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Wave functions for the Schwarzschild black hole interior
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Using the Hamiltonian constraint derived by Ashtekar and Bojowald, we look for preclassical wave
functions in the Schwarzschild interior. In particular, when solving this difference equation by separation
of variables, an inequality is obtained relating the Immirzi parameter � to the quantum ambiguity �
appearing in the model. This bound is violated when we use a natural value for � based on loop quantum
gravity together with a recent proposal for �. We also present numerical solutions of the constraint.
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I. INTRODUCTION

One of the more interesting class of solutions found in
the theory of general relativity is the black hole. Not only
does it fire the public imagination—as seen by a survey of
popular books of both the fiction and nonfiction variety—
but it also provides an arena to study what happens when
general relativity and quantum mechanics are important.
The strong gravitational fields that curve space-time
enough to prevent escape from the black hole interior
eventually lead to a singularity, where the classical theory
becomes meaningless. Like the big bang singularity, a
complete understanding of what occurs at this location
depends on uniting classical and quantum ideas. It is
thought highly unlikely that there is a complete breakdown
in the equations of gravity. Instead it is hypothesized that
quantum effects provide a limitation on the magnitude
of space-time curvature, and perhaps even allow the pos-
sibility of discussing the region beyond the classical sin-
gularity. Thus the simplest form of black hole, the
Schwarzschild space-time, is the focus of a variety of
explorations into quantized gravity.

One of the more developed techniques is that of loop
quantum gravity [1]. Unfortunately, this theory still has
some outstanding issues, so a symmetry reduced version of
loop quantum gravity has been developed, known as loop
quantum cosmology [2,3]. To some extent, this allows a
test bed for different incarnations of the full theory, and
leads to the discovery of features that are robust under
modification of the exact quantization method. Many mod-
els of cosmological interest have been studied using the
wave functions of the full theory. The basic method is to
start with the kinematic Hilbert space of the full theory,
then reducing down to those states obeying a particular
symmetry in order to quantize the Hamiltonian constraint.
Research in cosmological singularities has been fruitful,
and shown that there are no difficulties in resolving the
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singularity or indeed, in evolving the wave function
through it [4]. Now work has begun on the singularity
occurring inside the spherically symmetric black hole [5]
(see also [6]). This paper will show explicit solutions for
the quantum constraint in the Schwarzschild interior and
comment on the conditions necessary to ensure the wave
function is smooth far away from the singularity, a region
where quantum effects are not expected. This requirement
captures the notion of preclassicality [7], ensuring the
wave function has the desired physical properties when
there is not yet a physical inner product applicable to this
situation. The expectation is that preclassicality picks out
wave functions in the eventual physical solution space.
This is due to the fact that the Wheeler-DeWitt equation
for semiclassical states is an asymptotic limit of the quan-
tum constraint equation.

In Sec. II, we review previous work on the interior of the
Schwarzschild black hole in the context of loop quantum
cosmology. The interior portion of the space-time is chosen
because it is of Kantowski-Sachs type. Since these metrics
are spatially homogeneous, they are very similar to other
models previously considered in loop quantum cosmology.
The quantum operator corresponding to the Hamiltonian
constraint is a partial difference equation acting on the
eigenstates of the triad, and includes a quantum ambiguity
� related to the fundamental length scale. Here, we point
out the effect of using a self-adjoint constraint operator in
the quantum theory. Because the wave functions will not
have the same restrictions that are seen in other work
(where a non-self-adjoint operator is used) the range of
solutions is correspondingly greater. This choice of con-
straint will eventually allow the study of the physical wave
functions, via the use of group averaging. In Sec. III, we
use generating function techniques to solve explicitly for
wave functions. To simplify this search, we use a separa-
tion of variables method to find solutions for the constraint
equation. Solving for one of the two sequences is techni-
cally demanding, so we only consider its asymptotic limit
in Sec. III C, deferring the exact results to the appendix. In
Sec. IV, we report on numerical simulations of generic
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.104009


DANIEL CARTIN AND GAURAV KHANNA PHYSICAL REVIEW D 73, 104009 (2006)
wave functions. Within the limits discussed in the paper,
Gaussian wave packets can evolve under the quantum
constraint, maintaining a classical trajectory until they
get very close to the singularity. Imposing the physical
condition that wave functions must be suitably smooth
far away from the classical singularity leads to an inequal-
ity related the quantum ambiguity � mentioned above and
the Immirzi parameter �. Interestingly, this inequality is
not satisfied for all the current proposals for � if a natural
choice for � is made based on the full theory. These results
are discussed further in Sec. V.

II. THE SCHWARZSCHILD INTERIOR IN LOOP
QUANTUM COSMOLOGY

A model of the Schwarzschild interior in loop quantum
cosmology has been carried out by Ashtekar and Bojowald
[5], so we will briefly review its features here. Because this
portion of the space-time is spatially homogeneous, the
construct is similar to other models studied in loop quan-
tum cosmology (LQC). The configuration space is coor-
dinatized by the two independent triad components pb and
pc; the line pb � 0 gives the horizon of the black hole,
104009
while pc � 0 is the singularity. The corresponding quan-
tum operators for the triad act on their eigenstates by

p̂ bj�; �i �
1
2��‘

2
pj�; �i; p̂cj�; �i � ��‘2

pj�; �i;

(1)

where � is the Immirzi parameter, and ‘p is the Planck
length. Thus the line� � 0 locates the event horizon while
� � 0 is the classical singularity. There is a residual gauge
symmetry on the phase space generated by the Gauss
constraint of the model, which requires that a choice is
made to fix this freedom. In previous work on loop quan-
tum cosmology, a gauge choice such as pb � 0 was made.
This still allows passage through the classical singularity,
so its resolution can be studied. However, we can also
consider sequences symmetric under �! ��. This
does not put an artificial restriction on the extent of the
quantum wave function, but picks out those that satisfy the
Gauss constraint of the model. We shall see in Sec. IV that
this simplifies numerical simulations of the solution.

