B. Einstein frame

Now, we investigate the dynamical behavior of the
corresponding Sp-branes in the Einstein frame. Similarly
to the Brans-Dicke frame case, we perform our considera-
tion for two separate cases depending on the choice of the
external factor space.

1. Spherical external space (SM6- and SD5-branes)

In this case the conformal factor reads [see Eq. (A2)]

Q= a,_d‘/(d"_l) = exp(— dogi 17).

(3.16)

Making use of Eqgs. (AS) and (A7) we obtain the function
f(7),
£(7) = frp0() = Q717 = [cosh(£,r)] /D
(3.17)
and the scale factor of the external space,

do(r) = Q7 lay = g;' = [cosh(&,m)]" V@D, (3.18)

Substituting these expressions in Eqs. (2.14) and (2.15), we
obtain the Hubble and the deceleration parameters

G &
Holr) (do = Df +g0)(7)

&
(dO - l)fiE(o)(T)
Equations (3.19) and (3.20) clearly show that H,(7) < 0 for
positive 7 and Go(7) >0 V 7 € (—00, +0). Therefore,

the external factor space M| contracts at late times and
never has the stage of the acceleration. Obviously, this

tanh(&,7), (3.19)

Golr) = (3.20)

FIG. 2. Typical form of the external (left panel) and internal (right panel) scale factors in the Brans-Dicke frame for the Ricci-flat
external space in the cases &; > &, (solid lines) and &; = &, (dashed lines). Specifically, it represents the vacuum limit of the SM2-
brane with dy = 7, d, = 3, and p' = 1 (solid lines) and the zero flux limit of the SD2-brane with d, = 6, d; = 3, and p! = 0.5

(dashed lines).
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model contradicts the observations. Here, the SM6-brane
corresponds to the choice of d; = 7, and for the SD5-brane
we should take d; = 6.

2. Ricci-flat external space (SM2- and SD2-branes)

Let the factor space M, be the external space. In this

case the conformal factor is
|

PHYSICAL REVIEW D 73, 104016 (2006)
Q1) = ao_d“/(dl_l)
— o/ =D =D\ T cosh( £, )]/ o= D=1
(3.21)

and for the function f(7) and the external scale factor we
obtain the following expressions:

f(T) = f+E(l)(T) =O"lev = e[(lfdo*dl)/(dofl)(dl*1)]51T[Cosh(sz)]fdodl/(dofl)(dl*1), (3.22)
a 1(7-) = Q_lal = e[(l_dn_dl)/dl(do_l)(dl_1)]51T[Cosh(é?zT)]_do/(do_1)(111—1)‘ (3.23)
Thus, the Hubble and the deceleration parameters of the external factor space M, read
- 1
H = — D — 2)¢, + dydyé, tanh , 3.24
1(7) 41 — D(do — Df2r(® (( )€1 + dydoé, tanh(¢,7)) (3.24)
G.(r) = ([(D = 2)¢, + dod, &; tanh(£,7) P + do(dp — l)d%é%COSh_z(sz)). (3.25)

Therefore, the deceleration parameter §;(7) >0V 7 &
(—o0, +00) and the external space M, does not undergo
the acceleration. Similarly to the previous case, the exter-
nal space M, contracts at late times [it follows from
Eq. (3.24) and the condition |p'| = 1]. Hence, this model
is not of interest to us either. For this case, the SM2-brane
corresponds to the choice of dy = 7 and for the SD2-brane
we should take dy = 6.

IV. HYPERBOLIC FACTOR SPACE

In this section we investigate models where the factor
space M, has the negative curvature R, < 0. If this factor
space is treated as the internal one we suppose that M, is
compact (see e.g. [35]). Similarly to the previous section,
we split our consideration into two separate subsections
where calculation will be done in the Brans-Dicke and
Einstein frames, respectively.

A. Brans-Dicke frame

As apparent from Egs. (2.8) and (2.10), the function
ay(7) is divergent at 7 = 0. This point divides the range
of 7 into two separate parts: (—oo, 0] and [0, +00). We
choose the interval (—oo, 0] because the dynamical picture
in both of these intervals is equivalent up to the replace-
ment p' — —p! [29].

To begin with, let us first define the function f(7),

_ e exp(= )
f(7) = f_pp(7) = e = ay’a]’ = Tgh(la) @&
T € (—00,0],
and its asymptotes,
2do/(do=1) p[1/(do=DNE 1 —doéDlTl 7, — o
oo™ = { G-, -0
4.2)

d3(dy — D(dy — 1)*f% ) (7)

+E(1)

[
The first asymptote f_pp(7) — 0 in the limit 7 — —o0
because (&; — dyé&,) <0’ and the second asymptote
f—pp(7) — +00in the limit 7 — —0. Thus, it can be easily
seen that the harmonic time interval 7 € (—oo, 0] is
mapped onto the synchronous time interval ¢ € [0, +o0)
correspondingly. These asymptotes make it possible to
connect the synchronous and harmonic times in the corre-
sponding limits. For example, at late times we get the
following relation:

77— —0=1t— +o00.

