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Approximate consistency condition from a running spectral index in slow-roll inflationary models
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Density perturbations generated from inflation almost always have a spectral index ns which runs
(varies with the wavelength). We explore a running spectral index scenario in which the scalar spectral
index runs from blue (ns > 1) on large length scales to red (ns < 1) on short length scales. Specifically, we
look for a correlation between the length scale at which ns � 1 � 0 and the length scale at which tensor to
scalar ratio T =S reaches a minimum for single field slow-roll inflationary models. By computing the
distribution of length scale ratios, we conclude that there indeed is a new approximate consistency
condition that is characteristic of running spectral index scenarios that run from blue to red. Specifically,
with strong running, we expect 96% of the slow-roll models to have the two length scales to be within a
factor of 2, with the length scale at which the tensor to scalar ratio reaching a minimum longer than the
wavelength at which ns � 1 � 0.
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I. INTRODUCTION

It is currently widely accepted that inflationary cosmo-
logical scenarios offer most promising explanations for the
initial conditions for structure formation in our Universe.
Almost all inflationary scenarios predict that the primordial
density perturbation spectrum deviates slightly from a
power law and is dominated by scalar density fluctuations
[1].

Typically, the scalar density perturbation spectrum is
parametrized as

PR�k� � A2
R

�
k
k�

�
ns�k��1

(1)

where ns�k� � 1 is a scale dependent function which is
usually called the running (scalar) spectral index (running
refers to the change in the spectral index as a function of
wave number k). Combining observations of cosmic mi-
crowave background (CMB), galaxy surveys, and Ly�
forest, there have been claims for evidence of strongly
running spectral index (see e.g. [4]), but at the moment,
combined data set favors no spectral index running (e.g.
[5]). Nonetheless, a significant running of the spectral
index is still a debatable possibility that will be settled by
future experiments.

According to the CMB and 2dFGRS galaxy survey data
[6,7],

dns
d lnk

�k � 0:05 Mpc�1� � �0:03�0:016
�0:018: (2)

Furthermore, as pointed out by [4], within the context of
single field inflationary models, there is some indication
that the spectral index quantity ns � 1 runs from positive
values (blue) on long length scales to negative values (red)
on short length scales (positive to negative within about
5 e-folds).

It is well known [8] that one robust check of slow-roll
inflationary scenario is what is usually referred to as the
06=73(10)=103510(8) 103510
single field self-consistency condition

nT�k� � �2�; (3)

where nT is the spectral index of tensor perturbation power
spectrum parametrized as PT / knT and � is the slow-roll
parameter characterizing the tensor to scalar power spec-
trum ratio. In [9,10], it was pointed out that if running
occurs from blue to red, then there may be another ap-
proximate consistency condition that we may observatio-
nally aim at checking regarding inflationary scenarios.
Namely, within the single field slow-roll scenario, there
should be an approximate coincidence between the length
scale k1 at which

ns�k1� � 1 � 0 (4)

and the length scale k2 at which the tensor to scalar ratio
reaches a minimum, i.e.

�0�k2� � 0: (5)

If true, this kind of new consistency condition would be
important because currently there is only a very limited
number of observational consistency checks that could
support the picture of inflationary origin of density
perturbations.

The degree to which

k1 � k2 (6)

depends on (a) how fast ns�k� runs and (b) the slow-roll
parameter � (this is true at least in the leading slow-roll
order approximation). Hence, it is not clear how compel-
ling the expectation of this coincidence is. For example,
does Eq. (6) occur only for 1 out of 10 000 slow-roll
models of inflation with running spectral index or does it
occur for 9000 out of 10 000 slow-roll models of inflation?
Furthermore, because of the strongly running behavior of
the spectral index, it was not clear that the leading order
-1 © 2006 The American Physical Society
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presented in [10] was robust. Hence, in this paper, we
quantify the degree to which one would find the approxi-
mate consistency condition a compelling consistency
check of single field inflationary scenario. Furthermore,
we check that the qualitative expectation based on first
order slow-roll expansion is also valid at second order
slow-roll expansion.