The Hamiltonian constraint arising from loop quantum
cosmology in the Schwarzschild interior acts on a triad
eigenstate to give
Ĉ���j�; �i � �2�3�3‘2
p�
�1�2�V���;� � V���;���j�� 2�; �� 2�i � j�� 2�; �� 2�i � j�� 2�; �� 2�i

� j�� 2�; �� 2�i� � �V�;��� � V�;�����j�� 4�; �i � 2�1� 2�2�2�j�; �i � j�� 4�; �i��;

where V�;� is the eigenvalue of the volume operator, given by

V�;� � 2��3=2‘3
pj�j

������
j�j

p
:

Notice that, because of the form of this constraint, the coefficients of the relation vanish at certain points. In particular,
V���;� � V���;� � 0 when � � 0, and V�;��� � V�;��� � 0 when � � 0. This situation arises in previous work in loop
quantum cosmology, such as the isotropic [4] and the Bianchi I and IX models [8–10]. If we write the wave function �
solving the Hamiltonian constraint as a sum of eigenstates

� �
X
�;�

s�;�j�; �i;

then we find that

2�V���;��2� � V��3�;��2��s��2�;��2� � 2�V��3�;��2� � V���;��2��s��2�;��2� � 2�V���;��2� � V��3�;��2��s��2�;��2�

� 2�V��3�;��2� � V���;��2��s��2�;��2� � �V��4�;��� � V��4�;����s��4�;� � �V��4�;��� � V��4�;����s��4�;�

� �1� 2�2�2��V�;��� � V�;����s�;� � 0:
Thus s0;� and s�;0 never appear in any relation, since
their coefficients always vanish in the recursion relation.
As we will see below, the conditions for preclassicality can
be expressed in terms of relations between the sequence
members s�;� for low values of �, �. For a simpler ex-
ample, we look at the recursion relation

msm�1 � 2sm �msm�1 � 0; m � 1;

arising as a special case in the Bianchi I model [10]. Note
-2
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that there is always a scaling freedom sm ! csm, so choos-
ing the ratio s1=s0 is the only free information we have in
the initial values of the sequence. The sequence will oscil-
late without bound unless this ratio is fixed to be a certain
nonzero value. Obviously this requires that both s0 and s1

be nonzero. When we have vanishing coefficients in the
recursion relation, as with the difference operator Ĉ���, a
full range of smooth sequences is not available. This
happens in the Bianchi I case, where s0 � 0 for exactly
this reason. When we consider the self-adjoint version of
the constraint, however, this situation does not arise and
there are no vanishing coefficients of the difference opera-
tor. So the boundary value s0 is included in the partial
difference equation coming from the Hamiltonian con-
straint and can be nonzero.

This inclusion of the boundary values allows a much
greater range of preclassical sequences, as we will see later.
104009
However, in addition to this practical utility, the use of a
self-adjoint version also helps in making contact with the
physical Hilbert space of solutions. This is through the use
of group averaging techniques [11], already used in a few
applications to loop quantum cosmology [12]. Group aver-
aging is a method to explicitly construct the physical
solutions of a quantized and constrainted system. One
picks out those functions solving the constraint by averag-
ing over the one-parameter group generated by the con-
straint; this cannot be accomplished unless the constraint is
self-adjoint.

From this point on, we work with the symmetric opera-

tor Ĥ � 1
2 �Ĉ

��� � Ĉ���y�. We write the constraint equation

Ĥ j�; �i � 0 in terms of new parametersm, n, where� �
2m� and � � 2n�. This results in the following recursion
relation for all m, n:
��jm� 1
2j � jm�

3
2j�

���������������
jn� 1j

p
� �jm� 1

2j � jm�
1
2j�

������
jnj

p
�sm�1;n�1 � ��jm�

1
2j � jm�

3
2j�

���������������
jn� 1j

p
� �jm� 1

2j � jm�
1
2j�

������
jnj

p
�sm�1;n�1 � ��jm�

3
2j � jm�

1
2j�

���������������
jn� 1j

p
� �jm� 1

2j � jm�
1
2j�

������
jnj

p
�sm�1;n�1

� ��jm� 3
2j � jm�

1
2j�

���������������
jn� 1j

p
� �jm� 1

2j � jm�
1
2j�

������
jnj

p
�sm�1;n�1

� 1
2��jm� 2j � jmj��

��������������
jn� 1

2j
q

�
��������������
jn� 1

2j
q

��sm�2;n � �1� 2�2�2�jmj�
��������������
jn� 1

2j
q

�
��������������
jn� 1

2j
q

�sm;n

� 1
2��jm� 2j � jmj��

��������������
jn� 1

2j
q

�
��������������
jn� 1

2j
q

��sm�2;n � 0: (2)
Because the original parameters �, � can take any real
value, there is no loss of generality by using the scaled
variables m, n. However, notice that the quantum ambigu-
ity � and the Immirzi parameter � drop out almost every-
where when m, n are used, except for in the coefficient for
sm;n. This will be the only place where physical input will
affect the solution. In addition, we note that the constraint
greatly simplifies when jmj> 3=2 a fact we will use in the
next section. Now we turn to the task of solving this
difference equation.

III. ANALYTIC SOLUTIONS

A. Generating function techniques

In general, it is difficult to find solutions to multipara-
meter recursion relations where the sequence is smooth for
large values of the parameters. A generic feature are sign
flips every time the sequence parameter is increased by one
step. One effective means to study the behavior of these
sequences is to employ a separation of variables technique,
analogous to the procedure used for partial differential
equations. The partial difference equation is then reduced
to several one-parameter recursion relations, which are
much easier to deal with. Examining the self-adjoint con-
straint for the Schwarzschild interior, we see that when we
assume that m � 3=2 (i.e. consider the ‘‘bulk’’ of the
space-time), the relation is separable in this manner.
Denoting sm;n � �m�n, we get
�m� 1��m�2 � �1� 2�2�2�m�m � �m� 1��m�2 � ���m�1 � �m�1� (3a)

�
���������������
jn� 1j

p
�

������
jnj

p
��n�1 � �

���������������
jn� 1j

p
�

������
jnj

p
��n�1 � ���

��������������
jn� 1

2j
q

�
��������������
jn� 1

2j
q

��n; (3b)

where � is a separation parameter. We can obtain solutions to these two recursion relations by using generating function
methods [10], which are reviewed later in this section. However, to use these techniques, the coefficients of the sequence
values �n must be polynomial. We factor out

������
jnj

p
from the equation, and use a Taylor series expansion of the resulting
-3
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coefficients, keeping only up to order O�1=n� and consid-
ering only positive n for the moment.1 This gives us
�
2�

1

2n

�
�n�1 �

�
2�

1

2n

�
�n�1 � �

�
2n
�n; n > 0:

(4)

Obviously this does not work when n � 0; when we look
back at the original separated relation (3b) for �n with n �
0, we get the simple relation that �1 � ��1. Finally, we
can multiply our approximate relation (4) for �n by 2n in
order to give coefficients polynomial in n; because n > 0,
this does not affect the resulting solutions. Thus, the two
relations we will solve for separable sequences are the
relation (3a) for �m, and

�1� 4n��n�1 � �1� 4n��n�1 � ���n (5)

for �n. Because the recursion relation for the �n sequence
is simpler—a second order relation as opposed to the
fourth order difference equation for �m—we will search
for its solutions first.