(4.3)

&t = (dy — 1)(&|7])~ /oD,

It is also useful to present the asymptotes for the scale
factors. For the factor space M, we get

(e = 2 D exp(EL €210 (4
do— 1

ag(7)| e = (& 7)) V™D — oo, 4.5)
The first asymptote demonstrates that there are two differ-
ent scenarios depending on the sign of the difference &, —
&, If &, > &,, the factor space M|y begins to contract from
plus infinity to a finite value and then to expand again to
plus infinity [see (4.5)]. If & < &,, the factor space M|
expands for all time, going from zero to infinity.® The
substitution of (4.3) into (4.5) shows that the Milne-type

It is obvious for negative &, and also true for positive &,
because of |p'| = 1.

®In the exceptional case & = ;2 = ¢, the scale factor aq
reads ay(7) = [(1 — e~ 2%17)/2]71/@=D " This formula shows
that the scale factor starts from the finite value (1/2)~ /(=1
and expands to infinity.
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behavior of M, at late times is the attractor solution’ (see
e.g. [29]):

1
do_l

ap(D] s = &t (4.6)

Concerning the factor space M, we have the following
asymptotes:

a (7)o = exp(i—i T), 4.7

4.8)

al(T)lr—v—O — L

Here, we also have two scenarios depending on the sign of
&, If £, >0, the factor space M, contracts from infinity
with the subsequent freezing at late times. If &; <0, the
factor space M, expands from zero, freezing again at late
times. Thus, the freezing of the factor space M, is the
attractor behavior at late times (see [29]).

Let us define now the Hubble and the deceleration
parameters. For the factor spaces M, and M; we obtain,
respectively,

1 & + & coth(é,7)

= r® d—1 @Y
0 @
and
H, = Jﬁ 5—1, (4.11)
R e

With the help of these expressions we can analyze the
factor spaces from the point of their acceleration. Again,
the analysis depends on the choice of the external space.

1. Hyperbolic external space (SM6- and SD5-branes)

Usually, we are looking for a model with expanding
external space and a contracting (or static) internal one.
As it follows from Eqgs. (4.9) and (4.11), the choice &, = 0
guarantees these conditions. However, the external factor
space is a decelerating one at all times because gq >
0V 7€ (—o0,0] [see Eq. (4.10)]. Therefore, in the rest
of this subsection we investigate the case of positive &; >
0 — p' > 0 with expanding internal space. In spite of the
expanding character of the internal space, Eq. (4.8) shows
that this space goes asymptotically to a constant value

°It can be easily verified that the dimensional scale factor a
has the exact Milne asymptote, ay(f)|,— 1o =, and for dimen-
sional a; we obtain a,(7)|,—._o — A;.

PHYSICAL REVIEW D 73, 104016 (2006)

(“frozen out™) at late times. We suppose that this value
is less than the Fermi length Ly ~ 1077 cm. It makes the
internal space unobservable at late times.
Obviously, for positive £; we have two scenarios:
1 & >é&
Here, the external space M|, after the contraction
from infinity to a finite value starts to expand at the

time
_ & _ dod;
coth(&,7,) ; D=3 (4.13)

asymptotically approaching the attractor ay ~ #(t —
+00). At all stages of its evolution the factor space
M, has the accelerating behavior g, <0V 7€
(—00, 0]. This scenario is realized e.g. for the case
of the absence of a scalar field: p! = 1 (see Fig. 3,
solid lines, where the convex curve a; has positive
second derivative/acceleration for all ¢ € [0, +00)).
2 0<é& =6,

Here, the external space M| expands for all time
T € (—oo,0] starting from zero (for &, < &,) or
from a finite value (for &, = &,), asymptotically
approaching the attractor ay ~ #(t — +00). The ac-
celeration begins at the time

& D—-21
coth(ér7,) = — === — [———. (4.14)
’ £ dod, p'
This  equation is  satisfied for p!<

J(D —2)/dyd, <1, ie. in the presence of a suffi-

ciently dynamical scalar field. The typical behavior
of the scale factors in the synchronous time gauge
for this type of scenario is illustrated in Fig. 3
(dashed lines).

It is worth noting that, to draw the graphics in synchro-
nous time, we use in the integral (2.13) the exact expres-
sions for the function f(7) rather than its asymptotes. This
can result in a proper shift between an analytic estimate
(for the late times) and a graphical plotting. For example,
the corresponding shift for the linear asymptote (4.6) has
the form of ay(f)],—ic0 = ﬁfz(t +t,) where t, =
lim,_ J7 /() = (€&2ln]) /%Dy, Because the
function f(7) depends on the parameter &;, the solid and
dashed lines in the left panel of Fig. 3 acquire the late-time
relative shift with respect to each other.

