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In this paper we apply second-order gauge-invariant perturbation theory to investigate the possibility
that the coupling between gravitational waves (GWs) and a large-scale inhomogeneous magnetic field acts
as an amplification mechanism in an ‘‘almost’’ Friedmann-Lemaı̂tre-Robertson-Walker Universe. The
spatial inhomogeneities in the magnetic field are consistently implemented using the magnetohydrody-
namic (MHD) approximation, which yields an additional source term due to the interaction of the
magnetic field with velocity perturbations in the plasma. Comparing the solutions with the corresponding
results in our previous work indicates that, on superhorizon scales, the interaction with the spatially
inhomogeneous field in the dust regime induces the same boost as the case of a homogeneous field, at least
in the ideal MHD approximation. This is attributed to the observation that the MHD induced part of the
generated field effectively only contributes on scales where the coherence length of the initial field is less
than the Hubble scale. At subhorizon scales, the GW induced magnetic field is completely negligible in
relation to the MHD induced field. Moreover, there is no amplification found in the long-wavelength limit.
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I. INTRODUCTION

Astrophysical observations indicate that almost all en-
vironments in the Universe are magnetized, and the more
we search for extragalactic fields, the more pervading they
are revealed to be. Such cosmological magnetic fields are
found in galaxy clusters, disk and spiral galaxies as well as
in high-redshift condensations (see [1] for reviews). A
fascinating and as yet unsolved question is how did these
fields originate? The current properties of magnetic fields
should, in principle, reflect their past and give clues to their
origins, so we rely on observations to contribute to finding
an answer to this important question.

Faraday rotation and Zeeman splitting measurements
indicate that galactic magnetic fields at high redshifts exist
with roughly the same strength, 10�7 to 10�5 G, as those
found in the Milky Way [2,3]. The common properties of
large-scale fields in different galaxies indicates that their
origins may be intrinsically connected to the cosmological
repercussions of the interplay between gravitational and
gauge interactions [4]. This suggests that their origin may
be primordial, in which case their presence could be related
to the physics of the very early Universe. One example is
big bang nucleosynthesis, where the interaction of a mag-
netic field with the magnetic moment of a neutrino may
have given rise to a spin-flip and change of its handedness,
introducing an additional neutrino degree of freedom [5].
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Depending on their spectrum, magnetic fields existing in
proto-galactic clouds with strengths of 10�12 to 10�9 G
may have played a significant role in structure formation
[6]. The Lorentz force that acts on charges in an inhomo-
geneous (i.e. curlB � 0) magnetic field has been shown to
induce peculiar velocities [7] which seed density perturba-
tions, and in so doing alter the gravitational instability
picture. Moreover, hyper-magnetic fields, hypothesized to
emerge during the electroweak phase, have also been
identified as a possible source of the observed baryon
asymmetry of the Universe [8]. For these reasons, the
determination of the origin and properties of cosmic mag-
netic fields is of extreme importance in cosmology. This
makes magnetogenesis, the determination of a self-
consistent theory for the generation of cosmological mag-
netic fields with the strengths and on the scales measured
today, one of the ‘‘hot‘‘ topics in modern cosmology. The
most popular theories include the amplification of a small
field by the galactic dynamo and the adiabatic proto-
galactic collapse at the start of structure formation.
Although these mechanisms are shown to yield substantial
enhancement, they are not self-sufficient as they presup-
pose the existence of seed fields. In addition, these seed
fields must satisfy very stringent strength and size criteria
in order for the generated fields to agree with the magni-
tudes observed today. It follows that the problem we face is
to provide a mechanism that induces a large enough am-
plification of a weak preexisting seed field, so that the
aforementioned mechanisms are physically viable.

In this paper, we extend the work of Betschart et al. [9],
which investigated the coupling between a large-scale
-1 © 2006 The American Physical Society
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homogeneous magnetic field and the gravitational wave
spectrum which accompanies most inflationary scenarios.
This work built on earlier work by Tsagas et al. [10] in
which the same interaction was studied within the weak
field approximation [11,12]. The analysis in [9] demon-
strated that this coupling can lead to an amplification,
provided the dimensionless shear anisotropy �=H at the
end of inflation is larger than 10�40.

In this investigation, we consider the general case where
the original magnetic field is inhomogeneous over a typi-
cally observed coherence scale. By comparing this analysis
with our treatment of homogeneous fields in [9], we aim to
determine the implications of placing restrictions (such as
homogeneity) on the properties of primordial magnetic
seed fields.

The highly nonlinear nature of the Einstein’s field equa-
tions makes finding exact solutions as well as applying
numerical techniques extremely difficult. In order to solve
them analytically, severe symmetry assumptions are often
required to simplify the physical models, which then re-
stricts their applicability. For cosmological applications,
using a perturbative approach, which entails decomposing
the real physical Universe into a family of spacetimes,
yields surprisingly good results. This allows us to encode
the inhomogeneities we see today as perturbations ex-
panded around a fictitious idealized background model,
most commonly taken to be the Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) spacetimes. Before we can
implement perturbation theory in a self-consistent way,
we must give due attention to the issue of gauge-invariance
which has historically plagued such studies [13].

If we consider a weak large-scale magnetic field residing
in a background FLRW model as done by Tsagas et al.
[10], the interaction with linearised gravitational waves
manifests itself as a first-order perturbation of this back-
ground. The problem with this approach is that it is not
gauge-invariant in a strict mathematical sense, due to the
fact that the magnetic field introduces a preferred direction
and therefore breaks the isotropy of the background FLRW
model. This problem is partially overcome by assuming
that the magnetic field is weak and that its contribution to
the energy-momentum tensor is such that it does not dis-
turb the isotropy of the FLRW background [12].

A completely self-consistent solution to this problem is
obtained by treating any seed magnetic fields as a first-
order perturbation and including the interaction with gravi-
tational perturbations by going to second order in pertur-
bation theory [9]. Such a seed field has been shown to arise
during the inflationary era via various mechanisms, one
being the gauge-invariant coupling of the Maxwell field to
the accompanying scalar field [14].

