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Cosmologies with energy exchange
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We provide a simple mathematical description of the exchange of energy between two fluids in an
expanding Friedmann universe with zero spatial curvature. The evolution can be reduced to a single
nonlinear differential equation which we solve in physically relevant cases and provide an analysis of all
the possible evolutions. Particular power-law solutions exist for the expansion scale factor and are
attractors at late times under particular conditions. We show how a number of problems studied in the
literature, such as cosmological vacuum-energy decay, particle annihilation, and the evolution of a
population of evaporating black holes, correspond to simple particular cases of our model. In all cases
we can determine the effects of the energy transfer on the expansion scale factor. We also consider the
situation in the presence of ‘‘antidecaying’’ fluids and so-called ‘‘phantom’’ fluids which violate the
dominant energy conditions.
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I. INTRODUCTION

There are many cosmological situations where the trans-
fer of energy between two fluids is important. The inter-
action between matter and radiation [1], the decay of
massive particles into radiation [2], matter creation [3],
the formation and evaporation of primordial black holes
[4], the annihilations of particle-antiparticle pairs [5], par-
ticle or string production [6,7], inflaton decay [8] and the
decay of some scalar field [9] or vacuum energy [10] are all
particular examples which have been studied in general-
relativistic cosmology. The situation in Brans-Dicke cos-
mology has also been investigated [11], as have the cases
of two arbitrary interacting fluids [12] and more than two
interacting fluids [13]. In some cases, as in the example of
accreting and evaporating black holes, there will be a two-
way transfer of energy occurring as, say, a spectrum of
radiation inhomogeneities collapse under their self-gravity
in the early universe to form a population of primordial
black holes but the products of the Hawking evaporation of
the black holes add to the cosmological population of
interacting relativistic particles [4]. The different studies
of these particular situations have often identified the ex-
istence of special power-law scaling solutions. In this paper
we consider a general problem of this sort, describe its
general behavior, relate it to the existence of special power-
law solutions, and describe its general solution succinctly
in terms of the parameters defining the energy exchanges.
The examples in the literature can then be shown to be
particular examples of these solutions and the conditions
for their stability are made clear.

We will consider the mutual exchange of energy be-
tween two fluids at rates that are proportional to a linear
combination of their individual densities and the expansion
rate of the universe. In the absence of any interaction the
fluids reduce to two separate perfect fluids.
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II. DECAYING FLUIDS

Consider a flat Friedmann Robertson Walker (FRW)
universe with expansion scale factor a�t� containing two
fluids with equations of state

p � ��� 1��; p1 � ��� 1��1;

where the � and � are constants, and the evolution of the
Hubble parameter H � _a=a is governed by the Friedmann
equation

3H2 � �� �1; (1)

where 8�G � 1. Assume that the two fluids exchange
energy but the total energy is conserved so that

_� 1 � 3H��1 � ��H�1 � ��H; (2)

_�� 3H�� � �H�1 � ��H; (3)

where � and � are constants parametrizing the energy
exchanges between the two fluids. Generalizations of this
simple cosmology to spatially curved or anisotropic uni-
verses can be made in an obvious way if required [7,14]. In
an expanding universe (H > 0) this scenario corresponds
to � and �1 ‘‘decaying’’ into each other in proportion to
their energy densities if � and � are positive. The degen-
erate case � � � can be seen to be trivially equivalent to
the standard scenario without energy exchange, by consid-
ering the fluid �2 � �� �1.

Using the last three equations we can eliminate the
densities to obtain a single master equation for the
Hubble expansion, H�t�:

�H�H _H�����3��3��� 3
2H

3�������3����0:

(4)

Let us rewrite Eq. (4) as

�H � AH _H � BH3 � 0 (5)

with
-1 © 2006 The American Physical Society
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A � �� �� 3�� 3�; B � 3
2���� ��� 3���:

This equation is a special case of the more general differ-
ential equation1 considered by Chimento [15]. In [15]
Chimento investigates the mathematical structure of this
equation by showing that it has a form invariance, which is
subsequently used to find solutions.