2. Ricci-flat external space (SM2- and SD2-branes)

It can be easily seen from Eq. (4.11) that the external
space M, expands only in the case & >0— p!>0.
Because p' =1=[(D —2)/dyd\1(£ /&) = [(D -
2)/dyd,]"/*p"* <1, the deceleration parameter of the ex-
ternal space ¢; >0 for all times 7 & (—0,0] [see
Eq. (4.12)] and the acceleration is absent. Additionally,
the internal space M|, expands to infinity at late times
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FIG. 3. Typical form of the external (left panel) and internal (right panel) scale factors in the Brans-Dicke frame for the hyperbolic
external space M, in the case &; > &, (solid lines) and &; < &, (dashed lines). Specifically, it represents the vacuum limit of the SM6-
brane with dy = 3, d; =7, and p' = 1 (solid lines) and the zero flux limit of the SD5-brane with dy, = 3, d; = 6, and p' = 0.5

(dashed lines).

which obviously contradicts the observations. Thus, this
case is not of interest to us.

B. Einstein frame

Now, we investigate the dynamical behavior of the
corresponding Sp-branes in the Einstein frame, splitting
our consideration into two separate cases depending on the
choice of the external factor space.

1. Hyperbolic external space (SM6- and SD5-branes)

In this case we obtain the following expressions:

Q = g /-] _ exp<_ 3| T)
! dy— 1

(4.15)

for the conformal factor,

f(0) = f-po)(7) = Q7'e? = [sinh(&,|7])] /(D]
(4.16)

for the function f(7), and

ao(r) = Q~ay = g=! = [sinh(&l7)] /4T @4.17)
for the scale factor of the external space. Here, we consider
the interval (—oo, 0] of the harmonic time 7 which is
mapped onto the interval [0, +00) of the synchronous
time 7. Thus, the Hubble and the deceleration parameters

of the external factor space M, read

(3

go—__ &
" (do — 1)f—po)

coth(&,|7]), (4.18)

&
dy — l)fz_E(g)(T)
These equations clearly show that the expanding external

space is a decelerating one because H, > 0,5, >0V 7 €
(=00, 0].

do= (4.19)

2. Ricci-flat external space (SM2- and SD2-branes)

Now let the factor space M, be the external space. For
this choice of the external space the conformal factor reads

Q(T) — a(;[do/(dl—l)]
dy
=exp| —— &7
W@ =)

X [sinh(&,|7[)]do/(do= D =D, (4.20)

With the help of this expression we can define the function

f(7),
f(1) = fopay(r) = Qpler

= eo(G = - ¢7)

X [sinh(&,| T|)]f[dodl/(dofl)(dl71)], 4.21)
and the scale factor a,(7),
a(r)=Q""q
1 - do - dl )
= ex &iT
p(dxdo -, -1
< [Sinh(gz|T|)]—[do/(do—1)(d1—1>]_ (4.22)

As for the internal space scale factor ay(7), it has the form
(2.8) with the asymptotes (4.4) and (4.5).

Similarly to the previous case, we choose the interval
(=00, 0] of the harmonic time 7. It can be easily verified
that this interval is mapped onto the interval [0, +o0) of the
synchronous time 7. It is of interest to get the late-time
asymptotes for the scale factors. To get them, we first
obtain the relation between the synchronous and harmonic
times at late stages:

dy — 1)(d; — 1
d0+d1_1

77— —0=1t— 400,

52[ = )(é’zlq-l)*[(dn*dl*1)/(0'0*1)(0'1*1)]’

(4.23)

which enable us to write the late-time asymptotes in both
gauges:

( |7-|) do/(dy—1)(d,—1)

1R

|: dy+d; — 4.24)

do/(dy+d,—1)
(do — D(d, — 1) }
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|
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FIG. 4. Typical form of the external @; and internal a scale factors as well as the deceleration parameter — g, of the external Ricci-
flat factor space M, in the Einstein frame (synchronous time gauge). Specifically, the solid lines represent the vacuum limit of the
accelerating SM2-brane with dy = 7, d; = 3, and p! = 1, and the dashed lines correspond to the zero flux limit of the decelerating

SD2-brane with dy = 6, d; = 3, and p' = 0.5.

ag = (&|7[)~ /=D
~ do + dl - 1 f (dlfl)/(dOerlfl)
'L%—mm—nz} '

Thus, both the external and the internal scale factors ex-
pand at late times. However, the rate of the expansion of
the internal space M, is less than for the external space M.
For example, in the case d; = 3, dy = 6 we get a, ~ 1°/4
and a, ~ 7'/*. So, in spite of this expansion, we suppose
that the internal scale factor is still less than the Fermi
length which makes it unobservable at present time.

