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Linear perturbative theory of the discrete cosmological N-body problem
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We present a perturbative treatment of the evolution under their mutual self-gravity of particles
displaced off an infinite perfect lattice, both for a static space and for a homogeneously expanding space
as in cosmological N-body simulations. The treatment, analogous to that of perturbations to a crystal in
solid state physics, can be seen as a discrete (i.e. particle) generalization of the perturbative solution in the
Lagrangian formalism of a self-gravitating fluid. Working to linear order, we show explicitly that this fluid
evolution is recovered in the limit that the initial perturbations are restricted to modes of wavelength much
larger than the lattice spacing. The full spectrum of eigenvalues of the simxple cubic lattice contains both
oscillatory modes and unstable modes which grow slightly faster than in the fluid limit. A detailed
comparison of our perturbative treatment, at linear order, with full numerical simulations is presented, for
two very different classes of initial perturbation spectra. We find that the range of validity is similar to that
of the perturbative fluid approximation (i.e. up to close to ‘“‘shell-crossing’’), but that the accuracy in
tracing the evolution is superior. The formalism provides a powerful tool to systematically calculate

discreteness effects at early times in cosmological N-body simulations.
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L. INTRODUCTION

The standard paradigm for formation of large scale
structure in the universe is based on the growth of small
initial density fluctuations in a homogeneous and isotropic
medium (see e.g. [1]). In the currently most popular cos-
mological models, a dominant fraction (more than 80%) of
the clustering matter in the universe is assumed to be in the
form of microscopic particles which interact essentially
only by their self-gravity. At the macroscopic scales of
interest in cosmology the evolution of the distribution of
this matter is then very well described by the Vlasov or
“collisionless Boltzmann™ equations coupled with the
Poisson equation (see e.g. [2]). A full solution, either
analytical or numerical, of these equations starting from
appropriate initial conditions (IC) is not feasible. There
are, on the one hand, various perturbative approaches to
their solution (for reviews see e.g. [3,4]), which allow one
to understand the evolution in some limited range (essen-
tially of small to moderate amplitude fluctuations). On the
other hand, there are cosmological N-body simulations (for
reviews see [5—7]), which solve numerically for the evo-
lution of a system of N particles interacting purely through
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gravity, with a softening at very small scales. The number
of particles N in the very largest current simulations [8] is
~10'°, many more than two decades ago, but still many
orders of magnitude fewer than the number of real dark
matter particles (~ 10% in a comparable volume for a
typical candidate). The question inevitably arises of the
accuracy with which these ‘“‘macro-particles’” trace the
desired correlation properties of the theoretical models.
This is the problem of discreteness in cosmological
N-body simulations. It is an issue which is of considerable
importance as cosmology requires ever more precise pre-
dictions for its models for comparison with observations.

Up to now the primary approach to the study of discrete-
ness in N-body simulations has been through numerical
studies of convergence (see e.g. [9,10]), i.e., one changes
the number of particles in a simulation and studies the
stability of the measured quantities. Where results seem
fairly stable, they are assumed to have converged to the
continuum limit. While this is a coherent approach, it is far
from conclusive as, beyond the range of perturbation the-
ory, we have no theoretical “benchmarks” to compare
with. Nor is there any systematic theory of discreteness
effects, e.g., we have no theoretical knowledge of the N
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dependence of the convergence. Given that typically N is
varied over a very modest range (typically one or 2 orders
of magnitude) compared to that separating the simulation
from the model (typically 70 orders of magnitude) there is
much room for error.

Different mechanisms by which discreteness effects
may make the evolution of N-body simulations different
to that of the fluid limit have been discussed in the litera-
ture. A very basic consideration is that of the discreteness
effects introduced already in the IC, before any dynamical
evolution. Indeed there are necessarily discrepancies be-
tween the correlation properties of the discretised IC and
those of the input theoretical model, as there are intrinsic
fluctuations associated with the particles themselves. For
analysis and discussion of these effects see, e.g., [11-16].
What is probably the most obvious effect of discreteness,
and certainly the one most emphasized in the literature, is
two body collisionality: pairs of particles can have strong
interactions with one another, which is an effect absent in
the collisionless limit. For analysis and discussion of these
effects see, e.g., [17-21].

In this paper we present an approach which allows in
principle a systematic understanding of discreteness effects
between these two regimes, in the evolution from the IC up
to the time when two body collisions start to occur. We do
so by developing a perturbative solution to the fully dis-
crete cosmological N-body problem, which is valid in this
regime. This essentially analytic solution can be compared
to the analogous fluid (N — o0) solution, and one can
understand exhaustively the modifications introduced, at
a given time and length scale, by the finiteness of N. While
the usefulness of the approach is restricted to the regime of
validity of this perturbative approach, we can gain consid-
erable insights into the effects of discreteness and how they
introduce error. Some of the essential results have already
been briefly reported in [22]. In this paper we describe in
much greater detail the perturbative method used to de-
scribe the evolution, and evaluate its regime of validity by
extensive comparison with numerical simulations. In a
forthcoming paper [23] we will discuss the application of
this method to the study of discreteness effects in N-body
simulations, providing precise quantifications of these ef-
fects in the regime in which our treatment is valid.