Simple self-similar solutions to Eq. (5) exist with

H �
h
t

(6)

where, for h � 0,

2� Ah� Bh2 � 0;

and there are two nontrivial solutions, H��t� and H��t�,
with h values

h� �
A�

������������������
A2 � 8B
p

2B
: (7)

These real power-law solutions for H�t� exist iff A2 � 8B.
For �, �, �, � � 0 and � � �, this inequality is always
satisfied. We can see this by defining

� �
B

A2 �
3���� ��� 3���

2��� �� 3�� 3��2
; (8)

so that A2 � 8B iff � 	 1=8. We see that the denominator
in Eq. (8) is always positive, so � is always nonsingular and
positive for finite and semidefinite positive values of �, �,
� and �. It can also be seen that �! 0 as either � or �!
1. The maximum value of � must therefore occur at finite
values of � and �. If this maximum exists when � and �
are both nonzero then there must exist a point at which

@�
@�
�
@�
@�
� 0:

Using (8) we can see that this condition is never met, so the
maximum value of �must exist when � � 0, when� � 0,
or when � � � � 0. For � � 0 we will have a maximum
at nonzero � when

�
@�
@�

�
��0
� 0 and

�
@2�

@�2

�
��0

� 0;

which occurs iff � � 3��� ��, for �, �, �, � � 0 and
� � �. Similarly, the maximum can occur at nonzero �
when � � 0 iff � � 3��� ��. We can choose, without
loss of generality, �> � so that the maximum value of �
occurs when � � 3��� �� and � � 0, and we have the
conclusion that

� 	 �max �
1
8

for all �, � � 0 and � � �.
1 �y� �f _y� �
R
fdy� �f � 0, where y � y�x�, f � f�y�

and overdots denote differentiation with respect to x. �, � and
� are constants.
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Having established the existence of the power-law solu-
tions (7), we can now show that they behave as attractors of
the general solution by solving (4). For A2 > 8B we find
the solution

H2 � a�A=2�c1a
�����������
A2�8B
p

=2 � c2a�
�����������
A2�8B
p

=2�; (9)

where c1 and c2 are constants. This solution to (5) was
previously found by Chimento in [15]. As a! 1, we then
have

H2 ! a��A�
�����������
A2�8B
p

�=2

and, as a! 0,

H2 ! a��A�
�����������
A2�8B
p

�=2:

These two equations can be integrated to obtain

a� / t�A�
�����������
A2�8B
p

�=2B; (10)

which are the power-law solutions (7), found earlier in
Eq. (6). By integrating (9) we can show explicitly the
existence of the above power-law attractors, and the
smooth evolution of a between them. It is possible to
integrate (9) to get a solution in terms of t and the hyper-
geometric function 2F1�~a; ~b; ~c; x�. An expression in terms
of more transparent functions can be found by defining a
new time coordinate d� � a��A�

�����������
A2�8B
p

�=4dt and integrat-
ing in terms of �. This gives the solution

a / e
����
c2
p
����0��1� e

����
c2
p ��������������

�A2�8B�
p

����0���2=
��������������
�A2�8B�
p

: (11)

This is the same form for the evolution of a that was found
by Chimento and Lazkoz in their investigation of phantom
fluids in k-essence [16]. It can be seen from this expression

that a! 0 as a
 e
����
c2
p ��������������

�A2�8B�
p

����0� when �! �1. In
terms of the coordinate t, this corresponds to the solution
a� above. As a! 1, the solution smoothly approaches
a
 ��� �0�

�2=
�����������
A2�8B
p

as �! �0, which corresponds to
the solution a�.

We have now shown that the two power-law solutions
(10) exist and for all �, �, �, � � 0 and are the attractors
of the smoothly evolving general solution at late and early
times when A2 > 8B.

It remains to investigate the limiting case A2 � 8B. The
exact solution to Eq. (4) when A2 � 8B is [15]

H2 � a�A=2�c3 � c4 lna�; (12)

where c3 and c4 are constants. For c4 � 0 this solution
corresponds to power-law expansion described by the de-
generate case where a� � a�. For c4 � 0 this solution is
more complicated and is bounded by a � e�c3=c4 while
approaching H2 
 a�A=2 lna as a! 0 or 1, which does
not describe a power-law behavior.