The introduction of magnetic spatial gradients at linear
order requires a more subtle treatment of the associated
spatial currents, requiring the use of the magnetohydrody-
namic approximation (MHD) to provide a framework in
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order to obtain a tractable solution. This single-component
fluid model provides an accurate description of a two-
species plasma when effects occurring over much larger
time and length scales than those characteristic of plasma
effects are studied. This allows one to handle low-
frequency phenomena in a magnetized plasma using the
standard machinery of fluid dynamics. This reduced de-
scription is achieved by defining appropriate one-fluid
variables representing the bulk quantities, while Ohm’s
law provides a consistent treatment of the associated elec-
tric field. It is common practice to take advantage of the
high conductivity, �, of the young cosmic plasma and
employ the ideal MHD limit (�! 1). In this limit, the
flux lines are effectively glued to the plasma fluid elements.
In the nonideal MHD limit [15], where � is assumed to be
large but not infinite, the electric field enters at linear order
in the case of a first-order magnetic field. Here we focus on
the ideal MHD case which is shown to be equivalent to
assuming that the observed electric field vanishes in the
rest frame of the fluid.

The mathematical framework we use is the 1� 3 cova-
riant approach [16–18] to perturbation theory which allows
Maxwell’s and Einstein’s equations to be written in an
intuitive and simple fashion [15]. The covariant definition
of the variables ensures that their connection to physically
and geometrically significant quantities is immediately
transparent and their exact presentation gives them mean-
ing in any spacetime. Most importantly, the identification
of gauge-invariant (GI) perturbation variables at a given
order is relatively straightforward.

It is found that the generated magnetic field consists of
contributions from two sources. The first stems from the
interaction between GWs and the ‘‘background’’ magnetic
field, the second comes from the rotation of the induced
electric field, which is caused in MHD by the background
magnetic field interacting with the velocity perturbations in
the plasma. Comparing the solutions with the correspond-
ing results in [9] reveals that, at superhorizon scales, the
interaction of GWs with a spatially inhomogeneous mag-
netic field in the dust regime yields an amplification of the
same order of magnitude as found in the case of a homo-
geneous field, at least in the ideal MHD approximation.
The MHD induced part of the magnetic field becomes
important only at subhorizon scales, where the GW in-
duced contribution is negligible. In other words, the con-
tribution stemming from the GWs dominates over plasma
effects in the ideal MHD limit at superhorizon scales,
whereas the roles are interchanged at subhorizon scales.

The units employed in this paper are c � h � 1 and
� � 8�G � 1.
II. PERTURBATION SCHEME

We employ the same perturbative scheme as in Betschart
et al. [9]. Since the presence of a magnetic vector field in
the FLRW background does not yield a strictly gauge-
-2
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invariant system, we introduce such fields as a perturbation
of the FLRW background. Similarly, the gravitational and
velocity perturbations are required to vanish in this back-
ground for them to be gauge-invariant. Since we are inter-
ested in the interaction of magnetic fields with linear
gravitational wave distortions, we need to treat this prob-
lem at second-order in perturbation theory. Using the 1� 3
covariant approach [16–18], we expand the physically
relevant variables in terms of two smallness parameters
to distinguish between the magnitudes of the inhomoge-
neous magnetic field (� �B) and the amplitude of the GWs
(� �g). It follows that the magnitude of the interaction of
interest is of order O��B�g�. Since we are only interested in
the cross interaction of the magnetic and gravitationally
sourced perturbations, we only retain mixed terms of order
O��B�g� and neglect those of order O��2

g� and O��2
B�. In

fact, such terms always appear in the calculations concern-
ing the induced magnetic field, multiplied by terms of
order O��B� and therefore do not lead to inconsistencies
in the perturbation scheme. [19]

The perturbation spacetimes may be split as follows [9]:

(i) B
 � Exact FLRW as the background spacetime,

O��0�;

(ii) F
 1 � Exact FLRW perturbed by an inhomogene-

ous magnetic field whose energy density and an-
isotropic stress are neglected, O��B�;
(iii) F
 2 � Exact FLRW with gravitational and velocity
perturbations [20] O��g�;
(iv) S
 � F 1 �F 2 allows for inclusion of interactions
terms of order O��B�g�.
We will generally refer to terms of order O��B� and O��g�
appearing in F as ‘‘first-order’’ and to the cross terms
O��B�g� appearing in S as ‘second-order’.

As we will discuss in more detail in the next section, the
presented hierarchy of spacetimes given above is only
justified if the electric field is at least of second order.
However, we will assume the ideal MHD case, which
indeed implies that the electric field must be second order.

Before we turn to the MHD approximation, we first
describe the basic equations describing the background
and first-order spacetimes keeping the equations as general
as possible.

A. FLRW background

In order to perform a 1� 3 decomposition of any space-
time, we need to introduce a universal reference 4-velocity
field ua relative to which all motion is defined and quanti-
fied. In accordance with the observed average recession of
the galaxies, we assume that the matter in the Universe has
a locally well-defined preferred motion that can be repre-
sented by a unique 4-velocity vector field ua, satisfying
uau

a � �1. Based on the Copernican principle, we can
assume that this holds at each point in the Universe. We
then introduce a family of observers, called the fundamen-
tal observers, traveling such that this field represents the
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congruence of their world lines. In so doing, any observa-
tions made are those relative to this preferred frame. In
choosing this field to coincide with the average velocity of
the matter in the Universe, it acquires an ‘‘invariant sig-
nificance’’ such that the covariant quantities at every point,
which are defined with respect to ua, can be decomposed
uniquely [18].