The perturbative scheme we employ is one which is well
known and standard in solid state physics, as it is that used
in the treatment of perturbations of a crystal about the local
or global minimum of its internal energy. Indeed the class
of cosmological N-body simulations we consider are those
which start by making very small perturbations to particles
initially placed on a perfect simple lattice [6,9,10,24-26].
Up to an overall change in sign, our perturbative scheme is
precisely that one would use for the analysis of the exten-
sively studied Coulomb lattice or Wigner crystal (see e.g.
[27,28]), of N particles on a lattice interacting by a pure
unscreened Coulomb force. At linear order (harmonic
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analysis) one simply solves a 3N X 3N eigenvalue prob-
lem to determine the eigenmodes and eigenvalues of the
displacements off the crystal. This can be done at very low
cost in computational resources because of the symmetries
of the lattice. Stable (i.e. dynamically oscillating) modes in
one problem become unstable (growing and decaying)
modes in the other problem, and vice versa. One conse-
quence of this which we will discuss briefly here, and more
extensively in [23], is that, for what concerns discreteness
in N-body simulations, there are qualitatively different
features on the simple cubic (sc) lattice compared to the
body centered cubic (bcc) or face centered cubic (fcc)
lattice.

A crucial step in our analysis is evidently the compari-
son of our solutions for the evolution with those obtained
from the treatment of the continuous self-gravitating sys-
tem. This latter problem can also be solved in a limited
range with a perturbative treatment of the equations of a
self-gravitating fluid, which are obtained by truncation of
the collisionless Boltzmann equation. Given that our per-
turbation scheme works with the displacements of the
particles, one might anticipate that the appropriate pertur-
bation scheme to compare with is that given in the
Lagrangian formulation of these fluid equations, in which
the evolution is described in terms of the trajectories of
fluid elements [29]. We show explicitly, at linear order, that
this is the case: taking the limit in which the perturbations
to the lattice are of wavelengths much larger than the
lattice spacing ¢ the evolution described by our scheme
maps precisely on to that at the same order in the
Lagrangian description of the fluid. The Zeldovich ap-
proximation, which is simply the asymptotic form of this
solution, can then be understood in very simple analogy
with the long-wavelength coherent ““plasma oscillations”
in a unscreened charged plasma.

The paper is organized as follows. In the next section we
describe the perturbative treatment for perturbations off a
perfect lattice, for the specific case of gravity. We work
firstly, for simplicity, in a static Euclidean universe, giving
the explicit expressions for the evolution from general IC
(i.e. any perturbation from the lattice). In the following
section we explicitly solve the evolution for the case of a
simple cubic lattice, and discuss in detail the structure of
the spectrum of eigenvalues. In Sec. IV we generalize our
results to the case of an expanding universe, and then show
explicitly the recovery of the fluid limit given by the
solution at the same order of the Lagrangian formulation
of the equations of a self-gravitating fluid. In the next
section we present a comparison of the evolution described
by our approximation with that of full numerical N-body
simulations. We consider both uncorrelated initial pertur-
bations (a ““shuffled lattice’”) and a set of highly correlated
perturbations (with a power spectrum of density fluctua-
tions ~k~2), like that in current cosmological models. We
verify that the agreement is very good, and that the evolu-
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tion is traced with considerably better accuracy than by the
fluid limit at the same order. Both approximations break
down when particles start to approach one another (i.e.
“shell-crossing” in fluid language), which we parametrise
through an appropriate statistical measure. In the final
section we summarize our results and discuss various
further developments of the method presented here which
could be pursued, notably the extension of the perturbation
scheme to higher than linear order. This may throw further
light on how insights about discreteness gained using this
formalism, which will be discussed at length in [23], ex-
tend into the regime of highly nonlinear evolution. We also
discuss briefly the possible interest of solving the cosmo-
logical N-body problem on the bcc lattice, as well as the
possible extension of our method to IC generated on
“glassy” configurations.

I1. LINEARIZATION OF GRAVITY ON A
PERTURBED LATTICE

In this section we start by defining and studying some
general properties of the gravitational potential and force
of an infinite system of point particles. We then consider
the particular case of a perturbed infinite lattice in a static
Euclidean space, the generalization to an expanding uni-
verse being given in Sec. I'V. Since the force is zero in the
unperturbed lattice, the dominant contribution to the force
in the perturbed case is linear in the relative displacements
of the particles. In the last subsection, we consider the
equations of motion resulting from this linearized force.

A. Definition of the force and the potential

Let us consider carefully first the definition of the gravi-
tational force in an infinite system of point particles of
equal mass m. We will assume that this system (either
stochastic or deterministic) is characterized by a well
defined mean number density ny > 0, and mass density
po = mny. The gravitational potential of a particle, per
unit mass, at r, due to the particles in a finite volume V, is

o(r) = —sz

r’#=r |

Vv, r), )

where the sum is over all the particles contained in the
system, and V(V, r) is the window function for the volume
V,i.e.,

@)

(1 ifreV,
V.= {0, otherwise.