In the spirit of [11], we examine a grid of slow-roll
models and ask how the distribution of k1=k2 changes as
a function of increasing the requirement of running spec-
tral index. Expressed in terms of difference in the e-folds of
inflation [expressed as k1=k2 � exp��N�], we find �N has
a mean of about �0:34 with a 2� width of 0:5 when a
strong running condition is imposed as when both
0:15< n�k � 0:002 Mpc�1� � 1< 0:3 and �0:3<
n�k � 1 Mpc�1�<�0:15 are satisfied. Hence, slow-roll
inflationary scenarios predict that there should be a coin-
cidence of k1 and k2 within a factor of 2 if the spectrum
runs from blue to red, and there is a tendency in the
mismatch such that k1 > k2. Furthermore, since the 2�
width of the distribution without strong running condition
is about 1:2, we find quantitative evidence that if the
spectral index runs strongly, there is an increase in the
coincidence as expected.

There are two main caveats to our results. As discussed
in Sec. IV, because the B-mode polarization sensitive to
tensor perturbations is expected to peak on relatively large
angular scales where it is measurable with current forecasts
[12,13] while the minimum of tensor to scalar ratio lies on
shorter angular scales, measurements testing the proposed
approximate consistency condition may be difficult. If
strong running is relevant to cosmology, ingenuity of sci-
entists in the future will hopefully overcome this obstacle.
The second is that the grid of models that we choose are
sampled with equal weight for the initial conditions of the
slow-roll equation. Although this is commonly found in the
literature [4,11,14,15] and does not seem to be an unrea-
sonable way to sample the possible set of models, this kind
of probability measure does not have any justification from
first principles. A similar ambiguity of measure plagues
most ‘‘landscape’’ or anthropic principle arguments
(e.g. [16]).

This paper is organized as follows. In the next section,
we analytically compute the coincidence in terms of slow-
roll parameters. Following that we present numerical re-
sults. Measurement prospects are then discussed in Sec. IV.
In the appendix, we collect some useful slow-roll formulas
used in the derivations in the paper. Throughout this paper,
we use the convention Mp � 1=

�������
GN
p

.

II. ANALYTICAL APPROXIMATION

Let us see why there should be an approximate consis-
tency condition as described in the introduction. In [10], it
was shown that within the context of a single real scalar
field � slow-roll inflationary model with a potential V���,
103510
one can write

ns � 1��������
2�V
p �

��������
2�V

p
� �

�0V���
�V���

; (7)

where �V 	
M2
p

16� �V
0=V�2 is the usual inflationary slow-roll

parameter in terms of the potential, the upper (lower) sign
is for V0���> 0 (V0���< 0). Since the tensor to scalar
ratio is given by Pg=PR � 16�V , the vanishing of the right
hand side of Eq. (7) corresponds to the scale at which the
tensor to scalar power reaches an extremum. Now, the
observation that was made was that if the spectrum runs
from blue to red, then ��0V will be positive initially, but as
ns � 1 becomes negative to the point of canceling the 2�V ,
�0V will vanish. As long as �V is small and/or ns � 1 runs
strongly negative, the scale at which ns � 1 crosses zero
will coincide with the extremum of �V which in turn
corresponds to the extremum of the tensor to scalar ratio.

In this section we will extend the previous derivation to
second order in slow roll and confirm the qualitative va-
lidity of the previous results. This is reassuring given that
the validity of leading order results was questionable in
light of strongly running behavior. To accomplish this task,
we will work with Hubble flow slow-roll expansion tech-
niques (see, e.g. [8]). The advantage of the Hubble flow
approach is that it is simpler to go to higher orders in
derivative expansion.

Using the conventions of [17], we use the definitions for
the slow-roll parameters in terms of the Hubble function
H��� as follows:

� 	
M2
p

4�

�
H0���
H���

�
2
; ���� 	

M2
p

4�

�
H00���
H���

�
; (8)
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‘�H 	 �
M2
p

4�
�‘
�H0�‘�1

H‘

d�‘�1�H

d��‘�1�
:

(9)

Friedman’s equations in the Hamilton-Jacobi formalism
are

_� � �
M2
p

4�
dH
d�

; (10)

�
dH
d�

�
2
�

12�

M2
p
H2 �

�32�2

M4
p

V���; (11)

which has the advantage of having a readily solvable model
of power law inflation. As is well known, Hubble flow
slow-roll expansion that we summarize below is a deriva-
tive expansion in H��� about the power law inflationary
model.