(4.25)

|

g(7)

To investigate the accelerating behavior of the external
space M, let us define its Hubble and deceleration pa-
rameters:

~ (D —2)¢, + dyd, &, coth(&,7))

H (1) = — di(dy — D(dy — D f—gy(7)
1 D=2
—‘@—nﬁmwdigj&M)%m
and

_ [(D = 2)¢, + dyd, &, coth(&,7)] — do(dy — 1)dj&3sinh™>(€,7) _ (D — 2)m’(7) — (do — 1)d,sinh>(&,7)

d%(dl - 1)(d0 - I)ZfZ_E(l)(,r)

where (see also Refs. [7,17])

m(7) := p' + dod12 coth(&,7). (4.28)

It can be easily seen that this function is negative: m(7) <
0V 7€ (—,0] because |p!| = 1. Thus, starting from
zero value'® the external space M, expands for all times
[see Eq. (4.26)]. From the other side, the condition of its
acceleration reads

For 7 — —o0 irrespective of the sign of &; Eq. (4.22) has
the asymptote d; ~ exp{[dy/(dy — 1)(d; — D]&|7I[(D —
2)/dyd1)é, /&, — 1]} — 0.

s

dy(dy = 1)(dy — l)fz_E(l)(T)

(4.27)
d dod
> - 2coth2(§27) +2 DO_ ‘2p1 coth(&,7)
(dy — 1)d,
+ (ph)2+ —=—L2 <. 4.29
(r") ) (4.29)

Because coth(&,7) < 0 for 7 € (—o0, 0], this inequality is
possible only for positive values of the parameter p': p! >
0. Moreover, the corresponding quadratic equation should
have two roots defining the harmonic time of the beginning
(T(4)start) @and ending (7(,)g,) of the acceleration. For these
roots we obtain the following relation:

COth(§2T(a)sta.rt) - COth(f2T(a)ﬁn)

_ |dy — DD —=2) _d
NS

(4.30)
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This difference is positive because coth is a monotone
decreasing function. So the stage of the acceleration takes
place only if the parameter p' satisfies the inequality
s 4
(pH)? > D_3 4.31)
For p! =1 we restore the results of the paper [7].
However, a new result is that the scalar field with (d, —
1)/(D —2) = (p*? <1 prevents the acceleration. In
Fig. 4, we present different behavior of the external a,
and internal a, scale factors as well as the deceleration
parameter — g, of the external space M depending on the
choice of the parameter p!. The solid lines correspond to
the values of p! satisfying the condition of the acceleration
(4.31). £° and £&° denote, respectively, the times of the
beginning and ending of the external space acceleration.
The dashed lines correspond to the case when the parame-
ter p! does not satisfy the condition (4.31) and the stage of
the acceleration is absent.

V. VARIATION OF THE FINE-STRUCTURE
CONSTANT

Above, we considered the model with the dynamical
internal spaces. It is well known that the internal space
dynamics results in the variation of the fundamental con-
stants such as the gravitational constant and the fine-
structure constant (see, e.g., Refs. [34,36]). For example,
the effective four-dimensional fine-structure constant is
inversely proportional to the volume of the internal space
(see, e.g., Refs. [11,15,36]): a ~ V(;)' ~ a(_,)d(”. Here, the
indices “I” and “E” denote the internal and external
spaces, respectively. The origin of such dependence can
be easily seen if we add a higher-dimensional electromag-
netic action (which should not affect the above-
investigated dynamics of the model) and perform the di-
mensional reduction to an effective four-dimensional the-

ory. It results in the term of the form \/ﬁ(v(,) /e*)F?
[11,36] which leads to the above-indicated dependence
for the effective fine-structure constant. Thus, if V(;) is a
dynamical function which varies with time, then the effec-
tive four-dimensional constants will vary as well. For the
fine-structure constant, such variations take place in both

frames because the quantity \/@(v(,) /e?)F? is invariant
in four-dimensional space-time with respect to the confor-
mal transformation of the metric g<E). Therefore, in both
frames we arrive at the following expression for the varia-
tion of a:

= ldpHl,

Id ‘z 0 (5.1)

o V( 1)

where the dot denotes the synchronous time derivatives and
Hy = aqg/aq).

There are strong constraints on ¢/« from a number of
experimental and observational considerations [34]. For
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our calculations, we use the estimate |d&/al=
1071 yr~! [37] which follows from observations of the
spectra of quasars. Combining this with the accepted value
for the current Hubble rate H ) = a(g)/ag) ~ 10710 yr!
leads to

H,
H g,

=107, (5.2)

Let us now test the models from Secs. III and IV for the
purpose of their satisfaction of the condition (5.2). We
perform this investigation only for the cases with the
acceleration of the external space.

A. Brans-Dicke frame
1. Spherical space

In this case, the Hubble parameters for the factor spaces
are given by Egs. (3.9) and (3.11). Therefore, depending on
the choice of the external space, we obtain the following
results:

(1) Spherical external space (Sec. III A 1):

H(I) ﬂ d() - 1

= z ~ O(1).
H H, d|1+ f—f tanh(&,7)|

(5.3)

This estimate arises from the condition (3.14).
Therefore, in this case, we arrive at the obvious
contradiction with the experimental bounds.