The force per unit of mass (i.e. the acceleration), due to
these same particles, is given by the gradient of the poten-
tial:

F(r) = —V¢(r) (3)

Taking the infinite volume limit V — oo, neither the
gravitational potential (1), nor the gravitational force (3),

PHYSICAL REVIEW D 73, 103507 (2006)

are well defined. In the first case the result diverges, while
in the second it may be finite or infinite, but its value
depends on how the limit is taken.'

In Euclidean spacetime this behavior in the infinite
volume limit may be regulated by the introduction of a
negative background—the so-called Jeans swindle (see
e.g. [2,30])—so that the potential is defined as

¢(r)=—GV1i31[ g V(v )
/ 1 /
NI RGe = RO

This modifies the usual Poisson equation to

V2¢(r) = 47G(p(r) — po). &)

The expression (4) is well defined,? provided (i) that the
limit V — oo is taken in a physically reasonable way,” and
(ii) that the fluctuations in the system are sufficiently
rapidly decaying at large scales.* In the cosmological
context this negative background appears naturally as a
consequence of the expansion of the universe (see Sec. IV).
The simulations of self-gravitating systems we are in-
terested in are performed using a finite cubic simulation
box of side L and volume Vjyz = L3, subject to periodic
boundary conditions. The force on a particle is thus com-
puted not only from all the other particles inside the
simulation box, but also from all the copies of the particles
contained in the “replicas’. The reason for using these
boundary conditions is that they introduce the inevitable
finite size effects without breaking translational invariance:
every particle can be considered to be at the center of the
finite box and therefore sees the boundary in the same way.
The infinite system we consider is thus an infinite number
of replicas of a finite cubic box, with a negative back-
ground as described above to make the force well defined.’
In this case the gravitational potential may be written as

B®) = lim[,(1) + ,()] (©)

where

1F(r) is a conditionally convergent series.

“For a more detailed discussion of the gravitational force in
1nﬁn1te systems see also [31].

*For example taking the infinite volume limit in compact sets.

“If P(k) is the power spectrum of density fluctuations, it is
simple to show, using the modified Poisson equation Eq. (5), that
convergence of the fluctuations in the gravitational potential
requires lim;_,ok" P(k) = 0 for n > 1. For finite fluctuations in
the force one requires n > —1.

>Note also that, because the system is Just a lattice when
considered at scales larger than the box size, the fluctuations
are always sufficiently suppressed at large scales so that the
gravitational force is well defined. Thus any possible divergence
in the fluctuations of force will be regulated by the box size L.
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1
— 3. /
¢,(r) = Gpy /[R3 d&’r r—r| 1) (7
is the contribution from the background, and
V(V,r +nL)
—Gm 8
¢ () = Z =il ®)

the contribution from the particles. Here the sum over r’ is
restricted to the particles in the box, while the other sum,
over the three integers n (i.e. over the images of r’), has
a “*” to indicate that the term r’ = r is excluded when
n=20.

The gravitational force is:

F(r) = lim [F)(r) + F,(r)] 9
where
F,(r) = Gpy fw &r Ir ’I* Vv,¥)  (10)
and
F,(r)= szl nLP V(V,r +nL). (11)

Note that the contribution from the background (10) is
identically zero if one takes a window function with in-
version symmetry in r (e.g. a sphere or cube centered onr).

B. Linearization of the gravitational force

We consider the infinite lattice generated by the repli-
cation of a sc lattice of volume Vj of side L with N
elements, i.e., whose lattice vectors are R =
(my, my, m3)€ with m; €[0,N'3—1]nN and €=
L/N'/3 is the lattice spacing.® This lattice (with a particle
at each site) is now perturbed by applying displacements
u(R) to each particle R, so that the new positions of the
particles can be written as

r =R + u(R). (12)

The “particle’’ term in the gravitational force [i.e.
Eq. (11)] can then be expanded order by order in Taylor
series about its value in the unperturbed lattice. At linear
order in the relative displacements u(R) — u(R’) we ob-
tain

®The generalization of all the calculations presented here to
any Bravais lattice is straightforward (see e.g. [32]).
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R-R + u(R) — u(R’)
F -G
p(0) = mgf{m —R+ nL|3 IR — R’ +nL|’

[u(R) —uR)]-[R—-R'+nL]
IR — R’ +nL]

X (R—R'+ nL)}V(V, R’ + nL). (13)

The first term in this sum

“* R—-—R’'+nL

—omy —— - b
m% IR—R +nLp

V(V,R’ + nL) (14)

has the poor infinite volume behavior which is regulated, as
discussed above, by the contribution coming from the
background Eq. (10). The total linearized force is then
also well defined, and given by the infinite volume limit
of Eq. (13) summed with Eq. (10). In the case that we
choose to calculate using the infinite volume limit of a
volume V with inversion symmetry in r (i.e. the displaced
position of the particle), the full linearized force is thus
given by Eq. (13). If, however, we choose to sum in a
volume with inversion symmetry in the lattice site R, it is
simple to show that Eq. (14) is identically zero. The
background term then contributes, with the sum [(10) +
(14)] remaining invariant.
The convergence criterion for each term of (13) is

IR — R’ > [u(R) — u(R')|. (15)

Note that the validity of the power expansion does not
depend on the displacement of the particle R on which
we compute the force, but on relative displacements of the
particles at the position R and R’. Under the action of the
gravitational interaction, the displacements u(R) will typi-
cally grow so that the condition Eq. (15) is violated after
some time. However when some pairs of particles no
longer satisfy condition (15), it may nevertheless continue
to apply for the rest of the particles and (13) may remain a
sufficiently good approximation to the force. In order to
have a precise characterization of the regime of validity of
the approximation applied to follow the dynamical evolu-
tion of a perturbed lattice, it is necessary to compare the
results with those obtained from evolution under full grav-
ity. We will perform such a comparison in Sec. V using
N-body simulations.