FLRW models are spacetimes that are spatially isotropic
and homogeneous about every point. Relative to the con-
gruence of fundamental observers with 4-velocity ua, the
kinematics are assumed to be locally isotropic. This im-
plies that all tensorial quantities such as the acceleration
vector _ua � ubrbua, the shear �ab � Dhaubi and the vor-
ticity !ab � D�aub	 must vanish to eliminate preferred
direction in the spatial sections:

0 � _ua � �ab � !ab; (1)

The constraints

�ab � qa � 0; (2)

ensure that the energy-momentum tensor and thus the
Ricci tensor are isotropic and indicate that a perfect fluid
is a necessary requirement of this model. These restrictions
mean that the electric and magnetic components of the
Weyl tensor and hence the Weyl tensor itself, vanish iden-
tically

Eab � Hab � 0) Cabcd � 0: (3)

We can then infer that these models are conformally flat.
Furthermore, the spatial uniformity forces the spatial gra-
dients of the energy density �, the pressure p and the
expansion � to vanish

0 � Da� � Da� � Dap: (4)

As usual, the spatial derivative Da � ha
brb is obtained by

projection of the spacetime covariant derivative ra onto
the 3-space (with metric hab � gab � uaub) orthogonal to
the observer’s world line. As a consequence, the key
background equations are the energy conservation equa-
tion

_������ p� � 0; (5)

the Raychaudhuri equation

_� � �1
3�

2 � 1
2��� 3p� ��; (6)

and the Friedmann equation

��� �
1

3
�2 �

3K

a2 ; (7)

describing the intrinsic curvature of the homogeneous and
isotropic 3-spaces. The curvature constant K indicates the
geometry of the Universe and can be normalized to K �
�1;�1; 0 for spatially open, closed and flat Universes.
-3
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B. First-order perturbations

1. The inhomogeneous magnetic field ~Ba
We assume that the seed magnetic field ~Ba residing in

the F 1 spacetime is inhomogeneous over its typical co-
herence scale. The spatial gradients Db

~Ba are thus of order
O��B�. Given that the magnetic field is a first-order pertur-
bation on the background, the magnetic anisotropy �ab �
� ~Bha ~Bbi �O��2

B� can be neglected [21]. This means that
under this approximation, the additional sourcing of gravi-
tational waves by a magnetic field induced stress-tensor
within the plasma can be neglected. Since the associated
electric field is perturbatively smaller than the magnetic
field and enters only in S as will be argued in the next
section, the magnetic induction equation has the form

_~B hai �
2
3�

~Ba � 0: (8)

Thus the magnetic field decays as

~B a � ~B0
a

�
a0

a

�
2
; (9)

where a denotes the scale factor, i.e., � � 3 _a=a � 3H and
H denotes the inverse Hubble length. The adiabatic decay
evident in Eq. (9) arises from the expansion of the Universe
which conformally dilutes the field lines due to flux con-
servation [22]. By taking the spatial gradient of Eq. (8), it is
easy to show that the gradient of the magnetic field evolves
as Db

~Ba � a�3. Note also that the induction equation does
not discriminate between homogeneous and inhomogene-
ous magnetic fields.

2. Gravitational waves

In the covariant approach to cosmology, linearized
gravitational waves are purely tensorial and are monitored
via the electric (Eab) and magnetic (Hab) Weyl constitu-
ents, which are not sourced by rotational (vector) and
density (scalar) perturbations [23,24]. The transverse
(divergence-free) nature of these projected, symmetric,
trace-free (PSTF) tensors means that we only need to
eliminate their vector parts in order for them to character-
ize frame-invariant GWs. We isolate the linear tensorial
modes by imposing the constraints

0 � Da� � Dap � Da� � !a � _ua: (10)

These restrictions ensure that the sources of vector modes
(spatial gradients and vector perturbations themselves)
vanish and lead to the constraints [25]

0 � Da�ab � DaEab � DaHab � Hab � curl�ab: (11)

Since the shear tensor is coupled toHab and Eab, it can also
be used as a measure of gravitational waves. The tensorial
gravitational waves are governed completely by a closed
wave equation for the shear. At linear order, this wave
equation is given by [9]
103509
��habi �D2�ab�
5
3� _�habi � �

1
9�

2� 1
6��

3
2p�

5
3���ab� 0:

(12)

Observe that in general the right-hand side of Eq. (12) is
nonzero (see [26] for the case of irrotational dust
spacetimes).
III. BASICS OF IDEAL MHD

Since the mean free path between the electron-ion colli-
sions in a typical plasma can be short compared to the
characteristic MHD length scale, it is not always obvious
that a fluid description is indeed valid. On small scales
these interactions are frequent and cause the two species to
move relative to each other, generating charge separation
effects referred to as plasma oscillations. If we consider
much larger scales on which the individual collisions are
not explicitly seen (i.e. low-frequency phenomena), the
different species are observed to move together with a
common average velocity, allowing an effective single
fluid description of this two-component system. If, in
addition, the characteristic MHD length scale is much
greater than the plasma Debye length and the gyro radius,
then MHD gives an accurate description of low-frequency
phenomena in a magnetized plasma (see, for example,
Refs. [15,27]).

We now pay attention to how the currents, which are
established due to the net motion of the fluid by induction,
modify the field and in so doing couple the hydrodynam-
ical equations to Maxwell’s equations via Ohm’s law.

We perform the calculations in an irrotational Universe
with vanishing cosmological constant �, and assume p �
0 from now on since it has been argued that the reduced
MHD description of a plasma is only valid in the cold limit
[28] (i.e. p � 0 and nonrelativistic motion of the plasma
particles). These assumptions simplify the analysis tremen-
dously while still allowing us to make a meaningful com-
parison with the results obtained in the homogeneous case
for dust [9].

As a further simplification, we adopt the geodesic frame,
in which the acceleration of the fluid frame _ua vanishes to
all orders.

Covariant theory

We now turn to the evolution equations of magneto-
hydrodynamic variables. We assume charge quasineutral-
ity of the plasma (i.e. the number densities of the electrons,
ne, and ions, ni, are roughly equal such that the total charge
�c effectively vanishes, �c � �e�ne � ni� 
 0). In the
spirit of the MHD approximation, we choose to formulate
the equations using the magnetic field as our primary
variable and use Maxwell’s equations to express the elec-
tric field and currents in terms of Ba. In order to identify the
perturbative order of the terms which we can eliminate
without excluding physically important effects, the exact
-4
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equations that are necessary to fully describe this system
are stated.

