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New minimal distortion shift gauge
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Based on the recent understanding of the role of the densitized lapse function in Einstein’s equations
and of the proper way to pose the thin sandwich problem, a slight readjustment of the minimal distortion
shift gauge in the 3� 1 approach to the dynamics of general relativity allows this shift vector to serve as
the vector potential for the longitudinal part of the extrinsic curvature tensor in the new approach to the
initial value problem, thus extending the initial value decomposition of gravitational variables to play a
role in the evolution as well. The new shift vector globally minimizes the changes in the conformal 3-
metric with respect to the spacetime measure rather than the spatial measure on the time coordinate
hypersurfaces, as the old shift vector did.
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I. INTRODUCTION

In Minkowski spacetime, global Lorentz frames are
available in which one can use the standard coordinates
�t; x; y; z� or any 3-dimensional coordinate system to re-
place the Cartesian coordinates �x; y; z�. The choice of
space coordinates and their continuation in time is there-
fore simple. The time vector @=@t is orthogonal to the flat
(Euclidean) spatial hyperplanes, and there are no off-
diagonal metric components.

In the curved spacetimes encountered in general relativ-
ity, the situation is quite different. In constructing a space-
time, one has two problems related to time. First is the
choice of a slicing of spacetime by 3-dimensional hyper-
surfaces t � const: with induced metrics gij �i; j � 1; 2; 3�
that are uniformly of Euclidean signature on each ‘‘leaf’’
of the ‘‘foliation’’ (slicing). This step requires that the
scalar function t (units c � 1) has an exterior derivative
dt such that the vector field �4�g���dt�� is timelike ��; � �
0; 1; 2; 3�. This condition does not imply that the vector
field @=@t dual to dt is necessarily timelike. Whether @=@t
is timelike depends on the magnitude of the spatial shift
vector field �i. See [1] for a coordinate-free discussion of
this matter and a simple diagram. Analytically, @=@t is
inside the light cone if and only if gij�i�j < N2, where
N > 0 is the lapse function, N � ���4�g�1�dt; dt���1=2.
The shift vector field determines how the spatial coordi-
nates on one slice are pulled to the next nearby slice.

In this paper we introduce a new ‘‘minimal distortion’’
shift vector resting intrinsically on spatial kinematics and
dynamics in spacetime. We regard the new shift as an
improvement on what was previously called the ‘‘minimal
distortion’’ shift vector, so named since it minimizes the
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change in the conformal 3-metric, but with respect to the
spatial measure on the time coordinate hypersurfaces
rather than the spacetime measure. That vector was not
explicitly linked to the dynamics [2].

We will incorporate two viewpoints concerning the ini-
tial value problem. In the Cauchy initial value problem, the
data on the ‘‘initial’’ spacelike slice are the induced metric
gij and the extrinsic curvature tensor Kij. The latter mea-
sures curvature intrinsic to the slice with respect to that of
the ambient spacetime in which it is embedded. The ex-
trinsic curvature makes no reference whatsoever to the
lapse N nor to the shift �i. (See the Appendix of [3] for
a detailed discussion.) This is the ‘‘one-surface’’ form of
the initial value problem. The other view of the initial value
problem has been called the ‘‘thin sandwich’’ or two-
surface form of the initial value problem because it refers
to two infinitesimally separated, nonintersecting slices. In
this form, Kij is replaced by the velocities, using @=@t, of
certain metric components. This procedure necessarily
brings in explicit dependence on N and �i because it
makes reference to the spacetime coordinates in the neigh-
borhood of the single initial slice. The consistency of the
method of solution of the initial value problem in either of
these two viewpoints is discussed explicitly in [3]. In view
of the fundamental differences in the two viewpoints
above, it is significant that the new minimal distortion shift
vector plays a role in both.

II. OLD AND NEW MINIMAL DISTORTION
SHIFTS

Starting with a timelike foliation of the spacetime and
adapted coordinates fx�g � fx0 � t; xig, the spacetime
metric line element

ds2 � �4�g��dx�dx�

� �N2dt2 � gij�dx
i � �idt��dxj � �jdt� (1)
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can be reexpressed in terms of the lapse function N, the
shift vector field �i and the spatial metric gij (inverse
denoted by gij), variables which trace back to Choquet-
Bruhat [4], Dirac [5] and Arnowitt, Deser and Misner [6]
and which were aptly named by Wheeler [7]. In turn the
lapse may be expressed in terms of a new metric variable
which has been called by various names including the
densitized lapse, the lapse antidensity, the slicing function
or simply the Taub function

� � N=g1=2 $ N � g1=2�; (2)

which is an oriented weight �1 spatial scalar density,
where g � j det�gij�j and �4�g � j det�g���j � N2g are
the absolute values of the spatial metric and spacetime
metric determinants. The unit normal n� to the hyper-
surfaces �t of constant coordinate time t is then in
index-free form

n � N�1�@=@t� �i@=@xi� $ @=@t � Nn� �i@=@xi:

(3)

Taub was the first to make significant use of the function �
by choosing the natural gauge � � 1 to find his two
famous Bianchi type II and IX solutions of the vacuum
Einstein equations [8–10].