It is convenient to write the linearized force just dis-
cussed in terms of the so-called dynamical matrix D(R)
(see e.g. [32,33]):

F(r) = ZD(R — R)u(R). (16)
R/

This matrix has the following properties: it is a complete
symmetric operator, i.e., D,,(R) = D,,(—R) with in-
version symmetry, ie., D,,(R)=D,,(—R). Further,

since the same displacement applied to all the particles
produces no net force, we have > g D,,,(R) = 0. For any
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pair interaction potential v(r) it is straightforward to show
that it can be written as [32,33]

D,, R #0)=09,0,w(R), (17a)
D,yR=0)=-3>"3,9,wR), (17b)
R'#0
where
?w(r
e = | 5 a(r)}_ a8)
and w(r) is the periodic function defined as
w(r) = Zv(r +nl), (19)
n

i.e., the potential due to a single particle and all its copies.
For gravity we have v(r) = —Gm/r and Eq. (19) is im-
plicitly understood to be regulated as discussed at length
above by the addition of a uniform negative background.
We will describe below, and in Appendix A, how we use
the well-known Ewald summation technique to explicitly
perform this sum.

Equation (17b) gives the force on a particle, at first order
in the displacements, when it is displaced and all the others
remain unperturbed (see Fig. 1). For gravity it is straight-
forward [31] to show that

dar
D/J,V(O) = 7Gp05

3 w

(20)

i.e., the linearized force f,(r) on a particle due only to its
own displacement u with respect to the rest of the lattice is

4
£,(r) = {Gmu(R). Q1)

The simplest way to derive this result is by summing the
force in spheres centered on the unperturbed position of
the displaced particle. In this case it is straightforward to
show, by symmetry, that the linearized direct particle con-
tribution Eq. (13) is zero and the full force is given by the
background term Eq. (10). The result follows then simply

FIG. 1. Computation of the diagonal terms of the dynamical
matrix at R = 0.
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from Gauss’ law which gives that the force comes only
from the region inside the sphere shown in Fig. 1.

C. Equations of motion in a static Euclidean universe

In this section we derive the equations of motion of the
particles in the linear approximation, and then solve them.
We treat first a static Euclidean space, giving the general-
ization to a cosmological expanding universe in Sec. I'V.

Using Newton’s second law and Eqgs. (12) and (16) we
can write the equation of motion of the particles as:

ii(R,7) = ZD(R — R)u(R/, 1), (22)
R/

where the double dot denotes a double derivative with
respect to time. The expression (22) is a system of vectorial
coupled second order differential equations which can be
reduced to an eigenvalue problem, using standard tech-
niques. From Bloch’s theorem [32] it follows that Eq. (22)
can be diagonalized by the following combination of plane
waves:

u(R, 1) = %Z i(k, r)e’® R, (23)
k

where the sum over K is restricted to the first Brillouin
zone, i.e., for a sc lattice to

27
k =—n, 24
n (24)

with n = (n,, n,, n3) such that n; € [—N/2, N/2[NZ. We
denote by u(k, ¢) the Fourier transform of u(R, #):

ik, 1) = Zu(R, e kR (25)
R

where the sum is restricted to the simulation box (i.e.
without considering the replicas). Inserting Eq. (23) in
Eq. (22), we obtain for each k:

t(k, 1) = DK)u(k, 1), (26)

where D(K) is the FT of D(R), defined analogously to
(25). From the properties of D(R) given above, it follows
that D(k) is a real and symmetric operator which satisfies’

41
3
We can now solve Eq. (26) by diagonalizing the 3 X 3
matrix (k). For each Kk, this determines three orthonor-

mal eigenvectors €,(k) with three associated eigenvalues
wi(k) (n = 1,2, 3) satisfying the eigenvalue equation:

D(k)é,(k) = wi(k)é, (k). (28)

II(IE'I(I)D,MV(k) = Gp08,u1/- (27)

We can decompose each mode ii(k, 7) in the basis {¢,/(k)}

"But note that D, (k = 0) = Y D,,,(R) = 0, i.e., D(k) is
discontinuous at k = 0.
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as

3

= > & k)f,(k, ). (29)

Using Egs. (26), (28), and (29) we get the following
equation for the coefficients f, (K, ):

Falk, 1) = 02(k)f,(k, 1) (30)

Depending on the sign of w?2(k), we obtain two classes of
solutions U, (K, t) and V,,(k 1). We choose them, without
any loss of generality, satisfying
Un(k’ tO) = 11 Un(k’ tO) = Oy
V. (K, ty) = 0, V.(K, 1)) = 1.