1. Maxwell’s equations

Under the assumption of charge neutrality and vanishing
vorticity, the behavior of electromagnetic fields and cur-
rents in curved spacetimes is governed by Maxwell’s equa-
tions in the following form (see, e.g., [15,17,29]):

_B hai �
2
3�Ba � �abBb � curlEa; (13)

_E hai �
2
3�Ea � curlBa � jhai � �abEb; (14)

D aBa � 0; (15)

D aEa � 0; (16)

where the last two constraint equations are supposed to
hold at all orders.

2. Equations of motion

We assume that the interactions of the ions and electrons
collectively isotropize their motions, such that in a chosen
frame the properties of the fluid on macroscopic scales can
be described in terms of an average velocity va. We take
this mean motion to be the center of mass velocity of the
electron-ion system, defined by

va �
�ev

a
e ��iv

a
i

�e ��i
; (17)

where va coincides with the velocity of the fundamental
observer at zeroth order, that is, va � 0 relative to the
fundamental observer at lowest order. At higher orders,
the behavior of the electromagnetic fields also depends on
this bulk velocity.

Ohm’s law is generally formulated in the local rest frame
of the conducting fluid and is assumed to hold at all orders:

jhai � ��Ea � �abcvbBc�; (18)

where the conductivity � is taken to be a constant for
simplicity. The 3-vector Ea represents the field as observed
from the rest-space of the fluid and the second term in (18)
is the apparent electric field associated with the bulk
velocity va. We make the standard assumption that the
cosmic medium is infinitely conducting, and consequently
apply the ideal MHD limit. This is valid considering the
early epoch in which the interaction takes place and is also
consistent with the treatment of a homogeneous magnetic
field in a spatially flat Universe in Betschart et al. [9]; the
gravito-magnetic interaction was shown in section (IV.B)
of [9] to generate the same magnetic field irrespective of
conductivity. By letting �! 1 in Ohm’s law (18), we find
that Ea � �abcvbBc must tend towards zero in order for the
spatial current jhai � �evae � �ivai to remain finite. The
electric field is now determined jointly by the fluid velocity
103509
and the magnetic field:

Ea � ��abcv
bBc: (19)

It follows that the electric field is at least of second order
and vanishes at lower orders. At first order, the magnetic
field ~Ba determines the current via curl ~Ba � jhai, while at
second order the current follows from Eqs. (14) and (19).
Using charge neutrality, the evolution of the total energy
density E � �e ��i and the center of mass velocity
follow from the corresponding total energy and total mo-
mentum conservation equations [15,29]:

_E ��E � �Da�Eva�; (20)

E � _vhai �
1
3�va� � �E�v

bDbva � �abv
b� � �abcj

bBc;

(21)

which hold in the cold plasma limit in the geodesic frame.
IV. SECOND-ORDER PERTURBATIONS:
THE INTERACTION

We look to Maxwell’s equation to determine the nature
of the interaction between GWs and the first-order mag-
netic field ~Ba. If the backreaction of the induced field with
the shear and the center of mass velocity is ignored, the
induction equation takes the form

_B hai �
2
3�Ba � �ab ~Bb � 2Db�v�a ~Bb	�; (22)

where the second term on the right-hand side—curlEa
describes the dragging of the field lines by the fluid. We
are faced with the problem of removing the primary mag-
netic field component of Ba from the left-hand side of (22)
to ensure that it is truly second order. Given that the
magnetic spatial gradients are now retained in F 1, the
commutation relation used as an example in the homoge-
neous case in Betschart et al. [9], is now consistently
satisfied when the power series expansion of Ba,

Ba � �BB
a
1 � �g�BB

a
2 �O��2

g; �
2
B�;

is applied. The reason why an inconsistency arose previ-
ously seems to stem from the requirement that the first-
order magnetic field is homogeneous, which messed up the
commutation relations. A similar inconsistency was en-
countered when studying the gravito-magnetic interaction
in the vicinity of a Schwarzschild black hole, where stat-
icity was imposed upon the first-order magnetic field (see
[30] for details). It is interesting to remark, however, that
constraining the magnetic field to be solenoidal does not
pose any problems whatsoever.

Although the above expansion does not immediately
appear to be invalid, in the event that an inconsistency
might exist, we choose to represent the magnetic field
using the second-order gauge invariant (SOGI) variable

�a � _Bhai �
2
3�Ba; (23)
-5
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first identified in Betschart et al. [9]. We select the inter-
action variable Ia � �ab ~Bb and define the variable Fa �
�curlEa � 2Db�v�a ~Bb	�. We note that the electric field is
of the order O��B�g� and thus enters the S spacetime. We
can now restate Maxwell’s equations in S as a system of
differential equations in terms of these SOGI variables

�a � Ia � Fa; (24)

D aEa � 0; (25)

D aBa � 0: (26)

To close the system, we use the velocity propagation
Eq. (21). Given that both va and ~Ba are individually
regarded as first order, only the linear part of this equation
is needed:

_v hai �
1
3�va � 0: (27)

From Eq. (24), we see that the generated magnetic field Ba

can be found directly by integrating a linear combination of
the Ia and Fa solutions once they are found.

It is convenient to rescale the magnetic field variable by
defining Ba � Ba�a=a0�

2. The time dependence of Ba

found in the final solutions then describes the evolution
of the generated field relative to the background field. The
main variables become

�a �
�
a0

a

�
2

_Bhai; Ia � �ab ~Bb;

F a � 2Db�v�a ~Bb	�:

(28)

Using H � �=3 � _a=a we can restate the important
Eq. (24) in terms of these variables as

_B hai � Ia �F a: (29)

Integrating this equation with respect to proper time yields
Ba; the constant of integration is determined by the physi-
cal condition that at the time t0, when the interaction
begins, there is no generated magnetic field, so we have
Ba

0 � Ba0 � 0 initially.

V. EVOLUTION EQUATIONS FOR THE MAIN
VARIABLES

It is evident from Eq. (29) that the SOGI magnetic field
Ba can be extracted directly by integrating a linear combi-
nation of the solutions for the interaction Ia and the
electric field rotation F a. We turn to find the evolution
equations for these variables, maintaining generality.