The extrinsic curvature is a symmetric spatial tensor
whose mixed form is convenient to decompose into its
pure trace and tracefree parts

Ki
j � �

1

2N
�gik _gkj � g

ikL�gkj� � Aij �
1

3
��ij; (4)

where _f � @f=@t is the ordinary partial derivative and � �
Ki

i is the trace. This tensor is subject to the supermomen-
tum constraint

rj�Kj
i � K

k
k�

j
i� � ji; (5)

which can be thought of as a condition on the divergence of
the tracefree part of the extrinsic curvature, determining it
in terms of the trace � and the source current ji � �n�T�i
[11]

rjA
j
i �

2
3ri�� ji: (6)

The original minimal distortion shift gauge [1,2,12] was
chosen to minimize the square of the time rate of change of
the conformal metric g�1=3gij (a tracefree tensor density of
weight�2=3 since g1=2 has weight 1) when integrated with
respect to the usual spatial volume element measure over a
region of a hypersurface and varied with respect to the shift
vector field �i with fixed variations on the boundary [2].
The mixed form of this coordinate time derivative is

�i
j � g1=3gik�g�1=3gkj�_� gik� _gkj �

1
3gkjg

mn _gmn�

� �2NAij � �L��
i
j; (7)

where
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�L��ij � gikL�gkj �
1
3�

i
jg
mnL�gmn

� g1=3gikL��g
�1=3gkj�

� 2gikr�k�j� � �2=3��ijrk�
k (8)

is the zero weight rescaling of the tracefree mixed-index
form of the Lie derivative of the conformal metric with
respect to the vector field �i, the fully covariant-indexed
form of which can be thought of as a tangent vector to the
orbits of the spatial diffeomorphism group on the space of
conformal metrics [13], and ri is the spatial covariant
derivative. The corresponding action integral is

ActionOld ��; t� �
Z

�t

�i
j�

j
ig

1=2d3x; (9)

and its variation is

�ActionOld��; t� � 2
Z

�t

�i
j�L�����

j
ig

1=2d3x

� 4
Z

�t

�i
jri��

jg1=2d3x

� �4
Z

�t

ri�
i
j��

jg1=2d3x; (10)

provided one can safely ignore the boundary term in the
integration by parts, e.g., by assuming that the variation
��i vanishes there. The old minimal distortion (‘‘shear’’)
equation is then

ri��2NAij � �L��
i
j� � 0: (11)

Motivated by the new understanding of the initial value
problem [3,14], which in the thin sandwich approach [3]
utilizes the lapse-corrected time derivative and lapse-
corrected spatial Lie derivative as the two contributions
to the extrinsic curvature, we find that it is natural to rescale
the quantity inside the divergence by N�1, which can be
accomplished by instead minimizing the square of the
lapse-corrected time derivative of the conformal metric
(corresponding to N�1@=@t instead of just @=@t, reflecting
the proper time elapsed along the unit normal to the time
coordinate hypersurface), and using the square root of the
absolute value of the full spacetime metric determinant in
the measure [14]

ActionNew ��; t� �
Z

�t

�N�1�i
j��N

�1�j
i�Ng

1=2d3x:

(12)

Now the same variation leads to

�ActionNew��;t��2
Z

�t

�N�1�i
j�N

�1�L�����jiNg
1=2d3x

��2
Z

�t

ri�N
�1�i

j���
jg1=2d3x;

(13)
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so that the new minimal distortion equation is (dividing by
an extra factor of 2 as well)

ri��A
i
j � �2N�

�1�L��ij� � 0: (14)

This can be interpreted as saying thatN�1�i
j is orthogonal

to �L�����ij in the original spatial metric measure inner
product without the lapse factor, or that the two lapse-
corrected quantities are orthogonal in the spacetime mea-
sure inner product.