(2) Ricci-flat external space (Sec. IIT A 2):

Hy Hy
H ) H,

d, | 1+ % tanh(&,7)

~ O(1).

4 =1 (5.4)
This estimate is valid for all times 7 € (—o0, +00).
For &,/&, <1, the only exclusion is a very short
period of time in the vicinity of the turning point
tanh(&,7) = —§&,/&, of the internal space M, i.e.
for the times tanh(&,7) € [—&,/&, — 6, —&,/& +
8] with 8§ ~ (£,/&,)1075. In general, this model
conflicts with the observations.

2. Hyperbolic space

In this case the Hubble parameters for the factor spaces
are given by Egs. (4.9) and (4.11). Here, the acceleration
takes place only in the case of the hyperbolic external
space.

Hyperbolic external space (Sec. IVA 1)—With the help
of Egs. (4.9) and (4.11), the ratio between the Hubble
parameters is given by

Hy H,
H g H,

-1
= do . (5.5)
dy|1 + £ coth(£,7)|
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As we have seen in Sec. IVA 1, there are two distin-
guishing scenarios in this case. The first scenario corre-
sponds to &; > &, (it happens, e.g., in the case of the
absence of a scalar field: p! = 1). As for this particular
case &,/&, ~ O(1), we can achieve the necessary small-
ness of the ratio (5.2) for late times:

H,

Hy

<1073 for |&7] <107

(1> &) (5.6)
The second scenario takes place if 0 < &) = &,. It can be
easily seen that the condition (5.2) is satisfied for the small
parameter &;:

H,

0

<1075 V 7€ (—00,0] (&,/& = 107°).

5.7

We can weaken the condition &,/&, < 107 if we demand
the execution of the condition (5.2) from the time 7, of the
beginning of the acceleration [see Eq. (4.14)]:

H,

0

<107? (£1/&, = 107°2).

(5.8)

Therefore, in the hyperbolic external case we can satisfy
the condition (5.2) either for sufficiently late times | &, 7| <
1073 or for a very dynamical scalar field which results in

the smallness of the parameter p': \/dyd,/(D —2)p' =
1073 for (5.7) or y/doyd;/(D — 2)p' < 10752 for (5.8).

forr,=7=0

B. Einstein frame

In the Einstein frame, there is only one case with the
accelerating stage for the external space. It describes the
model with Ricci-flat external and hyperbolic internal
spaces.

1. Hyperbolic internal space (Sec. IVB 2)

In this case, the Hubble parameter of the external space
M, is defined by Eq. (4.26). Concerning the Hubble pa-
rameter of the internal factor space M, it is necessary to
perform the evident substitution f_pp(7) = f_g)(7) in
formula (4.9) because in the Einstein frame the function
f(7) in Eq. (2.14) is defined by f_x()(7). Thus, the ratio of
the Hubble parameters reads

Ha | _ | Ho
H(E) Hl
_di(d — 1) | §+tanh(&7) o
— dod, & :
D=2 2% &+ tanh(&,7)
5.9

This estimate is valid for all times 7 € (—oo,0]. For
&, /&, <1, the only exclusion is a very short period of
time in the vicinity of the turning point tanh(&,7) =

PHYSICAL REVIEW D 73, 104016 (2006)

—&,/&, of the internal space M,, ie. for the times
tanh(&,7) € [—&,/&, — 8, —&, /&, + 8] with § ~ 1077,
Therefore, in general, this model conflicts with the experi-
mental bounds.

C. Static internal space

It is clear that the effective fundamental constants do not
vary if the internal space is static (“‘frozen’’). Additionally,
this results in the equivalence between the Brans-Dicke
and Einstein frames. In our model this takes place only if
the parameter &, = 0 = p! = 0 [see, e.g., Egs. (2.8), (2.9),
and (2.10)], i.e. when the factor space M, plays the role of
the internal space. Let us investigate this possibility in
more detail.

First, we consider the spherical external space. It fol-
lows from Eq. (3.10) that the external space M, is decel-
erating because gy > 0 for &, = 0. Moreover, the static
solution is unstable. To see this, let us suppose that the
internal space scale factor a, is freezed up to an arbitrary
time 7. Then, small fluctuations 8¢, = [d,(dy, — 1)/(D —
2)]'/28p! result in the following dynamics:

ay(7);=-, = exp[(8&,/d))(7 — 1)}, 7 € [7, +)

(5.10)

[see Eq. (2.8)]. Thus, the scale factor a; goes from the
constant value to either +oo (for positive p') or zero (for
negative o p'). At the same time, the external scale factor
ay remains decelerating because the small fluctuation 6§,
does not satisfy the acceleration condition (3.14).
Therefore, this case is not of interest to us.