An illustrative special exact solution to Eq. (4) exists
when B � A2=9, as was shown by Chimento [15]. In this
-2
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case (4) can be linearized to  
:::
� 0 by the substitutionH �

�3=A� _ = . Hence, for this special value of B

H �
3�c5 � 2c6t�

A�1� c5t� c6t2�
; (13)

where c5, c6 are constants of integration. This expression
can be integrated to�

a
a0

�
A=3
� 1� c5t� c6t

2; (14)

where a0 is a constant and the early- and late-time behavior
is clear and has the same form as the power-law solutions
(7) when B � A2=9.

III. EVOLUTION OF THE ENERGY DENSITIES

The conservation equations (2) and (3) can be used to
construct the second-order differential equation

�00

�
� A

�0

�
� 2B � 0 (15)

where A and B are defined as before and primes denote
differentiation with respect to the variable � � lna. This
equation can be solved for � and the corresponding solu-
tion for �1 can then be found from (3). Substituting these
solutions into the Friedmann equation (1) gives, for A2 >
B, the solution (9) that was previously found by solving the
master equation (5).

The advantage of considering the evolution of � directly
is that a particularly interesting behavior can be observed
in the evolution of the ratio �=�1 for the self-similar
solutions (6). To find this behavior we first note that a
solution to Eq. (15) is given by

� � �0aN

where �0 is a constant and 2N � �A�
������������������
A2 � 8B
p

.
Substituting this into Eq. (3) gives the corresponding so-
lution for �1,

�1 � �10a
N

where �10 � �N � 3�� ���0=� is constant. These solu-
tions for � and �1, when substituted into the Friedmann
equation (1), correspond to the self-similar solutions for H
given by (6). It is immediately apparent that � and �1

evolve at the same rate and so the ratio �=�1 is a constant
quantity

�
�1
�

�
�N � 3�� ��

during a period described by the power-law evolution (10).
It is this constant ratio in the energy density of two fluids
with different barotropic indices � and � that has been used
by a number of authors in an attempt to alleviate the
coincidence problem concerning the present-day values
of the vacuum and matter energy densities [9,10].
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IV. THREE EXAMPLES

The exact solutions found in the last sections provide us
with extensions of the analysis of several cosmological
problems that have been studied in the past, which can
be defined by particular choices of the two parameters A
and B. As we have seen, the overall dynamical behavior is
determined by the behavior of the combination � � B=A2.

A. Particle-antiparticle annihilation

Consider the problem of the long-term evolution of a
universe containing equal numbers of electron-positron
pairs [5]. If these particles are assumed to be the lightest
massive charged leptons then they cannot decay, and can
only disappear by means of the mutual annihilations
e�e� ! 2�. Page and McKee set up a model for the
e�e� annihilation into radiation that corresponds to taking
the special case � � 0, �> 0, � � 1, � � 4=3 in Eqs. (2)
and (3) and the definition of �PM by Page and McKee is
given in terms of our � by � � 3�PM=�2� �PM�. They
find the power-law solution with h � h� � 2=��� 3� �
�2� �PM�=3 which reduces to the usual dust FRW model
when � � �PM � 0 and there is no annihilation into ra-
diation. The effect of the annihilations is to push the
expansion away from the dust-dominated form with a �
t2=3 towards the radiation-dominated evolution with a �
t1=2. The other power-law solution corresponds to the pure
radiation case with h � h� � 1=2. We can verify that this
power-law solution is an attractor by evaluating �, since for
the e�e� ! 2� annihilation �PM � �13�

��������
105
p

�=8 �
0:3441 so � � B=A2 � 0:1247< 1=8.