We used N as the measure of time during inflation, the
number of e-folds before the end of inflation, which in-
creases as one goes backward in time:
-2
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FIG. 1. From the graph of �, PR (scalar power spectrum), and
ns � 1 as functions of the number of e-folds N, it can be seen
that the extrema of � and PR are closed to the point where ns �
1 is zero. The dot dashed curve is PR=PR�0�, the solid curve is
50�, and the dotted curve is ns � 1. The horizontal axis is
oriented such that inflation ends at N <�3:5 (i.e. time flows
right to left).
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d
dN
�

d
d lna

�
Mp

2
����
�
p

���
�
p d

d�
; (12)

with the sign convention

���
�
p
	 �

mp

2
����
�
p

H0

H
: (13)

These equations imply a relationship of � to H and N:

1

H

dH
dN
� �: (14)

The evolution of the higher order parameters during
inflation is determined by a set of ‘‘flow’’ equations [18–
20],

d�
dN
� ���� 2��;

d�
dN
� �5��� 12�2 � 2�2�H�;

d�‘�H�

dN
�

�
‘� 1

2
�� �‘� 2��

�
�‘�H� �

‘�1 �H:
(15)

As one can see, in general any slow-roll parameter could be
expressed in terms of one single slow roll and its deriva-
tives. Some of these relationships are explicitly given in the
appendix. Note that � has the interpretation through the
fact that tensor to scalar power spectrum is given by

Pg
PR
� 16� (16)

where Pg and PR are the usual power spectrum for tensor
and scalar gauge invariant metric perturbations.

Let us now solve for the difference between the length
scale at which � reaches an extremum (1=k2) and the length
scale at which ns � 1 crosses 0 (1=k1). Instead of giving
the length scale in terms of the inverse wave vector, we will
express it terms of the difference in the horizon exit e-folds
�N. To translate that into ratio of lengths, one simply has

ln
�
k2

k1

�
� �N � N1 � N2 �O�ln�H2=H1��; (17)

whereH2 is the expansion rate when k2 left the horizon and
H1 is the expansion rate when k1 left the horizon. Since
ln�H2=H1� is of order of the slow-roll parameter during the
early stages of inflation, one can disregard this term when
interpreting �N 	 N1 � N2 as long as it is larger than
about 0:1. Defining N0 as the point where the extremum
of � occurs, i.e. d�dN jN0

� 0, we can linearize ns � 1 around
it to solve approximately for �N. Using the formulas given
in the appendix, to express the running spectral index given
in Eq. (24) in terms of � and its derivatives we can write

ns � 1 �
1

4�2 f��3� C� _�2 � 
4�� 2�2�C� 3�� _�

� ���3� C� � 8�3��� 1�g: (18)
103510
dns
dN
� �

2�2 _�� _�2 � � ��

�2 ; (19)

ns�N0 ��N� � 1 ’ ns�N0� � 1�
dns
dN
jN0

�N: (20)

Solving ns�N0 � �N� � 1 � 0 for �N, we obtain

�Nanalytical �
C� 3

4�
�

2��1� ��
dns
dN �N0�

: (21)

The constant C 	 4�ln2� �� � 5 � 0:081 451 4, where
� ’ 0:577 is Euler’s constant. As it can be seen from this
formula �N can be positive or negative, since � is always
positive and dns

dN �N0� is positive because we consider run-
ning from blue to red (our sign convention is N decreases
as time increases). We can also observe that stronger run-
ning (associated with a higher slope for ns) drifts �N
toward more negative values, and that this effect is modu-
lated by the value of � at N0.

We will see that numerical results agree well with the
analytical approximation. Before going onto numerical
analysis, we would like to note that beyond Eq. (7), there
may be many more ‘‘approximate consistency’’ conditions
associated with strong running since we are merely label-
ing various features of the slow-roll equations. For ex-
ample, as it can be inferred already from the first order
formula PR�k� �

8Vk
3�M4

p
the power spectrum will have an

extremum roughly coinciding with the extremum of �. To
check this numerically, we can examine an example of an
inflationary model (as explained in the next section). As it
can be seen in Fig. 1, the scalar power spectrum has an
-3
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extremum very closed to the point where ns � 1 is zero.
We could proceed similarly to the way we have done for
Eq. (6), comparing analytical approximation to numerical
data for this ‘‘approximate consistency’’ condition, which
in this case would not depend on the strength of the running
of the spectral index, but could be another test for more
general inflation models.
III. NUMERICAL APPROACH

In this section, we study our proposed approximate
consistency condition question numerically. One scientific
question we would like to address is the following: What is
the expected difference of the value k1 satisfying ns�k1� �
1 � 0 with the value k2 satisfying �0��k2

� � 0? The sec-
ond question is whether a stronger negative running of the
spectral index makes the expected jk1 � k2j significantly
smaller.