Solutions for a recursion relation in general will have
undesirable physical properties. Generically these sequen-
ces will have oscillatory behavior—adjacent values will
have the opposite sign, and the magnitude of the sequence
values may increase without bound as the sequence pa-
rameter increases. At this time, there is limited work on
finding a physical inner product in loop quantum cosmol-
ogy, so there is no way to pick out such unphysical states.
This leads to the notion of preclassicality [7], where we put
in place criteria that pick out wave functions with desirable
properties. The expectation is that preclassicality will pick
out states that appear in the physical Hilbert space. This is
based on the fact that the quantum Hamiltonian constraint
is a discretized version of the Wheeler-DeWitt equation
[2]; in the limit of vanishing step size, solutions of the
difference equation will go to those of the semiclassical
differential equation. Thus, those sequences that have a
smooth limit will match wave functions solving the
Wheeler-DeWitt equation.

Because we are looking for sequences that represent the
wave function of a space-time, which becomes classical for
large volumes (i.e. far away from any singular points), we
must have a way of restricting the wave functions to those
that act semiclassically in the appropriate regime. With this
in mind, the technique of using generating functions to
1Here we make a comment about the accuracy of using this
approximate relation for �n. When we look at the solution �n at
large n, the errors between the order 1=n relation and the
completely accurate equation will be very small, and limited
to the regime where n
O�1�. Thus the difference between any
solution we find for our relations here versus the relation for all
m, n is noticeable only close to the singularity n � 0. Similar
reasoning lets us ignore the difference between the full recursion
relation and the bulk relation, where m � 2 allows us to simplify
the absolute value signs for m.

104009
solve difference equations has been developed in the con-
text of loop quantum cosmology [10]; for a review of these
methods in a generic context, see Wilf [13]. Our goal will
be to find a generating function B�y�, whose Taylor series2

gives the sequence �n, i.e.

B�y� �
X1
k�0

�ky
k:

Operations on the sequence �n can be mapped over to
those on the function B�y�. For example, suppose we want
to find the generating function for the sequence ~�n �
�n�1; thus, we find that

X1
k�0

~�ny
n �

X1
k�0

�n�1y
n �

X1
k�1

�ny
n�1

� y�1

�X1
k�0

�nyn � �0

�
:

Thus the shifting operation �n ! �n�1 is equivalent to the
operation B�y� ! �B�y� � �0�=y on the generating func-
tion. Similarly, if we want a multiplication operator ~�n �
n�n, we get

X1
k�0

~�nyn �
X1
k�0

n�nyn � y
d
dy

X1
k�0

�nyn:

So multiplication �n ! n�n corresponds to using the
Euler operator yd=dy acting on B�y�. This is the reason
we used the earlier approximation for the recursion rela-
tion; to get a differential equation for B�y� that is relatively
easy to solve, we must stick to using operators that are
polynomial in both the variable y and the Euler operator.

Up to this point, the Taylor series is merely a formal
device to get a solution to the generating function.
However, we have also a physical requirement that the
sequence is smooth for large values of the parameter,
corresponding to classical space-times. This will corre-
spond to limitations on the singularities of the function
B�y�, which can be seen in the following examples.
Suppose we have a simple pole at y � a, where 0< jaj 	
1; the Taylor series of the monomial �1� y=a��1 alternates
in sign if a < 0, and increases without bound when jaj 	
1, since

�
1�

y
a

�
�1
�
X1
k�0

�
�1
k

� ��
�
y
a

�
k
�
X1
k�0

�
y
a

�
k
: (6)

Higher order poles make the problem worse, since the
magnitude of the coefficients of yn appearing in the
Taylor series would increase accordingly. This gives an
2Notice that we are focusing solely on integer values of the
parameter k, despite the fact that � and � (and hence m, n) can
take any real value. It has been shown elsewhere [14] that using
the sequence solution for integer values can be extended to all
real numbers.
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equivalence between singularities of the generating func-
tion B�y� and the asymptotic behavior of the sequence �n.
A singularity at y � 1, for example, shows this directly,
since

�1� y�B�y�jy�1 � �0 �
X1
n�0

��n�1 � �n��1�
n�1

� lim
n!1

�n:

When B�y� has a pole at y � 1 that is of order one or less,
then the sequence �n approaches a finite value; if the pole
has an order greater than one, the sequence is unbounded.
Similarly, we can look for poles at y � �1 to determine
whether the sequence is oscillatory, flipping signs as the
parameter n is incremented by one. If the generating
function includes a monomial �1� y��p having an order
p close to 1, oscillations may occur that eventually dampen
out. In general, requiring that B�y� is finite whenever�1 	
y < 0 will ensure the corresponding sequence �n has the
appropriate semiclassical behavior. If we wish to have only
bounded sequences, then we can add the further condition
that B�y� is finite for 0< y 	 1. Thus our criteria for the
preclassicality of a solution to the Hamiltonian constraint
will be phrased in terms of the singularity structure of its
associated generating function.

We return to a simple example to illustrate what is
happening, the previously mentioned relation

msm�1 � 2sm �msm�1 � 0;

which arises from separation of the Hamiltonian constraint
in Bianchi I LRS. The generating function for this relation
is of the form

F�x� �
a0 � �2a0 � a1�x� �4a0 � 2a1� ln�1� x�

�1� x�2

�
C�x�

�1� x�2
;

104009
where the function C�x� depends on two constants a0 and
a1 (these are the first two values of the sequence). Thus we
have to worry about a second order pole at x � �1, and we
must pick a relation between a0 and a1 to ensure the
function F�x� is finite at this point. The reason we can do
this is obvious when we Taylor expand C�x� around the
point x � �1:

C�x� � c0 � c2�1� x�2 � � � � :

Because C�x� has no term that is first order in (1� x), then
we can make c0 � 0 by the appropriate choice of constants
a0 and a1. Once this is done, the generating function F�x�
is finite at x � �1, and the associated sequence will not
have growing oscillatory behavior. If there was a nonzero
term c1�1� x� in the expansion, the only solution would
have been C�x� � 0, and the sequence would have zero for
all its values. Once the pole at x � �1 is taken care of,
there is only the pole at x � 1 due to the logarithm func-
tion. However, since �1� x� ln�1� x� � 0 at x � 1, then
limm!1am � 0 implies the sequence asymptotically ap-
proaches zero.