The only difference between the two equations is
whether an overall factor of the lapse is left inside the
covariant derivative expression or is pulled outside. The
distinction between the new and old minimal distortion
shift equations therefore evaporates when one considers a
spacetime and a splitting in which N is a constant, since
then it passes through the derivative and the two equations
agree. This is the case in spatially homogeneous cosmol-
ogy [15].
III. INITIAL VALUE PROBLEM: CONFORMAL
CONSIDERATIONS

To understand the significance of this change in the
minimal distortion shift equation, the conformal approach
to the initial value problem must be discussed. Recent work
points to the Taub function � as the true time gauge
variable rather than the lapse function itself, which to-
gether with the (contravariant!) shift vector field as a
generator of spatial diffeomorphisms should be held fixed
under the conformal rescalings of the 3� 1 variables
needed to solve the initial value problem.

We adopt the notation of Pfeiffer and York [14]: let an
overbar denote the physical metric variables, which are
related by a conformal rescaling to the unphysical varia-
bles without an overbar. The Taub function and the shift
vector field and the trace � of the extrinsic curvature are not
transformed

�� � �; ��i � �i; �gij � �4gij;

�g1=2 � �6g1=2; �N � �6N;
(15)

so that the lapse function N � �g1=2 transforms by the
same factor as g1=2. The fixing of the Taub function under
the conformal transformation is motivated by the correct
properties of the Einstein equations in phase space that
occur when this quantity is fixed in the canonical action
principle [16].

The extrinsic curvature expressed in terms of the metric
velocity and shift vector field is

�K i
j � ��2 �N��1� �gik _�gkj � �gikL� �gkj� � �Aij �

1
3

�Kk
k�

i
j;

(16)

so that its tracefree part is

�A i
j � �2 �N��1��� �gik _�gkj �

1
3�

i
j �gkl _gkl� � � �L��ij�: (17)
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The mixed form of the Lie derivative term appearing in the
extrinsic curvature has the transformation law

�g ikL� �gkj � gikL�gkj � 4 ln�;k�k�ij; (18)

and since only its pure trace part changes, its tracefree part
is invariant

� �L��ij � �L��
i
j: (19)

The same is true of the tracefree part of the time derivative
term

�g ik _�gkj � gik _gkj � 4�ln��_�ij; (20)

which is also invariant, suggesting that the conformal
transformation of the tracefree part of the mixed form of
the extrinsic curvature should be due entirely to the com-
mon factor of the lapse which divides both terms

�A i
j � ��6Aij: (21)

This is in fact reinforced by the conformal transformation
properties of the divergence operator appearing in the
supermomentum constraint, expressed in terms of the
pure trace and tracefree parts of the extrinsic curvature.

The transformation of the divergence of a symmetric
tensor Sij is easily evaluated

�Sij � �x�4Sij or

�Sij � �xSij !
�rj �Sji

� �x�rjSji � �x� 6�Sjirj ln�� 2Sjjri ln��: (22)

Picking x � �6 makes the divergence of a tracefree such
tensor also transform by a conformal factor, namely, by the
weight �6 for the covariant (index-lowered) form of the
divergence, corresponding exactly to the above transfor-
mation due to the reciprocal lapse factor alone.

On the other hand, the trace of the extrinsic curvature is
always held fixed [11] so the supermomentum constraint

�r j
�Aji �

2
3ri��

�ji: (23)

transforms to

rjAji � �6�23ri��
�ji�: (24)

This constraint can be solved by decomposing the tracefree
part of the extrinsic curvature into the sum of a transverse
traceless part (having zero divergence) and a longitudinal
part involving a vector potential Y. However, the covariant
form of the divergence of the tracefree Lie derivative
operator is invariant (if the vector potential doing the
differentiation is invariant)

� �LY�ij � LYij; (25)

while the transverse traceless piece should transform, so
one must include an additional transforming factor in the
longitudinal part to get the two pieces to transform con-
sistently. The missing lapse factor corresponding to lapse-
-3
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corrected derivatives makes the longitudinal part transform
correctly by the factor ��6, so the decomposition trans-
forms unambiguously

�A i
j �

�A
�TT�

i
j � �2 �N��1� �LY�ij;

Aij � A�TT�
i
j � �2N�

�1�LY�ij:
(26)

Imposing the transverse condition on the first term, the
vector potential equation then takes the form

�r j��2 �N��1� �LY�ji� �
�rj �Aji (27)

in terms of the barred variables, where the right hand side
can be replaced using the supermomentum constraint to
yield

�r j��2 �N��1� �LY�ji� �
2
3ri��

�ji: (28)

Alternatively in terms of the unbarred variables,

rj��2N�
�1�LY�ji� � �6�23ri��

�ji�: (29)

This is the final improved conformal approach introduced
by York [14]. Note that one can rewrite the vector potential
equation in the form

�r j�� �Aji � �2 �N��1� �LY�ji� � 0; (30)

which is the same as the new minimal distortion shift
equation for �i. Therefore from the previous discussion,
the decomposition of the tracefree part of the extrinsic
curvature into transverse and longitudinal parts is orthogo-
nal with respect to the full spacetime measure inner
product.