To this end, we examine a particular grid (to be specified
below) of slow-roll inflationary models. In this grid of
models, we make a set of ‘‘cuts’’ which select out subsets
of the models with scalar spectral index running from blue
to red. In this way, we can make a histogram of models as a
function �N [defined in Eq. (17)]. The peak and the width
of the histogram quantifies the expected coincidence of k1

with k2, answering our first question. We then make the
cuts more stringent such that only those slow-roll models
with more strongly running spectral indices are included in
the histogram. The degree to which the width of the histo-
gram changes as we make the required running stronger
answers our second question.

Let us now explain the details which closely follow the
methods of [11]. Assigning a set of initial conditions to
Eqs. (15) and integrating them specifies a flow of the slow-
roll function. Each of the initial conditions corresponds to a
particular choice of inflaton potential and the inflaton
initial conditions. We choose initial values for the parame-
ters at random from the following ranges, assuming a
uniform probability distribution:

N � 
40; 70�;

� � 
610�76; 0:6�;

� � 
�0:5; 0:5�;
2�H � 
�0:05; 0:05�;
3�H � 
�0:025; 0:025�;

� � �

M�1�H � 0: (22)

We truncated the expansion to order 5 by setting 6�H �
0. We calculate the values of the tensor/scalar ratio r, the
spectral index n, and the ‘‘running’’ of the spectral index
dn=d lnk according to [17,21]

r � 10�
1� C��� 2���; (23)
103510
ns � 1 � �� �5� 3C��2 � 1
4�3� 5C���

� 1
2�3� C��

2�H�: (24)

A comoving scale k crossed the horizon a number of
e-folds N�k� before the end of inflation:

N�k� � 62� ln
k

a0H0
� ln

1016 GeV

V1=4
k

� ln
V1=4
k

V1=4
e

�
1

3
ln
V1=4
e

	1=4
RH

:

(25)

Here Vk is the potential at horizon exit, Ve is the potential at
the end of inflation, and 	RH is the energy density after
reheating. Note that since slow-roll inflation evolves to-
ward decreasing potential, we can write

Ve � f4
kVk; (26)

where fk < 1 is a function of k that varies as to keep Ve
independent of k. Furthermore, since the reheating energy
density must be smaller than Ve, we can write

	RH � �4Ve; (27)

where the proportionality constant satisfies � < 1. Using
Eq. (25), derivatives with respect to wave number k can be
expressed in terms of derivatives with respect to N as [22]

d
dN
� ��1� ��

d
d lnk

: (28)

Hence, the running of the spectral index can be expressed
to third order in slow-roll parameters as

dns
d lnk

�
1

4�1� ��

48�2 � �44� 12C��3

� ��9C� 31��2�� ��5C� 3���2

� ��10C� 6��2�H��� �C� 3��2�H��

� 20��� 8�2�H� � �2C� 6��3�H�� (29)

We will now use superscripts a and b to denote quantities
evaluated at or corresponding to the length scale ka �
0:002 Mpc�1 or kb � 1 Mpc�1.

The algorithm for generating the histogram of Fig. 1 can
then be described as follows:
(1) A
-4
set of random initial conditions was generated for
the value of the slow-roll parameters at Na. The
following constraints are imposed:

ra < 0:5 nal < nas � 1< nau
dns

a

d lnk
< 0;

(30)

where nau is fixed to 0.3 and nal varies from 0 to 0.225
for different cuts with a 0.075 increment. If these
constraints are respected, proceed to step 2 other-
wise go back to step 1.
(2) I
ntegrate the flow equation (using LSODA from
ODEPACK [23]) toNb and then check the following
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constraints:

nbl < nbs � 1< nbu

where nbl is fixed to �0:3 and nbu varies from 0 to
�0:225 for different cuts with a 0.075 increment. If
these are respected go to step 3 otherwise go to
step 1.
(3) E
volve forward in time (dN < 0) until inflation ends
(� > 1). If the total number of e-folds N from the
beginning to the end of inflation is in the range
[40,70] add this model to the ensemble of acceptable
models. If not go back to step 1.
(4) R
epeat steps 1 through 3 until the desired number of
acceptable models has been found.
Once the set of acceptable models has been generated
we solve numerically the following two equations:

d�
dN

��������N2

� 0; (31)

nsjN1
� 1 � 0: (32)

It is important to observe that the presence of the square
root of � in the definition of the differential operator d

dN
[Eq. (12)] causes numerical solutions to Eq. (31) to be
difficult for small values of �, since small values of the
derivative may be associated to the smallness of � more
than to the actual presence of an extremum. In other words,
even though the derivatives are taken with respect to N, for
inflaton potentials with very small �, the derivatives be-
come very small, requiring high numerical precision. For
this reason and to discard inflection points, extrema are
identified numerically using the second derivative infor-
mation as well.