B. �n sequence

In this manner we shall find a differential equation for
the generating function, with the appropriate conditions on
the order and location of any singularities. We make the
shift B�y� � �0 � yF�y� for convenience; from this we get
the condition F�0� � �1. In terms of F�y�, the Eq. (5) for
�n corresponds to

4y�1� y2�
@F�y�
@y
�F�y��1��y� 7y2�� 3�0y��1 � 0:

(7)

Solving this equation for F�y� gives
F�y� � �
1

4
y�1=4�y� 1��3=4��=8�y� 1��3=4��=8

�Z y

0
�3�0z� �1�z�3=4�z� 1��1=4��=8�z� 1��1=4��=8dz

�

� �1� y��3=4��=8�1� y��3=4��=8

�
�1F1

�
1

4
;
2� �

8
;
2� �

8
;
5

4
; y;�y

�
�

3�0y
5

F1

�
5

4
;
2� �

8
;
2� �

8
;
9

4
; y;�y

��
:

(8)
To ensure that F�0� � �1, the integration constant ob-
tained when integrating is set to zero. F1 is the Appell
hypergeometric function of two variables [15], defined as

F1�a; b1; b2; c; z1; z2� �
X1
j�0

X1
k�0

�a�j�k�b1�j�b2�k

�c�j�kj!k!
zj1z

k
2;

where �x�n � ��x� n�=��x� is the Pochhammer symbol
(or rising factorial), involving the gamma functions ��x�.
Although an analytic continuation of this function can be
defined for any values of the variables z1 and z2, as a series,
F1 converges only when jz1j< 1 and jz2j< 1. All of the
singular behavior of the function B�y� generating the val-
ues of �n is contained in the function F�y�. In this way, we
can find all the properties of the sequences solving the
relation (5) by studying the function F�y� solving a differ-
ential equation. Notice that when we solve for the function
F�y�, we find all values of the sequence simultaneously.
-5
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Once the generating function is obtained, all values of the
sequences can be read off the Taylor series expansion. This
compares to using the recursion relation to find �n, which
would require first having �n�1 and �n�2; the relation is
inherently an evolution equation with a sense of ‘‘time.’’
The equation for F�y� is parametrized by the initial values
�0 and �1, but it is not required we use these. Now that
there is no restriction on �0, as there would be in the non-
self-adjoint case, we could use �N�1 and �N as our pa-
rameters, where N is a large positive integer (see [13] for
more discussion).
104009
Now we locate the singularities of the function F�y�;
because of the polynomial appearing in front of the deriva-
tive in the differential equation, these are at y � �1. Our
only true degree of freedom is the ratio �1=�0, since the
sequence can be scaled by an arbitrary value, so we focus
on keeping the generating function finite at y � �1 to
avoid growing oscillations. When evaluating F��1�, there
are the obvious poles due to the monomials in the function.
For � < 6, there is a singularity at y � �1; similarly, there
is another at y � 1 when � >�6. However, the Appell
functions also have their own singularities at y � �1; to
evaluate these, we use the fact [15] that in the limit z1 ! 1
lim
z1!1

F1�a; b1; b2; c; z1; z2� �
��c���a� b1 � c�

��a���b1�
�1� z1�

c�a�b1�1� z2�
�b2�1�O�z1 � 1��

�
��c���c� a� b1�

��c� a���c� b1�
2F1�a; b2; c� b1; z2��1�O�z1 � 1�� (9)
where ��n� is the gamma function and 2F1 the Gaussian
hypergeometric function. Recall that 2F1�a; b; c; x� is con-
vergent only when the real part of �c� a� b�> 0 [16].
Using the particular Appell functions appearing in our
generating function, and the exchange symmetry

F1�a; b1; b2; c; z1; z2� � F1�a; b2; b1; c; z2; z1�;

we find they are singular at y � 1 when � > 6, and at y �
�1 when � <�6. Thus, these functions have exactly the
opposite behavior as the monomials. However, notice what
happens as we vary �, for the y � �1 pole, in particular.
When � <�6, the monomial �1� y��3=4��=8 goes to zero
as y! �1. As we can see from the behavior of the Appell
function as z1 ! 1, and the exchange symmetry, the two
Appell functions diverge as �1� y�3=4��=8. Thus, the two
conspire so that the generating function as a whole remains
finite at y � �1. Because there is no singular behavior for
� <�6, the associated sequence �n will not be oscillatory
for any choice of values for �0 and �1. However this does
not occur when � >�6. In that case, the monomial now
diverges; the Appell functions are finite but nonzero, so
there is no cancellation and F��1� is divergent. Therefore
the ratio �1=�0 cannot be arbitrary, but must be chosen by
requiring

�1F1

�
1

4
;
2� �

8
;
2� �

8
;
5

4
;�1; 1

�

�
3�0

5
F1

�
5

4
;
2� �

8
;
2� �

8
;
9

4
;�1; 1

�
� 0: (10)

This can be simplified by using the gamma functions of the
second term in the expansion (9) around z1 � 1 after
exchanging z1 and z2, giving

�1

�0
�

�
6

�� 8

�
2F1�

5
4 ; 1

4�
�
8 ; 2�

�
8 ;�1�

2F1�
1
4 ; 1

4�
�
8 ; 1�

�
8 ;�1�

; � >�6:
So, we find that the ratio �1=�0 is completely free when
� <�6, but must be fixed otherwise to avoid oscillations
far from the singularity n � 0. We can expand the function
B�y� � �0 � yF�y� in a Taylor series, to read off the values
of the sequence �n for any real n, as done in previous work
[14]. However, in this case the function is not easily written
in a compact form. Also, by examining the pole at y � 1 in
a manner similar to above, we can see whether the resulting
sequence �n is bounded or not. This gives us that the
divergence of the Appell functions is cancelled out by
the monomial going to zero when � > 2, so F�1� is finite
in this regime, and the sequence goes to zero asymptoti-
cally. Otherwise, the sequence will increase without bound.
Finally, we comment here that having a nonzero value�0 is
crucial for obtaining preclassical solutions for all values of
the separation parameter �. If�0 � 0 (as would be the case
if a non-self-adjoint constraint were used), then the only
sequence meeting the preclassicality condition (10) would
be the trivial one �n � 0. This would severely restrict the
space of solutions, since physical wave functions would
require � 	 �6.
C. Asymptotic limit of the �m sequence

When we treated the case of the �n, the physical pa-
rameters did not enter anywhere in the analysis. Thus, the
results there are independent of the Immirzi parameter �
and the ambiguity � arising in the quantization. Because of
the reparametrization we chose—going from the original
triad eigenvalues � and � over to the new variables m, n—
the only place these appear is in the recursion relation for
the separable sequence �m in the combination ��. As we
will see, this will tie the existence of solutions with the
proper semiclassical behavior to the values of � and �, and
put a limit on their product.
-6
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Because the study of the �m sequence is more involved,
we look here at the asymptotic behavior of the sequence,
and reserve the full details to the appendix. This will give
us a road map to the results to be obtained for all values of
the triad eigenvalue m using generating function tech-
niques. By looking at the limiting cases of the sequences
for largem, we will reproduce the division of behavior into
unbounded and decaying sequences that occurs in the full
solutions. To start with, we think of the recursion relation
(3a) for �m as an equation for a function a�m�. We use an
expansion of a�m� in terms of a step size h, for example,