A. Harmonics

We employ the standard harmonic decomposition
[13,31] to deal with the Laplacian operator present in the
wave equation of the shear. It is standard procedure to
assume that the time and spatial dependence of each vari-
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able is separable, so that the variable can be expressed as
the product of the time and spatial parts. This operation
effectively decomposes the differential equation for the
time evolution of a perturbation variable into separate
equations describing the time evolution of each harmonic
component which characterized by a comoving wave num-
ber k. Since any perturbation of a quantity can be expressed
as the superposition of normal modes, we can decompose
the spatial part into the summation over a series of har-
monics Q�k� which are covariantly constant _Q�k� � 0 and
are chosen to be the eigenfunctions of the Laplace-
Beltrami operator

D 2Q�k� � �
k2

a2 Q
�k�: (30)

We can then define a comoving scale � � 2�a=k for each
perturbation associated with a harmonic function Q�k�. In
our application, the harmonic decomposition is particu-
larly useful as it allows us to distinguish the specific
situation where the wavelengths of the perturbations are
much larger than the Hubble scale �2�a=k� H�1�, in
which case the Laplacian operator in Eq. (30) that is
proportional to k2, can be eliminated, yielding differential
equations which are easier to solve. Although the use of a
plane wave description is mathematically incorrect in
curved space, it turns out that the only difference that arises
is the allowable values of the wave numbers. For a flat
geometry (K � 0) the eigenvalues form a continuous spec-
trum where k2 � 0. The spectrum for an open model (K �
�1) is discrete with k2 � 	�	� 2� where 	 � 1; 2; 3 . . . .
A spacetime with negative curvature (K � �1) can ac-
commodate the eigenvalues k2 � 1� 	2 where 	2 � 0
[31].

B. Governing equation for the interaction variable I a

In Sec. (B.1) of Betschart et al. [9], the solution for Ia

obtained by solving its wave equation was found to agree
with the result calculated from the multiplication of the
time dependencies of the shear and background magnetic
field, determined individually. Solving the wave equation
for the interaction variable, however, requires a harmonic
decomposition. Since the interaction variable is not neces-
sarily divergence-free, DaIa � �abDa ~Bb � 0 in general, it
has a nonzero scalar contribution. This contribution is
however exactly equal to Da�a and therefore drops out
of Maxwell’s equation (13) rendering it purely solenoidal.
Although decomposing the interaction term Ia as a pure
vector (as in the homogeneous case) is therefore incorrect,
it is still possible to find the solution for Ia: either by
solving for�ab and the first-order part of Bb separately and
then multiplying the solutions obtained, or by proceeding
in a similar manner as in [9].

GWs are purely tensorial and so we expand the repre-
sentative shear variable with the help of tensor harmonics
Q�k�ab ,
-6
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�ab �
X
k

��k�Q�k�ab; (31)

where as usual _Q�k�
hai � 0 and D2Q�k�ab � ��k

2=a2�Q�k�ab hold.
Each gravitational wave mode is associated with the physi-
cal wavelength

�GW � 2�a=k: (32)

The expansion of the magnetic field in pure vector (sole-
noidal) harmonics is

~B a �
X
n

~B�n�Q�n�a ; (33)

and these vector harmonics obey the relations _Q�n�
hai � 0 and

D2Q�n�a � ��n2=a2�Q�n�a . Similarly as above, we associate
with a given wave number n characterizing a magnetic
perturbation a characteristic length scale,

� ~B � 2�a=n; (34)

which we relate to the size of the magnetized region.
To simplify the treatment of the interaction between

GWs and the magnetic field, we proceed as follows.
First, we assume the magnetized plasma region has a finite
size � ~B � 2�a=m corresponding to some wave number m,
which encodes the magnetic inhomogeneity over this
region. We therefore write ~Ba �

P
n�m>0

~B�n�Q�n�a 

~B�m�Q�m�a . Since the interaction is most effective if the
gravitational wavelength �GW matches the size of the
magnetic field region � ~B [9], we may restrict ourselves to
the resonant case where the gravitational and magnetic
wave numbers agree. This means that the comoving scale
of the magnetic field perturbation is the same as that of
the GWs, i.e. k � m. Consequently, the m-mode of the
shear is the main contribution to the interaction, which
now reduces to a single mode-mode term: Ia 


��m� ~B�m�Q�m�ab Q
b
�m�. Making use of these considerations, it

is now a straightforward task to obtain a closed equation
for the interaction variable Ia by combining, as in [9], the
standard evolution equations for the shear and the electric
Weyl tensor, and using _~Bhai � 0. In this way we readily
arrive at

�I hai �
m2

a2 Ia�
5

3
� _I hai �

�
1

9
�2�

1

6
��

3

2
p�

5

3
�
�
Ia� 0:

(35)

Here, the second term on the left-hand side stems from the
expression ��D2�ab� ~B

b which emerges during the calcu-
lation. As expected, Eq. (35) is equivalent to multiplying
the m-mode shear Eq. (12) with the magnetic field ~Ba. We
remind the reader that the derivation of Eq. (35) does not
rely on the MHD approximation and is indeed valid for all
values of the curvature index K and is also independent of
the equation of state.
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C. Governing equation for F a

In the ideal MHD limit, the electric field is expressed as
the cross-product of the primary magnetic field and the
velocity, Ea � ��abcv

b ~Bc. Using the linear velocity
propagation Eq. (27) together with the linear evolution
Eq. (8) for the magnetic field, one easily finds _Ehai �
�Ea � 0, and therefore

�curlEa�? � curl _Ehai �
1
3�curlEa � �4

3�curlEa: (36)

This further implies that the evolution equation of the
MHD contribution encoded in F a is simply given by

_F hai �
2

3
�F a � 0: (37)

It follows that the term F a evolves like the electric field
Ea, and decays as �a�2.
VI. SOLUTIONS FOR SPATIALLY FLAT
UNIVERSES

Because the derived MHD equations above are only
valid in the cold plasma limit, we only investigate the
dust solutions for spatially flat models with zero cosmo-
logical constant. It is convenient to use the dimensionless
time variable 
 � 3

2H0�t� t0� � 1 introduced in [9]. In
terms of this variable, the Hubble parameter evolves sim-
ply as H0=
 and the scale factor obeys a � a0
2=3, where
the zero index indicates evaluation at some arbitrary initial
time t0.