Before making the histogram, we must further check
that the models in the histogram are reasonable from an
inflationary phenomenology point of view. This is done in
lieu of executing precision fits to all available data since it
has been well demonstrated by previous analyses (see for
example [11]) that the current CMB data are not extremely
constraining in terms of the details of the slow-roll infla-
tionary models. Hence, our histogram should not be sensi-
tive to the lack of precision in our cuts. On the other hand,
given that the combined fits including Sloan digital sky
survey data as carried out by [5] prefer small running, the
strongly running cases of the current analysis may have
been statistically disfavored had precision fits to combined
data been made. Given that most of the numerically gen-
erated models do not have strongly running spectral index
for the weakest cut, the results of the weakest cut should be
robust with respect to imposing additional fit constraints,
while the results of the stronger cuts should be interpreted
with appropriate caution.

Let us now write explicitly the constraint equations.
Since the Wilkinson microwave anisotropy probe
(WMAP) analysis [4] gives
103510
PR�ka � 0:002 Mpc�1� � �2:95 10�9��0:75� 0:09�;

(33)

we use the approximate formula for the power spectrum

PR�k� �
8Vk

3�M4
p

(34)

to impose a constraint on � and Vk. The requirements of
having sufficient energy density at the end of inflation to
reheat the Universe to a temperature consistent with big
bang nucleosynthesis gives

�10�2 GeV�4 < 	RH <Ve < Vk: (35)

We also know from observations that ra <O�1� and that
Eq. (33) is true. Substituting Vk obtained from Eqs. (25)–
(27) into Eq. (34) and solving for � we obtain

6 10�76 < �a < 0:05; (36)

�a � e4�N�ka��61:8�y�ka�; (37)

where y�ka� 	 f4
ka
��4=3 and the upper bound comes from

Eq. (30) and r � 10� (again note that the normalization
used in this paper is given by Eq. (23), and specifically is
not r � 16�). Consider how Eq. (37) gives a constraint.
Note that for any given flow trajectory, because of Eqs. (33)
and (34), Vka is fixed. Furthermore, the flow trajectory
itself determines fka (the value of the potential at the end
of inflation). Hence, the only adjustable parameter is �
which determines the reheating temperature. For every
flow trajectory with N�ka� fixed, Eq. (37) then provides
constraints on the initial conditions of inflation. For ex-
ample, consider a flow trajectory having N�ka� � 70.
Equation (37) gives

f4
ka
< 0:05 exp��4
N�ka� � 61:8�� � 10�16: (38)

This is a significant constraint since this says that the
energy density at the end of inflation is at least 10�16

smaller than the energy density at 70 e-foldings before
the end of inflation. The physical reason for Eq. (36) is that
upper and lower bounds on the potential (coming from
tensor perturbations and reheating temperature, respec-
tively) directly translates into upper and lower bounds �
because of Eqs. (33) and (34). The physical origin of
Eq. (37) is that any mismatch in the inflationary stretching
of the wavelength and physical k=a � 0:002 Mpc�1 must
be compensated by postinflationary expansion which is
related to the potential energy at the end of inflation which
in turn is related to � through Eqs. (26), (33), and (34). In
practice, Eq. (38) does not play a significant role in the
numerical exploration since the number of e-foldings is
generically small when there is significant running.
-5
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FIG. 2 (color online). Frequency histogram (hist.) for the
difference between solutions for different running of the spectral
index, i.e. different na (spectral index at wave vector ka �
0:002 Mpc�1) and nb (spectral index at wave vector kb �
1 Mpc�1). Thick solid hist. gives the results for f0< na � 1<
0:3, �0:3< nb � 1< 0g; dashed hist. for f0:075< na � 1<
0:3, �0:3< nb � 1<�0:075g; the green (gray) hist. for
f0:15< na � 1< 0:3, �0:3< nb � 1<�0:15g; the solid hist.
for f0:225< na � 1< 0:3, �0:3< nb � 1<�0:225g. The area
under each histogram is normalized to unit area.
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Our final histogram can be seen in Fig. 2 and its distri-
butional characterization can be seen in Table I. To have a
measure of how �N clusters around zero we followed this
procedure: (a) we have divided �N in the range 
�1; 5:25�
into 25 intervals of width 0.25 each containing ni models
and then calculated for each of these intervals the average
h�Nii for the models in that interval and the standard
deviation ��Ni � �1=