�m�2 ! a�m� 2h�

� a�m� � 2
da�m�
dm

h� 2
d2a�m�

d2m
h2 �O�h3�:

By doing the same for the rest of the relation, we obtain a
differential equation for a�m� to various orders of h; in the
following, we go up to second order in h, and set h � 1.
This results in

4m
d2a�m�

dm2 � �4� 2��
da�m�
dm

� �2� 	�a�m� � 0; (11)

where we define 	 � 1� 2�2�2. Since the equation sim-
plifies if we choose 	 � 2, let us solve it first for this case,
giving

a�m� � �0 � ��1 � �0�m
�=2 �O�m�=2�1�;

with the constants set using the first two values of the
sequence �m. Thus, already we can see what happens for
large values of the triad parameter m when 	 � 2—if � is
positive, the sequence will increase without limit, while if
� is negative, it will decay to zero.

When 	 � 2, the solution to the equation is

a�m� � m�=4

�
C1J�=4

� �������������
2� 	
p

2
m
�
� C2Y�=4

� �������������
2� 	
p

2
m
��

�O�m�=4�1�;

where J
�x� and Y
�x� are Bessel functions of the first and
second kind, respectively, and C1, C2 are two constants of
integration. Note that, when 	 > 2, the arguments of these
functions will become imaginary, so the solution of the
equation will feature the modified Bessel functions I
�x�
and K
�x�. We examine the largem behavior of 	 < 2 first.
In this case, as x! 1,

x�=4J�=4

� �������������
2� 	
p

2
x
�

 x�1=2��=4

 cos
� �������������

2� 	
p

2
x�

��
8
�
�
4

�
;

and similarly for Y
�x�. Thus, we expect to find sequences
that oscillate over a wavelength of 4�=

�������������
2� 	
p

, as it either
decays (� < 2) or increases in amplitude (� > 2). Notice
that our criterion for preclassicality is to avoid the se-
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quence changing signs as the parameter m increases by
one step; a gentler sinusoidal oscillation is no grounds for
discarding a solution since this often seen in quantum
mechanics. On the other hand, when 	 > 2, the Bessel
function I
�x� grows without bound for large x, since

x�=4I�=4

� �������������
	� 2
p

2
x
�

 x�=4�1=2 exp

� �������������
	� 2
p

2
x
�
; (12)

while the other function K
�x� exponentially decays. Since
the exponential ex increases faster than any power of x,
then the sequence will be unbounded for 	 > 2, regardless
of the value of �. Thus, what we expect when we find
complete solutions is that the �m sequence will change its
behavior as 	 crosses the critical value 	 � 2, from a
slowly oscillating function to an unbounded one.
IV. NUMERICAL SOLUTIONS

Analyzing the separable solutions has enabled us to
understand the general properties of preclassical solutions
of the Hamiltonian constraint. However, the structure of
the self-adjoint constraint derived for this model is very
beneficial in using numerical techniques. We now proceed
to find solutions in this manner, using the parameter n (or
�) as a time parameter. An arbitrary wave packet is chosen
at some relatively large distance away from both the clas-
sical singularity and the horizon. Specifically we pick a
profile sm;N for a fixed large value N. This is done so that
we can use the semiclassical approximation of the con-
straint, i.e. the Wheeler-DeWitt equation given in [5], to
find the derivative in n of the packet as it is evolved towards
the singularity.

Here we note several points that make the numerical
calculation much easier. First, since we are using a self-
adjoint constraint, there are no limitations on the values of
the solution at the classical singularity. In previously con-
sidered cases, such as Bianchi class A models [17], those
coefficients sn1;n2;n3

of the wave function corresponding to
the zero volume basis elements drop out of the recursion
relation, because of various factors of the volume eigen-
value appearing in the difference equation. For conve-
nience in solving the equations in those models, the
sn1;n2;n3

include a factor of the volume, which means that
sn1;n2;0 � 0 and similarly for the other boundaries. Meeting
this requirement would mean the profile chosen far away
from the singularity would have to be exactly right or else
it would ‘‘miss’’ the correct boundary condition. This does
not occur in the self-adjoint case—the relevant coefficients
of the difference equation never vanish. Because there is no
longer a restriction on the values at the singularity of the
Schwarzschild interior, it is much easier to evolve arbitrary
wave profiles.

In a similar vein, the range of triad eigenvalues used to
delimit the configuration space in the Schwarzschild model
also results in an easier problem. When solving the con-
-7



FIG. 1 (color online). A numerical simulation of an
m-symmetric Gaussian wave function as it approaches the
singularity of the black hole. The black line in the middle
represents the horizon and the classical singularity is to the
upper right.

FIG. 2 (color online). A comparison between the classical
black hole and the quantum wave function. The green (smooth)
line indicates the classical trajectory given by the relations (13),
while the red (wiggly) line is the averaged middle point of a
Gaussian wave packet numerically evolved using the quantum
constraint (2).
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straints, there are some residual symmetries between the
coefficients of the wave function [18]. The usual choice in
previous loop quantum cosmology work has been to trun-
cate the configuration space, and allowing only non-
negative values of some of the coordinates. In the diagonal
Bianchi class A models, for the eigenvalues of the triad
operators, it is assumed that n1; n2 � 0 (the third eigen-
value is unrestricted). Instead, here the wave functions are
unaffected by the gauge transformation m! �m, coming
from the Gauss constraint [5]. Putting this together, we can
fix the boundaries of our numerical simulation to be m �
�M, for largeM. This leads to the second simplification in
numerically solving the equations. In the original work of
Ashtekar and Bojowald, there is a discussion about the
boundary conditions to be imposed on the wave functions.
In particular, they make an argument for choosing sm;n !
0 as m! 1. The physical rationale for this choice is as
follows. To make contact with classical general relativity,
we want the ability to construct wave packets that represent
a semiclassical wave function, peaked around the classical
trajectories in the phase space. These are of the form [5]

pb�t� � p�0�b
��������������������
t�2m� t�

p
; pc�t� � �t

2; (13)

where m is the mass of the black hole and t an affine
parameter, while p�0�b is a scaling factor that can be ab-
sorbed into the radial coordinate of the metric. We should
not have solutions increasing monotonically for large pb,
since pb�t� arcs back to zero as t! 2m. Thus, as long as
the maximum grid size M is large enough to avoid sizeable
errors in solving the difference equation, we can set
s�M;n � 0. This gives all the information necessary to
find a full solution for the Hamiltonian constraint. Here
again, we see the problem of using 	 > 2; this boundary
condition would be impossible to enforce with only un-
bounded sequences with �-dependent slopes. It can be
done in the 	 < 2 case, where all the sequences have the
same asymptotic period of oscillation.