Second, we turn to the hyperbolic external space. Here,
the external space M|, is again decelerating [see Eq. (4.10)
for £; = 0]. Because of small fluctuations 6&; at an arbi-
trary moment 7, < (0, the scale factor a; acquires the
dynamics:

al(T)l'rZ'rO = exp[(6§1/dl)(7 - TO)]: TE [TO’ O]

(5.11)

Thus, for negative 6¢, the internal scale factor asymptoti-
cally approaches the value exp[—(|8&,1/d,)|7yl] and the
external space remains decelerating. In this case the inter-
nal space varies in finite limits of the order of O(1) (from
this point we can call this case “‘quasi stable’”). For positive
6&,, the internal scale factor asymptotically approaches
the value exp[(6€,/d;)|7o|] and the external space starts to
accelerate at the time coth(&,7,) = —§&,/8€&, [see
Eq. (4.14)]. The case of the positive 6¢&; is of interest
because, first, the external space begins to accelerate and,
second, the variations of the fundamental constant do not
contradict the observations if the ratio §&,/&, satisfies the
conditions similar to those for the ratio &,/&, in the
expressions (5.7) and (5.8). However, the scale factor a;
can considerably increase if (6&,/d,)|7ol > >1. In this
case the solution is unstable.
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VI. FIXATION OF THE FINE-STRUCTURE
CONSTANT

Let us consider now the case of three factor spaces with
the topology of the manifold of the form M = R X M, X
R4 X R% where M, is dj-dimensional spherical (S%) or
hyperbolic (H%) space.

Here, the solution (in the Brans-Dicke frame) is (see
Refs. [28,29])

£ I
do — 17) el

ap(1) = Ay exp<— 6.1)

a(t)=A, exp((dl -l-ldz — i—) ), (6.2)
ar(1) = A, exp((d1 i‘ 7 i,) ) (6.3)
o(1) = p’t + ¢, (6.4)
where
g+(7) _ <%2>1/2(d0I)COShl/(dO_l)(sz)’ 63
—o00 <7< +o00, e>0 '
and
(1= <|fe€|> P s
0 (6.6)

|7| >0, e =0.

As usual in this paper, the index + ( — ) indicates that the
considered formula is related to the spherical (hyperbolic)
factor space M. In the case € = 0, Eq. (6.6) is reduced to
the form

g (1) = [(dy — D]7]]/4=D, (6.7)
where we used the formula |Ry| = dy(d, — 1).
In Egs. (6.1), (6.2), (6.3), (6.4), (6.5), and (6.6),
_ |dy +dy)dy— 1) _ jdo—1
§1 _\/ (D_2) P 52_ d—028’
_ did, ,
&3 d + d2P (6.3)
and
26 = (p') + (P> + (P (6.9)

Parameters A, A;, Ay, p', p?, p, and g are the constants
of integration with the following constraint: Ag“A‘f‘Agz =
Ap.

For this solution, the Hubble and deceleration parame-
ters read
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1 &+ &ha(n)

H.o(r) = TR0 d-1 (6.10)
go(r) = f%§(27) & Zoflhf(ﬂ, 6.11)
Hyy (1) = fil(T) ( 7 il 7 —i—?), (6.12)
R noi v S

where the transition function f(7) [see Eq. (2.13)] is

fa(r) = e = agoaf' a‘zi2

_ & 1
= Ay exp< do — 17) X e (6.14)
and
ha(r) = tanh(&,7), 7€ (—00, +), R, >0,
=7 {COth(fz’T), TE (—OO, 0], RO <0.
(6.15)

In this section, the factor space M, is treated as the
external one. This choice is justified below. As it follows
from Egs. (6.10), (6.11), (6.12), (6.13), (6.14), and (6.15),
the dynamics of the model is similar to that described in
Secs. IIT A1 and IVA 1. For example, the spherical exter-
nal space M, undergoes the accelerating expansion [during
the period (3.13)] and both internal spaces M; and M,
contract if £, < 0and &; < (d,/(d; + d,))|&,] for positive
& >0 or |&| < (d,/(d; + dy))|&,| for negative &5 < 0.
In the case of the hyperbolic external space, the accelerat-
ing expansion of M, is possible only if &, is positive: &; >
0. Here, the acceleration of M|, is either eternal (if &; > &,)
or starts at the time (4.14) (if 0 < &, = &,). Concerning the
internal spaces M; and M, we can say that at least one of
them expands approaching the finite value A; or A,.