�����
ni
p
�; (b) we calculated m2 �

�25
i�1�h�Ni

2
i =�

2
�Ni
�, a weighted second order moment

around 0 of the 25 averages of h�Nii for the intervals
defined above, using the inverse of the corresponding
variance ��Ni as weight. We also similarly calculated the
TABLE I. Basic distributional characterization of Fig. 2. m2 �
����
h��

p
fraction of the models within 2��N of h�Ni. Nmd is the number of

k � 0:002 Mpc�1 k � 1 Mpc�1 m2

0< ns � 1< 0:3 �0:3< ns � 1< 0 0.644
0:075< ns � 1< 0:3 �0:3< ns � 1<�0:075 0.395
0:15< ns � 1< 0:3 �0:3< ns � 1<�0:15 0.416
0:225< ns � 1< 0:3 �0:3< ns � 1<�0:225 0.462

103510
weighted standard deviation �m2
. The total number of

slow-roll models we considered to construct the histogram
was around 107, and the number of models fulfilling the
cuts is shown in the Nmd column of Table I.

Notice in Table I that both jh�Ni � ��Nj< 1 and jm2 �

�m2
j< 1 regardless of the strength of running. The column

labeled ‘‘ P�h�Ni � 2��N�’’ quantifies (at least with re-
spect to our choice of model sampling) the extent to which
we should expect a coincidence between k1 and k2: i.e. we
should expect with roughly ‘‘95% confidence’’ that the
length scale for which the tensor to scalar ratio reaches a
minimum will coincide with the length scale for which the
ns � 1 � 0 up to a factor of about 2 and k1 > k2 (i.e.
wavelength at which the tensor to scalar ratio reaches a
minimum is longer than the wavelength at which ns � 1
goes through a zero). As far as the effect of different
strengths of running is concerned, one sees in Table I
that stronger running corresponds to a larger magnitude
of jh�Nij and a more negative value of h�Ni. Although
‘‘statistically’’ marginal, the smaller ��N means that
strong running seems to narrow the distribution of �N.
IV. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the robustness of the
approximate condition suggested by [10]. We have quanti-
fied distributionally the extent to which one should con-
sider the approximate consistency condition to be a
prediction of single field slow-roll inflation. We find that
if the spectrum runs from blue to red, we should look for an
approximate coincidence between the wave vector k1 sat-
isfying ns�k1� � 1 � 0 and the wave vector k2 satisfying
�0�k2� � 0, up to a factor of about 2. According to a
WMAP analysis [4], this should occur at k=a0 �
0:02 Mpc�1.

Given that the consistency condition is only approxi-
mate, even if one finds that observations contradict the
consistency condition (for example, if observations deduce
k1=k2 < 1) it will be very difficult to make any rigorous
conclusions about the models of inflation. Furthermore,
given that we have sampled each of the initial condition
ranges with equal weight, it is not clear what the distribu-
tion that we computed has to do with the real world. (A
similar argument can be made about much of the current
literature that use similar sampling [4,11,14,15].) None-
theless, if this set of initial sampling turns out to be a good
�������������
N�2i characterizes the deviation from 0. P�h�Ni � 2��N� is the

models analyzed for the given range of the ns.

�m2
h�Ni ��N P�h�Ni � 2��N� Nmd

0.022 �0:073 0.643 0.961 2366
0.023 �0:184 0.356 0.964 880
0.032 �0:338 0.25 0.956 203
0.036 �0:450 0.12 0.968 31
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approximation to the real inflationary model distributions
coming from a more fundamental theory, tests coming
from this kind of approximate consistency condition may
be useful. To turn this around, there may be a way to
classify the vacua of more fundamental theories according
to whether they satisfy roughly equal probability sampling
of the slow-roll initial condition or whether they prefer a
very specific distribution which makes the approximate
consistency condition more (or less) stringent.