When all these considerations are taken into account,
one can obtain a numerical solution to the full Hamiltonian
constraint, shown in Fig. 1. In order to compare this to the
classical case, we use the relations (13) for the phase space
trajectory, solve these for a relationship between the two
momenta pb and pc, and compare this to the average value
of the triad eigenvalues,� and � (or equivalently,m and n),
recalling the relations (1) between the operator equivalents
of pb and pc, and their eigenvalues � and �. This com-
parison is done in Fig. 2 for a particular numerical wave
function. As can be seen, the classical solution is a good
approximation to the quantum wave function even very
close to the classical singularity. Both the analytic and
numerical sides have shown us a rich variety of wave
functions that solve the Hamiltonian constraint for the
Schwarzschild interior. From the form of the full constraint
(2), we can see that the wave functions will be symmetric
104009-8
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on both sides of the classical singularity. This has impli-
cations for important issues in black hole physics, in
particular, as seen in a recent proposal for a paradigm of
information loss suggest by loop quantum cosmology re-
sults [19].
V. DISCUSSION

In the preceding work we used generating function
techniques to analyze the behavior of solutions to the
quantum Hamiltonian constraint in the Schwarzschild in-
terior. This was done by using a separation of variables
method, and studying the resulting one-parameter sequen-
ces. The sequence �n does not depend on any of the
physical parameters � and � of the theory, so has the
same form regardless of what particular case we are deal-
ing with. On the contrary, the combination 	 � 1� �2�2

serves as a determinant for the asymptotic behavior (far
away from the event horizon) of the �m sequence. The goal
is to use these separable solutions to assemble a semiclas-
sical wave packet, which is peaked around the classical
trajectory, so that for largem, n, the solution acts according
to the equations of general relativity. Because these trajec-
tories in phase space are entirely within a compact region,
we expect that the wave function will act in a similar
manner. With this in mind, whether or not the separable
sequences go to zero as m; n!1 is important. Since only
�m changes its properties with 	, we focus on it for the
remainder.

If 	 > 2, then aside from two isolated solutions when
� � ��0 � �

�������������
	� 2
p

(see the appendix), all solutions for
�m are unbounded sequences with an asymptotically ex-
ponential profile. This means that it is impossible to con-
struct a generic wave packet to represent the black hole
wave function for these values of 	. There is no way to
match a linear combination of these separable sequences to
sum up to a constant value at large m because different
values of � will give sequences with different slopes in the
limit, as given by the asymptotic function (12) for the 	 >
2 sequence. On the other hand, when 	 	 2, there is a
preclassical solution for any value of the initial data and the
separation constant �, so arbitrary wave functions are
easily constructed. Hence we have found there is a relation
between the values of the Immirzi parameter � and the
ambiguity � arising in the quantization of the
Schwarzschild interior; generic solutions will only exist
when

�� 	 1=
���
2
p
:

From the full theory of loop quantum gravity, using the
smallest eigenvalue of the area operator and comparing it
to the Schwarzschild case, we find that � � 2

���
3
p

[5]. The
inequality above then gives
104009
�max �
1

2
���
6
p � 0:204 124 � � � : (14)

Thus, by the imposition of a boundary condition coming
from the need to link up loop quantum cosmology with
semiclassical general relativity, an explicit bound is placed
on the Immirzi parameter. Although this is a tentative
result—in that wave functions in the interior only are
considered without reference to the outside—it is interest-
ing to see that �, a parameter somewhat analogous to the �
parameter in non-Abelian field theories, can be bounded by
physical considerations.

The value of the Immirzi parameter is typically obtained
by making contact with the Bekenstein-Hawking equation
for the entropy of a black hole, that is SBH � A=4, where A
is the area of the black hole event horizon. Since entropy is
obtained by the logarithm of the number of states contrib-
uting to a macroscopic state, the question is how to count
these states. In loop quantum gravity, the area of a surface
depends on the number of spin network edges that puncture
the surface. Each edge is labeled by a spin representation
fjkg 2 Z=2, for k � 1; � � � ; N, giving a surface area of

A � 8��‘2
P

XN
k�1

���������������������������
jjkj�jjkj � 1�

q
: (15)

Originally, the assumption was that for large surface areas,
the lowest spin values would predominate the sum.
However, this was shown to be incorrect by Meissner
[20]. In the limit of large area, counting all possible com-
binations of the spin labels give the equation

1 �
X1
k�1

e�2��M
�����������
k�k�2�
p

(16)

for the Immirzi parameter �M. Solving this numerically
gives �M � 0:237 532 � � � , which violates the bound (14)
obtained here.

With this in mind, it is worthwhile to note some of the
other proposals for the Immirzi parameter, where changes
in the method of counting states is considered. For ex-
ample, when it was assumed that the lowest order spin
labels comprise the vast majority of entries in the sum, a
correspondence between the area operator spectrum (15)
and the classical quasinormal oscillation modes of a black
hole was observed [21]. The argument is the following. In
the limit of large damping, the real part of the quasinormal
mode frequencies becomes !QNM � ln3=8�. On the other
hand, adding or subtracting a single puncture gives a
change in area of

�A � 8��‘2
p

����������������������������������
jjminj�jjminj � 1�

q
: (17)

Equating these two results using Bohr’s correspondence
principle, one can show that �QNM � ln3=2�

���
2
p
�

0:123 637 � � � and jmin � 1. Although this is smaller than
�max, it requires that only integer spins are counted in the
-9
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sum over states (due to the value of jmin).3 There is the
advantage of linking the quantum mechanical entropy
calculation to a macroscopic quantity that could be mea-
sured soon. Thus, a mechanism for ensuring that all edges
of the spin network puncturing the event horizon have
equal values has been suggested [23].