As to the variations of the effective fine-structure con-
stant, we obtain

= |d\H, + dyH,|,

(6.16)

where V() ~ af‘ agz. Since the combination d;H; in the
case of one internal space gives exactly the same expres-
sion as the combination d;H; + d,H, in the case of two
internal spaces [see Egs. (3.11), (4.11), (6.12), and (6.13)]
we arrive at the conclusions with respect to the variations
of « similar to those obtained in Secs. VA 1 and VA 2: the
spherical model is in conflict with the observations [see
Eq. (5.3)] and the hyperbolic model can be in agreement
with the experimental bounds either at very late times [see
Eq. (5.6)] or for very small &, [see Egs. (5.7) and (5.8)].
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Obviously, the effective four-dimensional fundamental
constants are fixed if the total volume of the internal spaces
is constant. Now, we try to answer the following question.
Is it possible to construct the model with dynamical scale
factors but fixed total volume of the internal spaces? The
simple analysis of Egs. (6.1), (6.2), and (6.3) shows that
such possibility exists only if we choose the Ricci-flat
factor spaces R%' and R as the internal ones and put p' =
0. In this case

Vi ~ af'ay] i = A]'AS> = const. (6.17)
Hence, in spite of the dynamical behavior of the internal
scale factors, first, the Brans-Dicke and Einstein frames are
equivalent to each other and, second, the fundamental
constants are fixed. This was the main reason to choose
the factor space M|, as the external one. At first sight, this
model looks very promising. However, it has a number of
drawbacks. First, the external space M, is the decelerating
one: g-o(7) >0 [see Eq. (6.11)].

Additionally, it is necessary to investigate this model for
the purpose of its stability with respect to the fluctuations
of the parameter p!. It can be easily seen that due to small
fluctuations 8¢, = [(d; + dy)(dy — 1)/(D — 2)]'/286p" at
an arbitrary moment 7, the internal volume acquires the
following dynamics:

Vi = AV AP exp(8&, (1 — 7)), (6.18)
where 7 € [7(, +00) for the spherical M, and 7 € [7(, 0]
for the hyperbolic M. Thus, the stability analysis can be
performed in full analogy with Sec. VC of the static
internal space. We obtain that the case of the spherical
external space is unstable with the decelerating behavior
and the case of the hyperbolic external space is “‘quasi
stable” for 6¢; < 0 and unstable for 6¢&; > 0. In the latter
case the factor space M, can acquire the stage of the
acceleration without too much variation of «.

To conclude this section, we consider a particular model
with fixed internal volume (6.17) and an additional condi-
tion &€ = 0. It takes place if the scalar field is imaginary, i.e.
¢ is a phantom field (see, e.g., [38—40] and numerous
references therein). For the hyperbolic'' external space
M, the solution (in the harmonic time gauge) is given by
Egs. (6.1), (6.2), (6.3), and (6.4) with the following sub-
stitution: ¢, = 0, p* = ip? and g_ from Eq. (6.7). This
particular model is of interest because of its integrability in
the synchronous time gauge where the solution reads

ag(t) =1, (6.19)

oo -nenlzl(4)”)

"!Classical Lorentzian solutions with & = 0 exist only for the
hyperbolic M.

(6.20)
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o0 = hrenn{ =5 ()" ),

2 /AN -1
P Ag 90 +q,
dg— 1\ ¢

6.21)

o(r) =i (6.22)
and r € [0, +). Hence, the scale factor of the external
space behaves as in the case of the Milne solution with zero
acceleration. This is a transitional case between the accel-
erating and decelerating behavior. Any perturbations dp'
result in nonzero 2e = (8p')> > 0. The behavior of such
perturbed models is described by Egs. (6.1), (6.2), and (6.3)
with &, — 8¢, = [(d, + dy)(dy — 1)/(D — 2)]'/>8p' and
2e = (6p')>. In this case, |6&,/&| =
Jdo(d; + dy)/(D — 2) > 1. Thus, for positive fluctuations
6&, the external space M, undergoes the eternal accelera-
tion in accordance with the results of Sec. IVA 1. However,
the variations of « are in agreement with the experimental
data only at very late times, as we have seen in Sec. VA 2.
Additionally, the internal space volume V/;) can consider-
ably increase if 6&,|7g| > 1 [see Eq. (6.18)]. Therefore,
this solution is unstable.

VII. CONCLUSION

In the present paper we investigated the possibility of
generating the late-time acceleration of the Universe from
gravity on product spaces with only one non-Ricci-flat
factor space. The model contains a minimally coupled
free scalar field as a matter source. Dynamical solutions
for this model are called S-brane (spacelike brane) solu-
tions. The analysis was performed in the Brans-Dicke and
Einstein frames. We found that, in the context of the
considered models, non-Einsteinian gravity provides
more possibilities for accelerating cosmologies than the
Einsteinian one. As we already mentioned in the
Introduction, such different behavior of the external space
scale factors in both of these frames is not surprising
because these scale factors are described by different var-
iables connected with each other via the conformal trans-
formation [see, e.g., Eq. (AS) in the Appendix]. Moreover,
the synchronous times in both of these frames are also
different. As a consequence of these discrepancies, the
scale factors of the external space in both frames behave
differently. In the Brans-Dicke frame, stages of the accel-
erating expansion exist for all types of the external space
(flat, spherical, and hyperbolic). However, in the Einstein
frame, the model with flat external space and hyperbolic
compactification of the internal space is the only one with
the stage of the accelerating expansion. The reason for this
acceleration is rather clear. After dimensional reduction of
the considered models and conformal transformation to the
Einstein frame, we obtain an effective potential of the form
U= —(1/2)e"Rye 2" [see Eq. (2.7)], which plays the
role of an effective cosmological ‘“constant.”” Thus, the
acceleration is possible only if the internal space curvature
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Ry < 0. The presence of a minimally coupled free scalar
field does not help the acceleration because this field does
not contribute to the potential. Nevertheless, it makes sense
to include such a field in the model because it results in
more reach and interesting dynamical behavior.'?
Moreover, we have seen in Sec. IV B 2 that a scalar field
can prevent the acceleration in the Einstein frame. This is a
new result in comparison with Refs. [7,20].