B. Primordial black-hole evolution

A more complicated energy exchange problem was for-
mulated by Barrow, Copeland, and Liddle [4] who consider
the problem of a power-law mass spectrum of primordial
black holes forming in the early universe and then evolving
under the effects of Hawking evaporation of the part of the
mass spectrum with Hawking lifetimes less than the ex-
pansion age. This has two effects. The radiation back-
ground is supplemented by input from the black-hole
evaporation products and the fall in the total black-hole
density goes faster than the adiabatic �bh / a

�3 that occurs
in the absence of decays because the black-hole population
is a pressureless gas to a very good approximation, since
p=�
 v2 
 T=Mbh 
 �mpl=Mbh��tpl=t�

1=2 � 0 for masses
less than the Planck mass mpl at times greater than the
Planck time tpl. Accretion of background radiation in the
radiation era of the universe by the black holes could be
included, but is negligible. This corresponds to our model
in the special case � � 1, � � 4=3, � � 0 and

� �
3�n� 2�

8� n
;

where the initial number density spectrum of black holes
-3
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with masses between m and m� �m at time t is given by
N�m; t� / m�n and n > 2.

A power-law solution was found in Ref. [5] with h �
�8� n�=9, so long as 2< n< 7=2, and the black-hole
evaporations have a significant effect on the expansion
rate of the universe during the radiation era. We have

A �
2�25� 2n�

8� n
; B �

36

8� n
;

and so

� �
B

A2 �
9�8� n�

�25� 2n�2
:

We see that the allowed range of n 2 �2; 7=2� corresponds
to � 2 �6=49; 1=8� and the expansion scale factor evolves
as a / t�8�n�=9. The n � 2 limit corresponds to a pure dust-
dominated expansion, with a / t2=3, while the n � 7=2
limit corresponds to a pure radiation-dominated evolution,
with a / t1=2. Again we see that the power-law solution is
an attractor for the general solution with n in this range.
When the expansion of the universe becomes dominated by
cold dark matter, with �cdm / a

�3, a power-law scaling
solution no longer exists because the radiation products
from the black-hole evaporations now make a negligible
contribution to the total density of the universe, which is
dominated by �cdm > �bh � ��, and a / t2=3 becomes the
attractor for the evolution of the expansion scale factor.

C. Vacuum decay

The cosmological evolution created by the decay of a
vacuum stress (�1 � �v) into equilibrium radiation was
considered by Freese et al. and many other authors [10]. It
is described by a special case of our equations (2) and (3)
with � � 1, � � 4=3, � � 0 and �> 0. It represents the
decay of a scalar field stress with p � �� into radiation. In
this case we have

A � �� 4; B � 2�; � �
B

A2 �
2�

��� 4�2
;

(16)

with h� � 1=2 and h� � 2=�. We see that the first of
these corresponds to the degenerate situation with pure
radiation. The second solution has a / t2=� and requires
�> 3 if the evolution of the universe is to have a matter-
dominated era following a radiation era. As the value �
increases, the dominance of the vacuum contribution slows
the expansion whereas in the limit �! 0 the expansion
rate increases without bound and the dynamics approaches
the usual vacuum-energy dominated de Sitter expansion
with a / exp�t

������
�v
p

=3�. Again we see that this simple
solution can be generalized by using the full analysis
provided above. We see from (16) that we always have � 	
1=8 with the maximum of � achieved when � � 4. The
103520
solution (13) and (14) arises for � � 1=9 which occurs
when � � 2 or � � 8.
V. ANTIDECAYING FLUIDS

It was shown in Sec. II that for �, �, �, � � 0 and � �

� the maximum value that � can take is 1=8. If we relax
these assumptions, then � can take values greater than 1=8
and the qualitative character of the solutions to (4) is
significantly altered. We will begin by investigating the
conditions required for � > 1=8.

In the previous section it was shown that for �, �, �,
� � 0 and � � � the only point at which � � 1=8 is at
� � 3��� �� and � � 0, and at all other points in this
parameter range we have � < 1=8. It can be seen from (8)
that � � 1=8 when

� � �
�������������������
3��� ��

q
�

��������
��

p
�2 � 0

and that the first derivatives of � are nonzero at any point
where this condition is satisfied. These values of � there-
fore separate regions where � < 1=8 from those where � >
1=8. It can also be seen that � > 1=8 only if�> 0 and�<
0. These conditions correspond to the fluid � decaying and
the fluid �1 antidecaying. (By ‘‘antidecaying’’ we mean
gaining energy in proportion to its energy density, instead
of losing it.) An example of an antidecaying fluid is a ghost
field which radiates away energy; here the energy density
of the ghost is negative, so a negative value of � is required
for the radiation to carry away energy.