To show the relationship between the minimal distortion
shift and the vector potential, we must look more closely at
the initial value problem in terms of the thin sandwich
variables. Given �N and �gij, starting from any tracefree
symmetric tensor �Cij, one can remove its divergence to
get a transverse traceless symmetric tensor

�Aij
�TT� �

�Cij � �2 �N��1� �LV�ij;

�rj��2 �N��1� �LV�ij� � �rj �Cij
(31)

which then determines the transverse traceless part of the
barred extrinsic curvature by the conformal rescaling. The
longitudinal part � �LY�ij of the tracefree extrinsic curvature
is then determined by the supermomentum constraint (23),
from which the transverse term drops out, leading to

�r j��2 �N��1 �LY�ji �
�rj �Aji �

2
3ri��

�ji: (32)

The subtracted divergence part can then be combined with
the vector potential term

�A ij � �Cij � �2 �N��1� �LV�ij � �2 �N��1� �LY�ij

� �Cij � �2 �N��1� �L�Y � V��ij; (33)

This entire discussion could be transformed to the unbarred
variables, or one could start there and transform back. The
104008
same equations apply to both sets of variables. It is easy for
the reader to see that this property can be presented as a
commutative diagram [17]

In the thin sandwich picture, comparing this last expres-
sion for the tracefree extrinsic curvature with the expres-
sion in Eq. (17), we can make the identifications

�Cij � ��2 �N��1� _�gij �
1
3 �gij �gkl _gkl�;

�2 �N��1� �L�Y � V��ij � �2 �N��1� �L��ij:
(34)

Furthermore, it is then natural to identify the shift with the
difference vector field

�i � Yi � Vi; (35)

although in general they would only be forced to be equal
modulo a conformal Killing vector field of the spatial
metric. We recall that on an asymptotically Euclidean slice,
conformal Killing vectors do not vanish at infinity and thus
they are eliminated.

Suppose we take a spacetime sliced and threaded in
zero-shift gauge �i � 0. This implies that the vector po-
tential Yi at each instant of coordinate time (think of an
evolving initial value problem) can be chosen to equal the
vector Vi which generates the divergence of the tracefree
part of the conformal metric velocity. The remaining trans-
verse traceless piece could then be thought of as corre-
sponding to the time derivative of the evolving dynamical
part of the spatial metric.

On the other hand one can choose the vector Vi to be
zero, insisting that the conformal metric velocity be trans-
verse, which forces the shift vector field to equal the vector
potential, so that it satisfies the vector potential equation
and hence corresponds to a new minimal distortion shift
vector field. In this gauge only the ‘‘transverse traceless’’
part of the conformal metric evolves, i.e., the part of the
conformal metric whose (lapse-corrected) time derivative
is transverse traceless. Thus the gauge condition effectively
reduces the evolution of the spatial conformal metric to its
‘‘dynamical’’ part [13,18] which is invariant under spatial
diffeomorphisms.

Both possibilities describe the two most useful spatial
gauge choices for the Bianchi type IX spacetimes where
the spatial diffeomorphism group is exactly the symmetry
group SO�3; R� of the rigid body problem used as an
analogy [15,19] for understanding the spatial diffeomor-
phism gauge freedom of generic spacetimes by Fischer and
Mardsen [20]. The zero-shift gauge corresponds to space-
fixed coordinates in the rigid body problem, while the
transverse gauge corresponds to body-fixed coordinates,
in which the spatial metric is diagonalized exactly as is the
moment of inertia tensor in the rigid body problem. Spatial
homogeneity makes the analogy much more direct since
one does not have to deal with the complication in which
one evaluates the spacetime metric before or after a spatial
diffeomorphism and only need worry about how the com-
ponents transform. The old minimal distortion shift, due to
-4



NEW MINIMAL DISTORTION SHIFT GAUGE PHYSICAL REVIEW D 73, 104008 (2006)
the incorrect scaling by the lapse function in the old
conformal approach to the initial value problem, leads to
the shift being proportional to the vector potential, a near
miss that seemed a shame several decades ago but that was
never pursued [15].

In conclusion, we note that the foregoing discussion
elegantly links kinematics and dynamics through proper
understanding of the initial value problem together with
the new minimal distortion shift vector.
104008
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(1974).
[14] H. P. Pfeiffer and J. W. York, Jr., Phys. Rev. D 67, 044022

(2003).
[15] R. T. Jantzen, Ann. Inst. Henri Poincaré A33, 121 (1980).
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