Employing the time variable 
, the equation for the
interaction variable (35) may be written as

9

4
I 00hai �

15

2

I 0hai �

�
3

2
2 �

�
m

a0H0

�
2

��4=3�

�
I hai � 0;

(38)

while the Eq. (37) for the MHD term transforms into

F 0
hai �

4

3

F a � 0; (39)

whose solution is simply

F a � F 0
a
��4=3� � F 0

a�a=a0�
�2: (40)

The generated magnetic field will typically depend upon
x � m=�a0H0� � 2���H=� ~B�0 � 2���H=�GW�0, which is
the ratio between the size of the magnetized field region
and the horizon size when the interaction begins.

A. Limiting case where x! 0

If the value of x is so small that we can drop the term x2

in Eq. (38), the general solution for the interaction variable
is

I a�
� � C1
��1=3� � C2
�2; (41)

where C1 and C2 are integration constants. Since for the
-7
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generation of magnetic fields the dominant mode is more
important, we set C2 � 0 and obtain the solution

I a�
� � I0
a
��1=3� � �0

ab
~Bb0


��1=3�: (42)

It is now a very simple exercise to integrate the induction
Eq. (29) to find

3
2H0Ba �

3
2I

0
a�


2=3 � 1� �F 0
a�

��1=3� � 1�; (43)

where the integration constant was determined by requir-
ing the generated magnetic field to vanish initially. It
follows that the total magnetic field measured by the
fundamental observer due to the zero-zero mode interac-
tion becomes

B�0�0��a� � ~B�0�0

�
a0

a

�
2
�

1�
��0�0

H0

�
a
a0
� 1

�

�
2

3

F �0�0

H0
~B�0�0

��
a
a0

�
��1=2�

� 1
��
; (44)

where the second term in the square bracket originates
from the interaction of the magnetic field ~Ba with the shear
(already obtained in [9]), while the third term represents
the MHD contribution, which is the interaction of the
magnetic field ~Ba with the plasma velocity perturbation
va. Note that the MHD contribution slowly decays away as
the scale factor increases, in contrast to the gravito-
magnetic part, which linearly grows with the scale factor.
However, in the long-wavelength limit the contribution due
to the GWs is negligible since one typically finds the shear
anisotropy to be very small, ��=H�0 � 1. Moreover, since
we may approximate F 0 � F0 
 �v ~B=�~B�0 due to Fa �
�curlEa and the MHD relation (19), we see that the factor
F 0=�H0

~B0� in (44) is proportional to x� 1, and the MHD
contribution turns also out to be negligible. Consequently,
in the long-wavelength limit, there is no amplification of
the initial magnetic field by GWs or velocity perturbations
and one needs to consider the general case in order to look
for an amplification.

B. General case with x � 0

When x is not negligible (the magnetized region is
strictly finite), the general solution to the Eq. (38) is found
to be

I a�
� � 
��7=6��D1J1�
5
2; 2x


1=3� �D2J2�
5
2; 2x; 


1=3�	;

(45)

where D1, D2 are integration constants and J1, J2 denote
Bessel functions of the first and second kind, respectively.
Since we are only interested in the dominant contribution,
we set D2 � 0 as before, noting that the Bessel function of
the second kind is decaying on superhorizon scales x� 1.
The remaining integration constant takes then the value
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D1 �

����
�
p

x5=2

4x2 sin�2x� � 3 sin�2x� � 6x cos�2x�
�0

~B0: (46)

Assuming that the induced magnetic field is zero initially
when the interaction begins (
 � 1), the solution for the
rescaled magnetic field then becomes

B�
� �
�0

~B0

H0y

�
1

2
sin�2x�� xcos�2x�� xcos�2x
1=3�
��2=3�

�
1

2
sin�2x
1=3�
�1

�
�

2

3

F0

H0
�
��1=3� � 1�; (47)

where we defined y � 4x2 sin�2x� � 3 sin�2x� �
6x cos�2x� and made use of (39). Notice that in the limit
x! 0 one recovers the result (43). Had we instead focused
on the other branch of the solution (45), we would find (47)
again but with the sin and cos functions as well as some
signs interchanged. Hence, the m�m mode interaction
generated magnetic field as seen by the fundamental ob-
server moving with 4-velocity ua is given by the expression

B�m�m��a� � ~B�m�0

�
a0

a

�
2

�

�
��m�0

H0
;

1
2 sin�2x�� xcos�2x�

4x2 sin�2x�� 3sin�2x�� 6xcos�2x�

�
2

3

F�m�0

H0
~B�m�0

�O�a��1=2��

�
; (48)

here, the nondisplayed terms are decaying with time and
therefore irrelevant for the amplification process but can be
inferred easily from (47) if required.

What happens if we take the full solution (45) of the
interaction variable into account instead of just looking at
one branch? Since both the Bessel functions of the first as
well as the second kind are merely sin and cos functions
modified by the same damping envelopes, one should in
principle consider both branches even though their asymp-
totic behavior is different. In this case, the integration
constants D1 and D2 are determined by requiring that
initially one has I0 � I�
 � 1� � ��m�0

~B�m�0 together
with I0

0 � �0�m�0
~B�m�0 . The exact solution for the rescaled

magnetic field is then found in analogy with the above
example [cf. (47)], but it is too large to display it in full.
However, the dominant contribution to the generated mag-
netic field can be written down in simple terms as

B�m�m��a� � ~B�m�0

�
a0

a

�
2
�

3

2x2

2��m�0 � �0�m�0

H0
�

2

3

F�m�0

H0
~B�m�0

�O�a��1=2��

�
; (49)

where it was again assumed that there is no generated
magnetic field initially. If we employ the natural
length scale �~B, inherent to the problem under considera-
-8
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tion, we may estimate _�0 
 ��=�~B�0, implying �0
0 


2=3��=H0�~B�0, and also F0 
 �v ~B=�~B�0 due to Fa �
�curlEa and the MHD relation (19). Remembering further
the definition of x � 2���H=� ~B�0, we can finally write
down the expression for the total magnetic field in a
more convenient form:

B�m�m��a� ’ ~B�m�0

�
a0

a

�
2
�

1�
3

4�2

�
�~B

�H

�
2

0

��m�0

H0

�
1�

1

3

�
�H

�~B

�
0

�

�
2

3
v0

�
�H

�~B

�
0
�O�a��1=2��	: (50)

This is our main result—it shows in detail how the mag-
netic field, resulting from the interaction of the background
magnetic field ~B0 with GWs and velocity perturbations v0

in the plasma, depends on the initial conditions.
Observe that at super-Hubble scales the MHD contribu-

tion becomes completely negligible mirroring the obser-
vation that plasma effects are typically more important on
small scales. Our main result directly generalizes our
previous result (49) in [9] derived for the case of a homo-
geneous magnetic field to the inhomogeneous case. It
should be stressed that the use of ideal MHD in the cold
plasma limit allowed for a self-consistent treatment of the
electric fields and plasma currents.
VII. DISCUSSION

If we look only at superhorizon scales and divide the
result (50) through the energy density of the background
radiation, ��, (which decays in the same manner as the
original magnetic field), the dominant contribution is then
given by

B

�1=2
�
’

�
1�

1

10

�
�~B

�H

�
2

0

�
�
H

�
0

�� ~B

�1=2
�

�
0
; (51)

where the wave number indices have been suppressed and
the zero suffix indicates the time when the interaction
begins. This result (51) was already found in Betschart
et al. [9] and previously reported by Tsagas et al. [10], a
paper which employed the weak field approximation. The
result (51) can be applied to the reheating phase of the
Universe at the end of inflation, for which the effective
equation of state was that of dust (cf. [9,10] for an
application).

On the other hand, at subhorizon scales the main part of
the magnetic field is given by

B

�1=2
�
’

�
1�

2

3
v0

�
�H

�~B

�
0

�� ~B

�1=2
�

�
0
; (52)

which could be applied to the matter-dominated phase of
the Universe. In order to obtain an order-of-magnitude
estimate we assume that the velocity perturbations (result-
ing from Thomson scattering) in the primordial plasma in
effect start to interact with the preexisting magnetic field ~B
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somewhat after matter-radiation equality with a redshift of
roughly (zeq ’ 104). The horizon at matter-radiation de-
coupling was �eq

H � H�1
0 �1� zeq�

�3=2 ’ 10�2 Mpc, where
H0 denotes today’s Hubble constant. A typical size of a
seed field required for the dynamo mechanism is � ~B ’
10 kpc on a comoving scale today, hence �eq

~B
�

�1� zeq�
�1� ~B ’ 1 pc. From cosmic microwave back-

ground (CMB) measurements we know that at decoupling
(zdec ’ 103) the velocity perturbations satisfy vdec � 10�5,
while we read off from Eq. (27) that they decay like a�1. It
follows that vdec � veq�aeq=a� � veq


�2=3 � �1� zdec��

�1� zeq�
�1veq ’ 10�1veq, and whence veq ’ 10�4. Taking

everything together, one obtains the boost factor in (52) to
be of order unity, that is, �v�H=�~B�eq ’ 1. Given that we
can rely on the MHD approximation at the early stages of
the matter-dominated scenario, the velocity perturbations
in the plasma will lead at best to a doubling of the initial
magnetic field strength.

Comparing the result (51) with the final solution pre-
sented in Betschart et al. indicates that the magnitude of
the amplification due to the interaction between GWs and
magnetic fields is proportional to the square of the ratio of
the coherence length �~B of the initial magnetic field and the
initial size of the horizon �H in both the homogeneous and
inhomogeneous magnetic field cases. The additional MHD
part of the field in (50) above arises from the forcing term
Fa � �curlEa � 2Db�v�aBb	� whose time behavior is ob-
tained from a first-order propagation equation in which a
Laplacian does not appear, its general solution therefore
being independent of wave number and scale (of course,
the initial conditions still depend on the size of the inter-
action region). It was found that the seed field’s interaction
with GWs is only important at superhorizon scales, while
the interaction with plasma velocity perturbations domi-
nates at subhorizon scales. It is worth pointing out that
there is no amplification at all in the long-wavelength limit.

In contrast with the results in Betschart et al. [9], the
generated magnetic field modes now have wave numbers
that are constructed from those of the interacting field and
GWs and thus differ from those of the GWs alone. If the
GW has wave vector ka and the ‘‘background’’ magnetic
field a wave vector ma (where �~B � 2�a=m corresponds
to the size of the magnetic inhomogeneity), the wave
number ‘ of the induced field satisfies ‘2 � �ka �ma��
�ka �ma� � k2 �m2 � 2maka. If for simplicity the first-
order wave vectors are assumed to be orthogonal, kama �
0, then the m�m interaction yields a field with wave
number ‘2 � 2m2 (4m2 in the parallel case). It follows
that the characteristic wavelength � � 2�a=‘ of the in-
duced field is somewhat shorter than the original B-field by
the superposition of the corresponding magnetic and GW
wave numbers.

It is worth noting that the presence of a spatially homo-
geneous field is only consistent in the flat Universe [9],
whereas no restrictions on the spatial geometry arise at any
-9
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stage in the derivation of the evolution equations with
�DbBa� � 0 in this paper. This makes sense when we
consider the spectrum of allowed wave numbers for differ-
ent geometries. For open models (K � �1), the lowest
wave number is n � 3. For closed models (K � �1), we
find that n � 1. However, the spectrum of wave numbers in
a flat spacetime (K � 0) is continuous, with n � 0. Given
that the spatial homogeneity of the background field in [9]
restricts its associated wave number to n � 0, we see that
this eigenvalue can only be accommodated in a flat
Universe.