Before concluding, let us briefly consider the measure-
ment prospects for the approximate consistency condition.
According to current ideas of anticipated measurements
[24–27], B-mode polarization observations are necessary
to reliably infer the tensor perturbation amplitudes. As is
well known, B-mode polarization has the advantage over
the E-mode polarization in that at the last scattering sur-
face, the B-mode polarization cannot be generated by
scalar perturbations alone because to leading order, the
scalar perturbations do not generate nonzero fl � 2; m �
�2g amplitudes in the temperature anisotropy while the
tensor modes can. Hence, in principle, assuming no large
contamination from vector perturbations, B-mode polar-
ization measurement offers a direct way to infer tensor
perturbation amplitudes.

The difficulty with measuring the B-mode polarization
spectrum coming from gravity waves is that because its
amplitude is proportional to the local quadrupole anisot-
ropy induced by the time derivative _h (where h is the
amplitude of the gravitational wave) localized at the last
scattering surface (due to the requirement of Thomson
scattering), its amplitude is suppressed at least by order
f

aRHR
on long wavelengths with respect to the temperature

anisotropy (whereHR and aR are the Hubble radius and the
scale factor at recombination, respectively). Furthermore,
since gravitational wave mode amplitudes inside the hori-
zon are diluted by the expansion of the spatial volume, the
transfer function should behave approximately as 1=
1�

� ka0
�2�aRa0
� 1
H2

0
� where a0 is the scale factor today and aR=a0 �

103 is the redshift to the last scattering surface. (Here, we
have considered only the modes that entered the horizon

after matter domination, i.e. k=a0 <H0

���������������
a0=aeq

q
.) Hence,

the B-polarization temperature perturbation amplitude can
be written as

k3=2�B;l�k� � 10�1 k
aRHR

������������
Ph�k�

p
1� � ka0

�2�a�a0
� 1
H2

0

jl�3:5k=�a0H0��;

(39)

where Ph is the power spectrum of the tensor perturbations.
(For discussions of analytic treatments of CMB polariza-
tion, see e.g. [28–32].) This peaks at k=a0 � H0

�������������
a0=a�

p
�

1=�100 Mpc�, and even there, the amplitude is suppressed
by about 10�2 relative to the temperature anisotropies if
103510
the tensor perturbation amplitude is about the same as
scalar perturbations amplitudes.

To make the situation slightly worse, k1 is expected to be
at around k1=a0 � 1=�50 Mpc�. (Note that to map the wave
vectors k=a0 to the multipole moment number l, one can
use the approximate formula k

a0
� l

3:5H0 �
l

15 000Mpc .) This
means that to actually measure k1=k2, one must go to short
scales (l� 300) while the B-mode polarization measure-
ments prefer large length scales (l� 90; for more accurate
plots of examples, see e.g. [12,13]). Hence, experimental
confirmation of the approximate consistency conditions
will be a challenge.

There is one more obstacle that makes it difficult for
tensor perturbation amplitudes to be extracted from B-
mode polarization measurements. This is due to the fact
that E-modes can be converted into B-modes through
gravitational lensing [33,34]. Hence, obtaining a tensor
spectrum to check the approximate consistency condition
requires success in extracting the tensor perturbation con-
tribution even at relatively short length scales, around
where the lensing contribution most likely dominates
over the gravitational wave signal. This contamination
from gravitational lensing can be subtracted out, at least
in principle, if the lens distribution can be accurately
deduced.

Despite the difficulties, we are optimistic that the ingen-
uity of researchers in the future will allow a test of the
approximate consistency conditions considered here.
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APPENDIX: SLOW-ROLL FORMULAS

Here we report some formulas which can be used to
express slow-roll parameters in terms of � and its deriva-
tives with respect to the field � or the operator d

dN .
Denoting d�

d� � �0 and d�
dN � _�:

� �
4�3=2�� �0

����
�
p

Mp

4�
���
�
p ; (A1)

� �
�4�3=2�� �0

����
�
p

Mp

2�
���
�
p ; (A2)

2�H �
16��3 � 12�3=2 ����

�
p

�0Mp � �02M2
p � 2�00M2

p�

16��
;

(A3)

� �
��2�2 � _��

2��
; (A4)
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� �
_�� 2�2

�
; (A5)
103510
2�H �
2�4 � 3�2 _�� _�2 � ���

2�2 : (A6)
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