For � > 1=8 the exact solution to Eq. (9) is

H2 � a�A=2 cos
�
1

2

������������������
8B� A2

p
lna

�
; (17)

where integration constants have been rescaled into a and
H. Again, this equation is difficult to solve in terms of the
coordinate t. By introducing the new coordinate d� �
aA=4dt, we get

d lna
d�

� cos
�
1

2

������������������
8B� A2

p
lna

�
;

which can be integrated to obtain a closed form for the
expansion scale factor:

a��� � exp
�

4������������������
8B� A2
p am

� ������������������
8B� A2
p

4
��� �0�

��������2
��
;

(18)

where �0 is constant and am�âjb̂� is the Jacobi amplitude,
shown in Fig. 1. The form of a��� in (18) is an always-
positive oscillatory function of the time �, with constant
amplitude. The corresponding solution in terms of the
coordinate twill therefore also be oscillatory with constant
amplitude.

While in the previous section we found that, for � <
1=8, the scale factor evolves as a smooth function with
early- and late-time power-law behavior, we have found for
-4
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� < 1=8 a substantially different behavior. The scale factor
now oscillates in time and does not display the simple
power-law behavior found in the � 	 1=8 situations.
VI. PHANTOM FLUIDS

We have so far only discussed the cases where �, � � 0
and � � �. This assumption is useful as it means that � is
nonsingular in the parameter range �, � � 0, for which it
was shown in Sec. II that the maximum value of � is 1=8.
This result was subsequently used in Sec. V to show that
there exists a parameter range with �> 0 and �< 0 for
which � > 1=8. In this section we will relax the positive
semidefinite assumption on the parameters � and �, ex-
tending the analysis we have so far performed to the case of
so-called ‘‘phantom’’ fluids. We begin by showing that in
the parameter range �,�> 0 there exist no points at which
�! �1. For this to occur we would require the simulta-
neous satisfaction of the conditions

��� ��� 3�� > 0 and �� �� 3�� 3� � 0:

Using the second of these conditions, we can eliminate �
in the first to find

���� �� � 3�2 > 0 or �<�
3�2

��� ��
	 0;

where we still assume �> �, without loss of generality.
Similarly, we can obtain for � the expression

�>
3�2

��� ��
� 0:

These two inequalities show that �! �1 can only occur
103520
in the parameter space �> 0 and �< 0. Therefore, in the
range �, �> 0 the only singularities in � that can occur
are those in which �! �1. In this case we can again
show, using the arguments in Sec. II, that the maximum
value of � when �, � � 0 is 1=8. The argument showing
the existence of a region where � > 1=8 in the range �> 0
and �< 0 now follows in exactly the same way as for the
�, � � 0 case, given in Sec. V.

The form of the solutions in the regions where � < 1=8
and � > 1=8 are the same as in the nonphantom case, and
are given by Eqs. (9) and (17).
VII. DISCUSSION

We have determined the general solution of a simple
model with the exchange of energy between two fluids in
an expanding Friedmann universe of zero spatial curvature.
The total energy of the exchange is conserved and the
model allows energy inputs and outflows proportional to
the densities of the two fluids. A number of simple ex-
amples of this sort already exist, such as particle decays or
particle-antiparticle annihilations into radiation, particle
production, the evaporation of a population of primordial
black holes, the decay of a cosmological vacuum or cos-
mological ‘‘constant,’’ and energy exchanges between
quintessence and ordinary matter or radiation. However,
these examples are restricted to one-way energy exchange
and do not prove that the scaling solutions that they employ
are attractors for the general solution. We have established
the existence and form of simple power-law solutions for
the expansion scale factor in the case of two-way energy
exchange between fluids and determined that they are
attractors for the late-time evolution in situations that are
usually regarded as generic. If we allow one fluid to be
antidecaying then we can move into a domain where these
power-law solutions are no longer attractors. Again, we
find the general behavior for these cosmologies. These
solutions provide a simple model for the study of a wide
range of energy exchange problems in cosmology and also
reveal the conditions under which power-law solutions
previously used to solve some of these problems are stable
attractors. They provide a simple model for many future
studies of a variety of interacting fluid cosmologies.
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