More interesting is the relationship between curvature
and magnetic fields. Einstein’s theory is geometrical which
implies that vectors are directly coupled to the spacetime
curvature via the Ricci identity [32]. In [33], Tsagas and
Maartens find that the evolution equation of the spatial
gradient of the magnetic field contains a term �acdB

cHd
b �

O��B�g�, which alludes to a nonlocal coupling to curva-
ture. This result is confirmed in [11] with the appearance of
a term containing the spatially projected Riemann curva-
ture tensor in the propagation equation of (DaBb) and
indicates that the curvature sources magnetic inhomoge-
neities. In the case of a homogeneous magnetic field in
Betschart et al., the spatial gradients of the magnetic field
are at least second order. In order to preserve the spatial
uniformity of the first-order field through time, the spa-
tially projected Riemann tensor may have to vanish to
prevent it from sourcing (DaBb) so that the spatial gra-
dients remain small and continue to contribute at higher-
order only. In the analysis of the inhomogeneous magnetic
field presented here, magnetic spatial eddies exist at first
order and for this reason, the boost from the coupling
between the field and the curvature need not necessarily
be eliminated. In fact, such couplings are explicitly re-
tained in our approach via the standard commutation rela-
tions (cf. the appendix).

VIII. CONCLUSION

Although the focus of magnetogenesis in recent years
has been the generation of large-scale magnetic fields, a
self-sufficient mechanism still evades us. The galactic
dynamo is indeed physically feasible and has been shown
to generate fields with strengths matching current obser-
vations, but requires a reasonably strong seed field to work.
To make this theory more robust, we need to find a way of
producing seed fields that are suitable for subsequent am-
plification by the dynamo. Cosmological perturbations
have been identified as a possible source of primordial
magnetic field amplification which is present in the pre-
recombination era. Considering second-order couplings
between electrons, photons and protons, the electric cur-
rent induced by the plasma vorticity (a known source of
magnetic fields) and the additional contribution of the
photon anisotropic stress are found to yield a magnetic
field that is a sufficient seed for the dynamo to work [34].
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The coupling of density and velocity perturbations that are
naturally occurring in the early Universe are shown to lead
to similar resultant fields in the context of a relativistic
charged multifluid [29].

In this paper we built on previous work in Betschart
et al., in which the full set of equations determining the
evolution of the gravitational waves and the generated
electromagnetic fields was presented, initially for the
case of a homogeneous magnetic field, and generalized
the analysis to the case of a spatially inhomogeneous
magnetic field using the magnetohydrodynamic approxi-
mation (restricting ourselves to the dust case). Analyzing
the equations for a spatially flat dust FLRW Universe, we
were able to confirm our previous results and, in particular,
we do not find any amplification in the case of the long-
wavelength limit. Our previous work indicated the ampli-
fication from this interaction was negligible. It is interest-
ing to consider work in [35] which challenges the
assumption that magnetic fields residing within clusters
necessarily exist with a coherence lengths of the clusters.
Since numerical simulations indicate only a dependence of
the final field in a collapsing magnetized cluster on the
magnetic energy density only, and not the initial scale, it
has been argued that the primordial fields on scales of kpc
can exist with strengths as much as 10�12 G. Subsequent
amplification by adiabatic collapse would generate fields
matching current observations, without needing to invoke
the galactic dynamo. A physical mechanism to support this
argument has however, yet to be proposed. Our final result
is also proportional to the square of the field’s initial scale
length, which means that assuming a smaller magnetic
coherence scale prior to collapse leads to an even smaller
amplification from the field’s coupling to the gravitational
waves.

Over and above the presentation of a physically viable
mechanism for primordial magnetogenesis, this paper also
establishes a formalism which guides the choice of proper
second-order gauge-invariant variables. Using this meth-
odology, one is able to obtain results in terms of clearly
defined quantities, with no ambiguity concerning the
physical validity of the variables.

The possibility of obtaining seed magnetic fields of
sufficient magnitude via a combination of inflationary
physics and standard MHD theory is an exciting prospect.
However, many of the parameters involved in estimating
the size of the effect are not well known. For instance the
spectrum of gravitational waves predicted by inflationary
theory still has to be verified, as well as the large-scale
structure of cosmological magnetic fields. For this purpose,
more precise and complete measurements (such as the
Planck mission) of the, e.g., polarization of the CMB
would give much needed information [36]. Moreover,
studies of interactions between incoherent gravitational
wave distributions and turbulent magnetic fields could
also be done in order to obtain a more detailed picture.
This is left for future research.
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APPENDIX: COMMUTATION RELATIONS

Here we present various commutator relations which
have been used in the text. The relations are given up to
second order in our perturbation scheme. The vanishing of
vorticity, !ab � 0, is assumed throughout in conjunction
with the constraints Da� � Dap � 0 which isolate the
pure tensor modes. All appearing tensors are PSTF, Sab �
Shabi, and all vectors Va, Wa are purely spatial.

Commutators for first-order vectors Va:

�DaVb�

? � Da

_Vb �
1
3�DaVb � �a

cDcVb �Ha
d�dbcV

c

(A1)

�curlVa�? � curl _Va �
1
3�curlVa � �abcurlVb �HabV

b

(A2)

D�aDb	Vc � �
1
9�

2 � 1
3�����	V�ahb	c

� �13�sigmac�a � Ec�a�Vb	

� hc�a�Eb	d �
1
3��b	d�V

d (A3)
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Commutators for first-order tensors Sab:

�DaSbc�? � Da
_Sbc �

1
3�DaSbc � �adDdSbc

� 2Ha
d�de�bSc�

e (A4)

�DbSab�

? � Db _Sab �

1
3�DbSab � �

bcDcSab

� �abcHb
dS

cd (A5)

�curlSab�? � curl _Sab �
1
3�curlSab � �ec�cd�aDeSb�

d

� 3HchaSbi
c (A6)

c urlcurlSab � �D2Sab � ����� 1
3�

2�Sab

� 3
2DhaD

cSbic � 3Scha�Ebi
c � 1

3��bi
c�

(A7)

Commutators for second-order vectors Wa:

�DaWb�

? � Da

_Wb �
1
3�DaWb (A8)

D �aDb	Wc � �
1
9�

2 � 1
3�����	W�ahb	c (A9)

curlcurlWa � �D2Wa � Da�divW�

� 2
3����� 1

3�
2�Wa (A10)
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