(31a)
(31b)
The function U, (K, t) is associated with initial displace—

ments and V, (k t) with initial velocities. If w2(k) =0
then

U,(K, t) = cosh(w,(K)( — 1)), (32a)
Vu(k, 1) = sinh(w,(K)(t = 1))/ w,(k). ~ (32b)

If w2(k) <0
Uu(k, 1) = cos(y/l (k)| — 1)), (33a)
Va(k, 1) = sin(y/|wz (K)|(r — 1)) /4/lwz(K)].  (33b)

Whereas the modes (32) with positive eigenvalues cause an
exponential growth of perturbation in the system, the
modes (33) with negative eigenvalues leads to oscillations.
The evolution of the displacement field from any initial
state u(R, #;) is then given by the transformation

u(R, 1) = %Z[T(k, Nk, to) + Q(k, )ik, 15)]e™® R,
k

(34)

where the matrix elements of the “evolution operators” P
and Q are

3

Pk, 1) =D Uk, 0(&,k)),@,k), (35
n=1
3

Q. 1) = V,(k 1)(&,k),@,k),  (35b)
n=1

The operator P thus evolves the initial displacement field
and 9 the initial velocity field.

III. DETERMINATION AND ANALYSIS OF THE
SPECTRUM OF EIGENVALUES OF D(k)

In this section we describe the determination of the
eigenvectors and spectrum of eigenvalues of the dynamical
matrix for gravity. We then discuss the physical meaning of
the results, notably identifying how the fluid limit is ob-
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tained and how corrections to this limit may be calculated.
In this discussion we will use extensively the strict analogy
between the case we are treating and the Coulomb lattice,
or Wigner crystal, studied in condensed matter physics (see
e.g. [28]). This is a system of positively charged particles
embedded in a negative neutralizing background. The
particles interact with a repulsive 1/r potential instead of
the attractive —1/r potential of Newtonian gravity. Thus
all our results are mapped onto those for the corresponding
Coulomb lattice by making the formal substitution Gm? —
—e2, where e is the electronic c:halrge.8

A. Numerical computation of the spectrum of D(k)

The spectrum of the matrix D(k) must be computed
numerically. The matrix D(R) is constructed using the
Ewald sum method [32-35] to speed up the convergence
of the sum. We continue to work here explicitly, as above,
with a sc lattice of side L, with lattice spacing € and N
elements.” To determine the dynamical matrix we use the
Ewald method to evaluate w(r) as given in Eq. (19), split-
ting it into two pieces using an appropriate damping func-
tion C:

w(r) =

Zv(r +nL)C(r + nL|, @)
+ Zv(r +nL)[1 —C(r +nL|, a)], (36)

where « is a arbitrary “damping parameter” of which the
result is independent. The function C(|r|, «) is chosen to be
equal to unity at r = 0 and rapidly decaying to zero as [r|
goes to infinity. The first sum is then evaluated in real space
and the second one in Fourier space, making use of the
Parseval theorem [36], C being chosen so that the second
term in Eq. (36) is analytic at r = 0 and thus rapidly
convergent in Fourier space. A common choice for a 1/r
pair potential is

C(Irl, @) = erfc(a]r]). (37)
The expression for the function w is then:
w(r) = w(r) + wh(r). (38)

In the gravitational case

w(r) = —GmZﬁerfo(alr +nL|), (39a)
k|
W () = — Z |k|2 < >cos[k r], (39b)
B k70

where Vj is the volume of the box and the wavevectors k

8The potential we have used here for gravity has been defined
per unit mass, i.e., in our notation v(r) = e?/mr for the
Coulomb lattice.

°The generalization to a parallelepiped box, and to other
Bravais lattices, is straightforward (see e.g. [32]).
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are as in Eq. (24), but with n ranging over all triple integers
(i.e. not restricted to the first Brillouin zone). There is no
k = 0 term in the sum (39) because of the presence of the
negative background: when summed over all the particles,
this term is equal to

47Gp,
K

}({%‘ﬁo(k) = _ll(lir(l) (40)
i.e., the k = 0 mode of the potential (calculated from the
Poisson equation in Fourier space) which is cancelled by
the contribution coming from the negative background.
The Ewald sum for the dynamical matrix can then be
calculated directly using Eq. (17) and (39). The result, as in
Eq. (38), is divided in two parts:
D(R) = D(R) + DP(R), (41)
for which the explicit expressions are given in Appendix A.
For the results quoted here we have taken o = 2/L [37].
Using this numerical value of «, it is sufficient to sum for

k| s6—7r.

[n| =3
L

(42)
to obtain a well converged determination of the dynamical
matrix. The diagonalization calculation involves essen-
tially N operations (where N is the number of particles).
It is perfectly feasible, with modest computer resources, to
perform this diagonalization for particle numbers as large
as those used in the largest current N-body simulations.

B. Analysis of the spectrum of eigenvalues in a simple
cubic lattice

We now describe the spectrum of eigenvalues of the
dynamical matrix D(R) for a sc lattice. As we have dis-
cussed in the introduction, this is the lattice which is used

12 ‘ ‘ ‘ ‘

0.8

0.2

FIG. 2. Spectrum of eigenvalues for simple cubic lattice with
16 particles. The lines correspond to chosen directions in k
space.
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very widely in N-body simulations of structure formation
in cosmology.