If we take the Meissner value seriously, then one of the
assumptions made to find the wave functions for the
Schwarzschild interior is incorrect. Recall that we use the
following ideas to obtain this bound: (1) preclassicality to
obtain sequences that are smooth far from the classical
singularity; (2) the boundary condition sm;n ! 0 asm! 1
coming from the need to match with semiclassical physics;
and (3) the choice of � � 2

���
3
p

, based on the smallest area
eigenvalue of the full theory. Since assumption (1) is nec-
essary to make contact with the Wheeler-DeWitt equation,
the continuous limit of the quantum Hamiltonian, and (2) is
in a similar vein, it is unlikely that they are the culprits for
this inconsistency. However, it is possible the choice of � is
suspect, since it is based in part on the fiducial metric used
to accomplish the quantization [5,24]. In other words, the
current method of quantization does not fix the physical
value of the smallest area, since it depends on unmeasu-
rable values—for example, the scale factor for an isotropic
universe. An alternate method of quantization, where the
area eigenvalues are determined only by physical quanti-
ties would result in a different value of � (in fact, it would
be a function of the triad eigenvalues), so the inconsistency
may not result in that case. Work on this is ongoing at the
moment [24]; it remains to be seen whether the Immirzi
parameter bound �max will change enough to include the
Meissner value �M.
3Interestingly, if the full calculation is done using the Meissner r
0:137 727 � � � is obtained, again well within the bound. See Ref. [22
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APPENDIX: EXACT SOLUTIONS OF THE �m
RECURSION RELATION

Since preclassicality focuses on the behavior of the �m
sequences for large eigenvalues of the triad, the analysis in
Section III C reflects many important features. However,
the sensitivity of the solutions to the choice of initial values
also needs to be studied, by examining the sequences for all
values of the parameters. Generic solutions of a difference
equation will feature oscillations that increase without
bound; these are the sequences we label as unphysical by
using the notion of preclassicality. To weed out solutions of
this type, we have to find the sequence for all values of m
by solving for its generating function A�x�; we will follow
many of the steps we saw when working with the �n
sequence. In particular, we start by defining a function
F�x� associated to the full generating function A�x� by

F�x� �
A�x� � �0 � �1x� �2x2 � �3x3

x4 : (A1)

Working from the recursion relation (3a), we arrive at the
following differential equation for F�x�:
x�x4 � 	x2 � 1�
@F�x�
@x

� F�x��5x4 � �x3 � 4	x2 � �x� 3� � ��0 � ��1 � 2	�2 � ��3� � �2�1 � ��2 � 3	�3�x

� �3�2 � ��3�x
2 � 4�3x

3 � 0: (A2)

The polynomial (x4 � 	x2 � 1) factors into monomials with roots at

x0 �
1
2�

�������������
	� 2
p

�
�������������
	� 2
p

�; (A3)

as well as�x0, x�1
0 , and�x�1

0 . The properties of these roots will play a role in determining whether preclassical solutions
are available for a particular 	. Already, we can see that the properties of the polynomial appearing in front of the derivative
of the generating function change at the value 	 � 2. We shall see that this is the point where range of preclassical wave
functions of the wave function changes as well. When we solve for the generating function F�x�, we find that

F�x� � �x�3�1� x0x�
�1=2��=2�0�1� x=x0�

�1=2��=2�0�1� x0x�
�1=2��=2�0�1� x=x0�

�1=2��=2�0


Z
fx2���0 � ��1 � 2	�2 � ��3� � �2�1 � ��2 � 3	�3�x� �3�2 � ��3�x

2 � 4�3x
3�

 �1� x0z�
�1=2��=2�0�1� z=x0�

�1=2��=2�0�1� x0z�
�1=2��=2�0�1� z=x0�

�1=2��=2�0gdz; (A4)

where the critical � is given by �0 � x0 � x
�1
0 �

�������������
	� 2
p

. Obviously, the function F�x� must be the same regardless of
elation (16), using only integer spins, the numerical value � �
]

-10
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which of the four roots we use. This can be seen by the invariance of �0 under the exchange x0 ! x�1
0 , and why �0 ! ��0

when x0 ! �x0. The integral above is solvable in terms of Lauricella functions F�4�D of four variables [15], giving

F�x� � ��1� x0x��1=2��=2�0

�
1�

x
x0

�
�1=2��=2�0

�1� x0x��1=2��=2�0

�
1�

x
x0

�
�1=2��=2�0


X3

k�0

ckx
k

k� 3
F�4�D

�
k� 3;

�0 � �
2�0

;
�0 � �

2�0
;
�0 � �

2�0
;
�0 � �

2�0
; k� 4;

x
x0
; x0x;�

x
x0
;�x0x

�
: (A5)
4It is important to realize that we are speaking here about
divergence as a series. The hypergeometric function can be
analytically continued so that a finite value is obtained at x �
�1; this is what is done in mathematical software such as Maple
and Mathematica. However, graphing the coefficients of series
definition of the function will show that it has exactly the
unbounded oscillatory properties that we want to eliminate.
Here, the coefficients ck are

c0 � ����3 � �1� � 2	�2 � �0;

c1 � �3	�3 � ��2 � 2�1;

c2 � ��3 � 3�2;

c3 � 4�3;

and the integration constant has been chosen to be zero so
that F�0� gives the next value in the sequence, �4 � c0,
after the four initial values; F�4�D is a four-variable extension
of the Gaussian and Appell hypergeometric functions,
defined by

F�4�D �a; b1; . . . ; b4; c; z1; . . . ; z4�

�
X1
m1�0

. . .
X1
m4�0

�a�m1�����m4
�b1�m1

� � � �b4�m4

�c�m1�����m4
m1! � � �m4!

zm1
1 � � � z

m4
4 :

Analogous to the Appell function, the Lauricella function
will converge as a series only when jzkj< 1, for k �
1; . . . ; 4. This will become important in the 	 > 2 case.

First we examine the situation where 	 � 2. This choice
of 	 simplifies the generating function greatly, since x0 �
x�1

0 � 1 (giving �0 � 2), and the Lauricella functions are
reduced to Appell hypergeometric functions:

F�x� � �1� x��1��=2�1� x��1��=2


X3

k�0

ckx
k

k� 3
F1

�
k� 3; 1�

�
2
;1�

�
2

;k� 4;x;�x
�
:

(A6)

Now we have a case similar to the�n sequence, and we can
use the expansion of the Appell function around the point
x � 1, given by (9) and the exchange symmetry to see what
happens at x � �1. Let us look first at what happens when
x � �1. The monomial in front gives a pole of order at
least one when � < 0, and is zero when � > 2. As we see
from the first term in the Appell expansion (9), the hyper-
geometric function has singular behavior like �1� x���=2,
giving a finite value for that term when � < 0. Up to this
point, we have the same results with the �n sequence—
any divergence in either the Appell function or the mono-
mial is balanced by the reciprocal in the other. However,
here we have a new wrinkle in the second term. Previously,
104009
with �n, the Gaussian hypergeometric function in the
coefficient was finite, so we did not worry about it. This
is not the case here, since we have for each term in the sum

2F1�k� 3; 1� �=2; k� 3� �=2;�x�, which is diver-
gent4 for all values of � [16]. This introduces the need
for a relation between the ck to make the second term in the
expansion around x � �1 finite, regardless of �. After
this, we need a second relation to insure F��1� is finite,
just as in the �n case; it has taken two restrictions on the
initial data to remove any oscillatory behavior in the se-
quence. When we turn to what happens at x � 1, we find
that again, we have a divergent Gaussian hypergeometric
function as we approach for all �. Thus our remaining
freedom in the initial values is taken up ensuring the
Appell function is not divergent. Once this is done, the
first term in the expansion of the Appell function comes
into play, with its singular behavior as �1� x��=2. Then
when � < 0, the Appell function is divergent, but together
with the monomial, F�x� 
 �1� x��1 near x � 1 and the
sequence is bounded. When � > 0, the monomial is sin-
gular but the hypergeometric function is nonzero (because
of the second term in (9), now finite by selection of the ck),
so F�x� 
 �1� x��1��=2, giving an unbounded sequence.