It is well known that the dynamical behavior of the
internal spaces results in the variation of the effective
four-dimensional fundamental constants. Therefore, we
investigated the rate of variation of the fine-structure con-
stant for the cases of the accelerating external spaces. It
was shown that the case of the hyperbolic external space in
the Brans-Dicke frame is the only model which can satisfy
the experimental bounds for the fine-structure constant
variations.

It is clear that the fundamental constant variations are
absent if the total volume of the internal spaces is constant.
Obviously, there is no difference between the Brans-Dicke
and Einstein frames in this case. Such particular solutions
exist in the cases of one or two internal Ricci-flat spaces.
The latter model is of special interest because the internal
spaces undergo the dynamical evolution and, at the same
time, the internal space total volume is fixed. However,
these models have a number of drawbacks. First, the
external space is nonaccelerating and, second, these mod-
els are unstable.

Thus, in many cases, the considered S-brane solutions
admit stages of the accelerating expansion of the external
space. However, they have a significant problem with the
experimental bounds for the variations of the fine-structure
constant.

APPENDIX: BRANS-DICKE AND EINSTEIN
FRAMES

In this appendix we derive the connection between
different quantities in the Einstein and Brans-Dicke
frames. Since the result depends on the choice of the
external space and both M, and M; can be the external
one, we redefine by letter ““E”’ the external space and letter
“I”’ the internal one, dropping the indices 0 and 1. Further,
we can perform the dimensional reduction of action (2.5)
integrating over the coordinates of the internal space [41]:

§ =200 [ 4o fiz®)]edoh (R[5E]

2
2kp Jing,

= Gug®rrapapy + RigMle "), (A

'>We have seen that the dynamical picture of the model con-
siderably depends on the relation between the parameters &, and
&, introduced in Egs. (2.8), (2.9), and (2.10). If a scalar field is
absent, |&,|/&, = [d,dy/(D — 2)]'/2 > 1. However, in the pres-
ence of a scalar field this ratio is not fixed but varies in the limits
0=1£1/& =[d\dy/(D = 2)]'/2.
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where Vou is the constant volume of the internal space
(modulo the scale factor), g<E) is the external space-time
metric on the manifold M (g) = R X Mg, of the dimension
D(E) =1+ d(E)’ G = d(l)(l - d(l))> and we allow the
internal space scale factor to depend on all external coor-
dinates x € M (g)- We also dropped the scalar field because
it does not affect our results. This reduced action is written
in the Brans-Dicke frame. In the next step, we remove the
explicit coupling term in (A1) by conformal transformation

2d) B ) (E)

—(E) _ 02 5(E) = _ A2
8 prv Suv exp< Dy — 2 v (A2)

and obtain the reduced action in the Einstein frame:
o [ dPexIZPHRIZ ] - g Pmray,ay,
D J Mg

+ R[g"e},

where lﬂ = —Ad(l)ﬁ(l), and A = i[(D - 2)/(d(1)(D(E) -
)72
Thus, the metric (2.1) in different gauges reads

_ Vow

(A3)

g =—edr®dr + afpg® + afy g

= —dt®dt + aly g'® + af g

= O (—di ® di + afyg"™) + afy g, (A4)
where the first line is the metric in the harmonic time gauge
in the Brans-Dicke frame, the second line is the metric in
the synchronous time gauge in the Brans-Dicke frame, and
the third line is the metric in the synchronous time gauge in
the Einstein frame. Equations (A4) show that the external
scale factors in the Einstein and Brans-Dicke frames are
related as follows:

d(E) = Q’la(E) (AS)

and there exists the following correspondence between
different times'*:

dt = e dr =t = f e Ddr + const, (A6)

di=Q lerdr == [Q*'e”’”)dr + const. (A7)

Additionally, it is worth noting that Eq. (A3) explicitly
indicates the possibility of the external space acceleration
(in the Einstein frame) in the case of the hyperbolic com-
pactification. The fact is that an effective potential U :=
—(1/2)R[g"]exp(2Ay) is positive for R[g"]<0.
Similarly to the positive cosmological constant, such posi-
tive effective potentials can result in the accelerating stages
of the Universe.

13To have the same directions of the arrows of time, we choose
the plus sign for the square root.
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