In Fig. 2 we plot the spectrum of a sc lattice, for N =
163, obtained with the method outlined in the previous
subsection. We show the normalized eigenvalues

ALY,

k) =
&,(k) InGpy

(43)

as a function of the modulus of the k vectors, normalized to
the Nyquist frequency ky = /€. With this normalization
the spectrum remains substantially the same as we increase
the number of particles: the only change is that the eigen-
values become denser in the plot, filling out the approxi-
mate functional behaviors with more points. For our
discussion here there is no interest in considering a greater
number of points than that we have chosen.

For each vector k there are three eigenvalues w2(k),
n =1, 2, 3. Each family of eigenvalues (i.e. with same n)
defines a surface, corresponding to the three branches of
the frequency-wave vector dispersion relation. Sections of
these surfaces are plotted for some chosen directions of the
vector k in Fig. 2.

1. An expression for @(k) and the Kohn sum rule

Before proceeding further it is useful to derive some
important results we will employ much in what follows.
These are well known in the context of the application of
this formalism in condensed matter physics (see e.g. [28]).
First of all, we derive an analytical expression for the
dynamical matrix in Fourier space. Let us decompose in
Fourier modes the function w(r) defined in Eq. (19)

W) = oS k),

Bk

(44)

where the sum over Kk is performed over all k space, i.e.,
not restricted to the first Brillouin zone and

w(k) = drw(r)e ik, (45)
Vg
The derivatives of the periodic potential are
1 .
= —— Yk, k,w(k)ekr 46
Wunlt) = = S kuk (e (46)
Using the definition of the dynamical matrix
D (k) = 3D, (R)e R (47)
R

and Eqgs. (17) and (46) we obtain:

7 1 i i oy
D k) ==75-3 K KL p(K/) (R () — ok R)
Bk’ R
(48)

where we can include the term R = 0 in the sum because it
vanishes. Using the orthogonality relation, we have
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Zei(kik/)'R = Nzak’,k+Kr (49)
R K

where the Kk are restricted to the first Brillouin zone and K
are the reciprocal vectors of R satisfying

K = 2kym, (50)

with m € Z3. Substituting Eq. (49) in (48) we obtain
finally the expression [28]:

®,u.u(k) = _n()k#k,,W(k)

—ng Y [k, + K,)(k, + K,)W(k + K)
K#0

— K, K,w(K)] 1)

where n, is the number density of particles. In the gravi-
tational case, the integral (45) cannot be evaluated analyti-
cally. However, neglecting finite size effects, this integral
can be computed over the whole space and the periodic
potential w(r) is approximated by the interaction pair
potential v(r) = —Gm/r, so that

47Gm
_ o

Using this it is straightforward to show (see Appendix B)
the following simple result:

(k) = 5(Kk) = fRS Bro(r)e— kT = (52)

3
D wi(k) = —nok*w(k) = 4wGp. (53)

i=1

In the context of the Coulomb lattice this is a well-known
result, the so-called Kohn sum rule. In this case the quantity
which appears on the right-hand side (r.h.s.) of the sum,
instead of 4G py, is —w? = —4me*ng/m where w , is the
plasma frequency. We will discuss further below the sig-
nificance of this analogy.

We can use these results and the above sum rule to
compute—in a different way than in Eqgs. (20) and
(21)—the R = 0 term of the dynamical matrix D(R)
(i.e. the term giving the force on a particle, at linear order
in the relative displacements, when it alone is perturbed off
the lattice). Using the Kohn sum rule (53), the trace of the
dynamical matrix is

tr[D(R)] = 47Gp,,. (54)

If the crystal has three equivalent orthogonal directions
then the diagonal terms of the dynamical matrix will be
equal. In the case of lattices with special symmetries (like
the sc, bec, and fec) it is simple to show that when a single
particle is displaced along the direction of an axis, the force
acting on it is parallel to the direction of displacement.lo
This implies that the nondiagonal terms of the dynamical

'This can be explicitly shown e.g. using Eq. (A2) (taking the
limit &« — 0 and assuming that the sum over the replicas
converges).
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matrix are zero. We can therefore conclude that

4

2. The branches of the dispersion relation and the fluid
limit

We have noted that the spectrum of eigenvalues has a
clear branch structure. To identify the different branches it
is useful to consider the k — 0 limit keeping the interpar-
ticle distance € constant. We expect this to correspond to
the fluid limit: a plane wave fluctuation e’* ¥ with k < 1/¢
has a variation scale much larger than the interparticle
distance, and therefore does not ““see’ the particles.