Next we look at 	 � 2. When 	 > 2, the root x0 will be a
positive real number greater than one, while it is a complex
number with unit modulus if 	 < 2. In both cases, we can
use the formula (A4) given above, where there are potential
singularities at �x0 and �x�1

0 . Analogous to their simpler
cousins the Appell functions, the parameters in the
Lauricella function show there will be a pair of poles for
a given value of �, either at x0 and x�1

0 , or else�x0 and its
reciprocal. For example, the hypergeometric function will
have a pole at �x�1

0 (which gives unbound oscillations) of
order 1=2� �=2�0, i.e. when � > �0. Similarly, there is a
pole at x � x�1

0 when � < �0. We immediately run into a
problem with the roots �x0, however, because the
Lauricella functions as a series expansion is convergent
only when the variables jzkj< 1. Thus when 	 > 2, we
have functions in the sum of the form
-11
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F�4�D

�
k� 3;

�0 � �
2�0

;
�0 � �

2�0
;
�0 � �

2�0
;
�0 � �

2�0
; k� 4;�1;�x2

0; 1; x
2
0

�

in the sum for F��x0�. A similar result is obtained at x � x0. We saw when discussing the behavior of series, in particular,
the series (6) for a simple pole at y � a that there may be oscillatory behavior for a finite order pole in the interval
��1;�1�, but it will eventually decay in amplitude. Here, the Lauricella functions will diverge faster than any finite power
of x due to the two arguments that are outside the unit box jzkj< 1. We can use the expansion

F�4�D �a; b1; . . . ; b4; c; z1; . . . ; z4� �
X1
m1�0

� � �
X1
m3�0

�a�m1�m2�m3
�b1�m1

�b2�m2
�b3�m3

�c�m1�m2�m3
m1!m2!m3!

zm1
1 zm2

2 zm3
3 2F1



�
a�

X3

k�0

mk; b4; c�
X3

k�0

mk; z4

�

to analyze what happens at these divergent points; the
choice of which of the four variables to expand around is
obviously symmetric. Note that the Gaussian hypergeo-
metric function in the sum will have the same convergence
properties, regardless of the values ofmk, based on the real
part of (c� a� b4). The result of this is that we must
ensure the generating function has a finite order pole at x �
�x0 to avoid oscillatory sequences coming from the di-
vergence of the Lauricella functions. This requires two
relations on the initial data, since there are two of the
four variables with a magnitude greater than one. The final
relation comes from requiring the generating function is
finite at x � �x�1

0 . Once we have gotten rid of the diver-
gent pieces, at this value of x we either have a pole in the
monomial for � >��0, or else in the Lauricella function
when � <��0. This is a situation similar to the �n se-
quence and the 	 � 2 with a similar resolution.
Specifically, F��x0� is finite if � >��0, but requires a
extra condition on the initial data if � <��0 (because the
monomial is divergent but the Lauricella function is finite).
It is important to note that there is not enough freedom to
completely cancel out the unbounded rise of the sequence;
FIG. 3 (color online). The sequence �m for the case 	 � 3=2
and � � 5.
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evaluating F�x� at x � x0 gives the same types of diver-
gences in the series, and one cannot impose enough con-
ditions so their poles in the generating function are of finite
order.

However, there are two particular cases for 	 > 2 where
it is possible to get a bounded solution—namely, choosing
� � ��0—which are not obvious from the asymptotic
analysis. If we choose � � �0 as an example, the generat-
ing function simplifies to become

F�x� � �
X3

k�0

ck
k� 3

F1�k� 3; 1; 1; k� 4;�x=x0;�x0x�
�1� x0x��1� x=x0�

:

The Appell function will have poles at x � �x0 and x �
�x�1

0 , as can be seen from the discussion of these functions
in the last section. Since the Gaussian hypergeometric
function in (9) is conditionally convergent at both of these
values, there will only be two relations fixing the coeffi-
cients ck (this can be seen more easily when the Appell
function is written in terms of logarithms and polyno-
mials). We do not have the �-dependent poles anymore,
FIG. 4 (color online). The sequence �m for the case 	 � 3=2
and � � �1. Notice the period of the oscillations is the same as
Fig. 3, because the value of 	 is the same.

-12
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so this holds for any values of 	 > 2. For the remaining
freedom of the coefficients ck, we can choose to fix it so the
generating function F�x� is finite at x � x�1

0 , to avoid
unbounded solutions. This will give us a sequence that
tends asymptotically to zero; the situation is similar in
the case � � ��0. These are isolated cases, however,
and are not helpful in assembling a wave packet composed
of a range of �. Here we have shown it is impossible to
construct generic solutions for 	 > 2 if one desires the
wave function to have the proper semiclassical behavior
far from the classical singularity.
104009
When 	 < 2, we do not have the same difficulty, since
jx0j � 1. So already we have more freedom in choosing
initial values for the sequence. It turns out that the initial
data are completely free, because of the complex nature of
the roots. Specifically, we have x0 � exp�i��, where � �
cos�1�

�������������
	� 2
p

=2�. For our range of 1 	 	 < 2, � covers
the interval 0< � 	 �=6, so none of the roots x0,�x0, x�1

0
and �x�1

0 are identical. We can see what is happening in
the sequence by looking at the Taylor series of the product
of two monomials, whose roots are complex conjugates.
This gives
��1� ei�x��1� e�i�x��p �
X1
j�0

X1
k�0

p
j

� �
p
k

� �
ei�j�k����x�j�k �

X1
l�0

�Xl
m�0

p
m

� �
p

l�m

� �
ei�l�2m��

�
xl

� 2
X1
l�0

�X�l=2�

m�0

p
m

� �
p

l�m

� �
cos��l� 2m����

�
xl
with [l=2] the greatest integer less than or equal to l=2.
Obviously the binomials can cause the amplitude of the
sequence to grow for the right range of p. Yet the fact we
have cosine functions whose sign can change in the coef-
ficients of xl means that we get slower oscillations in the
sequence, unlike the alternating sign changes of sequences
not considered physical. Since this is a generic statement, it
will hold regardless of the choices of initial values, so
preclassical sequences can be found for any choice. Two
particular examples are shown in Figs. 3 and 4.
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