From Eq. (51) the limit for k — 0 is straightforward as
the contribution of the sum on the r.h.s. vanishes in this
limit"'

ll(ig})fbw(k) = —nok,k,w(K). (56)

Using the eigenvalue Eq. (28) with Egs. (51) and (52), it
follows that the solutions in the fluid limit are

(1) one longitudinal eigenvector polarized parallel to k

with normalized eigenvalue &;(k — 0) = 1 and

(2) two transverse eigenvectors polarized in the plane

transverse to k with normalized eigenvalues

82’3(k g 0) = 0.
As the spectrum of eigenvalues ¢, (k) is exactly the same,
up to an overall negative multiplicative constant, to that of
the Coulomb lattice, we adapt the same terminology as in
this context. The branch of eigenvalues whose associated
eigenvectors converges to the longitudinal eigenvector as
k — 0 is called the optical or longitudinal branch. The two
other branches whose eigenvectors converge to the trans-
verse eigenvectors are called the acoustic branches. For
finite k, the eigenvectors are not exactly parallel or per-
pendicular to k for all k but belong nevertheless to one of
the three branches, which define three-dimensional hyper-
surfaces in the four-dimensional space (w, k) space.

The appearance of an optical branch in a monoatomic
crystal is a characteristic feature of the 1/r interaction
potential (at large r). In the case of a more rapidly decaying
potential at large scales, i.e., 1/r'T® with a >0, it be-
comes a third acoustic branch. In the case of a potential that
decays slower at large r, i.e., @ <0, the optical branch
diverges as k — 0. The physical interpretation of the opti-
cal branch is that it represents the coherent excitation of the
whole lattice with respect to the background [27]. In a
Coulomb crystal, the optical mode is produced by the
lattice moving against this background producing a
“plasma oscillation,” at the plasma frequency w, defined

"'We have assumed that the sum in Eq. (51) is well defined—
which is the case for the gravitational interaction—so that it is
possible to take the limit before performing the sum.
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above. This mode is, as we have just seen, purely longitu-
dinal, i.e., the perturbations are parallel to k, while the
transverse modes, i.e., the perturbations orthogonal to k
have zero frequency. The reason for this behavior of long-
wavelength density fluctuations can be easily understood.
The density fluctuations are related, in this fluid limit, to
the displacements through the continuity equation:

6p~V-u, 67
which implies in k space that
op~k-u. (58)

Thus transverse modes do not source density fluctuations,
and therefore (by the Poisson equation) they do not pro-
duce a force. In the case of gravity, instead of oscillating as
in a plasma, the longitudinal mode may be amplified or
attenuated (depending on the initial perturbation), in a way
which is independent of k. As we will discuss in detail
below, this is just the well-known linear amplification of
density fluctuations in a self-gravitating fluid.

3. Corrections to the fluid limit
We have just seen that the fluid limit is obtained by
taking the dynamical matrix as

47TGp0
Pk, (59)

D(k) =
We can estimate analytically the corrections to this limit
for small k (i.e. for large wavelengths) by expanding the
eigenvalues and eigenvectors of the full dynamical matrix
about k = 0. We note that this corresponds to calculating
the difference, at large wavelengths, between the evolution
of the perturbed lattice with a finite number of particles and
that of the fluid limit. These are thus what are, in the
context of cosmological simulations, “‘discreteness ef-
fects” introduced by the modelling of the fluid by such a
system. We will discuss at length this application of this
formalism in [23].

When expanding the dynamical matrix in Taylor series
about the fluid limit k — 0, it is simple to show that for 1/r
interactions this series is in even powers of k, because
D(R) is real and D(k) analytic for k — 0 (see [27,38]).
It is therefore possible to write the corrections to the
eigenvalues of the optical mode as

w}(k) = 47Gpo(1 — by (K)K>), (60)

where the expression for b, (k) can be computed by diago-
nalizing D(k) expanded up to O(k?). The leading correc-
tion to the two acoustic modes may be written

w3(k) = 27G pob, (k)i
w}(k) = 227G pobs(k)k>.

(61a)
(61b)

The Kohn sum rule implies that b;(k) = (by(k) +
b5(k))/2. In Fig. 3 we show the optical branch, in various
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FIG. 3. Optical branch for different directions of k. The thick
line is proportional to k2.

different chosen directions. The approximation with the
leading term in the Taylor expansion is very good up to the
Nyquist frequency.

In Fig. 4 we show how the anisotropy of the eigenvalues
increases as the modulus of the wave-vector increases (i.e.
when we look at smaller spatial scales). We plot, for three
ranges of values of the modulus of k, the value of the
normalized eigenvalues as a function of the angle 6 be-
tween k and the axis that forms a minimal angle with it. As
0 increases (i.e. as cosf decreases with 0 < 6 < 77/2) there
is a clear trend of decrease in the eigenvalue, in each of the
three cases. The difference as a function of orientation of
the vector k is, however, much more marked for larger k,
i.e., at scales closer to the Nyquist frequency. This is not
unexpected: the effects of anisotropy (which is completely
absent in the fluid limit, in which the eigenvalues are

1.02

— 0<k/k<0.1 A
0.1<k/k,<0.2
()A2<k/kN<0.3

£'(k)

0.98

0.96

N B B

0.6 0.7 0.8 0.9

cos(0)

FIG. 4. Variation of the value of the eigenvalues for various
ranges as a function of the cosine of the angle between k and the
axes of the lattice which forms a minimal angle with it. We see
that the effects of anisotropy are strongest for the short-
wavelength modes, and decrease as we go towards the fluid limit.
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FIG. 5. Schematic representation of (i) a mode collapsing
faster than fluid limit and (ii) an oscillating mode.

independent of the orientation K) are naturally strongest
for the short-wavelength modes.

4. Oscillatory modes

The spectrum of the sc lattice Fig. 2 includes some
modes [e.g. for k = (k,,0,0)] with eigenvalues on the
optical branch larger than the fluid limit. For example,
this is the case for modes with initial displacement
u(r, 0) « X exp(ik,x), shown in Figure 5(a). Adjacent
planes collapse towards one another, faster than in the fluid
limit. The Kohn sum rule Eq. (53) states that the sum of the
three eigenvalues w2 (k) is equal to 47Gp,. Therefore, the
existence of modes collapsing faster than the fluid limit
implies that there are other modes with negative eigenval-
ues w?2(K), i.e., which oscillate. This is the case, e.g., of the
mode with initial displacement wu(r, 0) ~ yexp(ik,x),
shown in the Fig. 5(b). In this case, contiguous planes
oscillate as indicated in the figure. We will study these
modes in greater detail using numerical simulation in
Sect. VC.

The existence of oscillating modes in a perturbed and
cold purely self-gravitating system (i.e. without any addi-
tional interaction or velocity dispersion giving rise to a
restoring pressure'?) is an unexpected curiosity, a behavior
qualitatively different to that generically expected based on
the analysis of the fluid limit. Translated to the analogous
Coulomb system, the result means that a sc lattice is, in this
case, unstable (as there are growing modes). While this
result has not apparently been shown in the literature, it is
not an unexpected result in this context. It has been estab-
lished [39,40] that for the (classical) Coulomb lattice that
the ground state is the bec lattice. It has a lower binding
energy than the fcc lattice, which in turn is a lower energy
configuration than the sc lattice. Our result implies that the
latter is not only a higher energy state, but that it is strictly
unstable. Indeed we note that the specific modes we have
considered above describe a “sliding” of adjacent places

"If there is a non-negligible velocity dispersion, it known that
fluctuations at scales smaller than the Jeans length oscillate [2].

PHYSICAL REVIEW D 73, 103507 (2006)

in an sc lattice which deform it towards the lower energy
configuration represented by the fcc lattice.

IV. GENERALIZATION TO AN EXPANDING
UNIVERSE

In the previous section, we have described the gravita-
tional evolution of a perturbed lattice in a static Euclidean
universe. In the cosmological context, density fluc-
tuations are a perturbation around an homogeneous and
isotropic Friedmann-Robertson-Walker (FRW) solution of
Einstein’s field equations of general relativity. In cosmo-
logical N-body simulations, since the regions studied are
smaller than the Hubble radius and the velocities are non-
relativistic, one considers the limit in which the equations
of motion of the particles are strictly Newtonian in physical
coordinates r [1]. These coordinates are related to the
comoving coordinates x of the FRW solution by

r (1) = a()x(1), (62)

where a(r) is the scale factor describing the expansion of
the universe. It satisfies the Friedmann equation

a\2 87G K
- =—p——, 63
<a> 3 P (63)

where p is the mass density of the universe and « the
curvature. In the unperturbed FRW model the particles
are fixed in comoving coordinates, all deviation from these
positions arising from perturbations to this model. For this
reason it is very natural, and convenient, to work in comov-
ing coordinates. We therefore start by transforming our
previous Newtonian equations to these coordinates, the
only further difference being that we perturb about a
time-dependent solution describing an expanding FRW
universe.
Using Eq. (62) the acceleration can be written

F = aX + 2ax +ax. (64)

The term dx can be expressed as the background contri-
bution of the gravitational acceleration. For the specific
case of an Einstein-de Sitter (EdS) Universe, i.e., a uni-
verse containing only matter without curvature [p(r) =
pola(t)/a(ty))® and k = 0], it is given by

. 41
go = dax = gGPOX, (65)

which has exactly the same form (for a = 1) as the con-
tribution of the negative background of Eq. (20). We now
write the position of a particle in comoving coordinates in
terms of the displacement u about the lattice position as

x() =R +u(R, ). (66)

The vector R is now the position of the lattice sites in
comoving coordinates (i.e. R does not depend on time) and
u(R, 1) is the displacement of the particle that was origi-
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nally at R (in fluid theory, this is a Lagrangian coordinate,
see e.g. [29]). By using Eq. (64), we can write Eq. (22) in
an expanding universe as

) a 1< Nu(R
i(R,7) = _ZEH(R’ 1+ = RE (R — RHu(R' 1),
(67)

where we have implicitly included the background term
(65) in the dynamical matrix. We emphasize that the
dynamical matrix is identical to that in the static case: it
depends only on the kind of lattice and on the interaction,
but not on the dynamics of the background. Therefore all
the analysis of this matrix performed in the preceding
section is valid also in this case. From Eq. (67), the mode
Eq. (30) generalizes simply to

o p w6

Fallk, ) +25 1,06, 1) =
a
This is very similar to the equation of the evolution of a
fluid in Lagrangian coordinates [29]. The difference is only
in the factor w2(k) on the r.h.s., which in the fluid limit is
replaced by 47Gp,,.

A. Solution in an Einstein-de Sitter universe

We derive now the solution of the mode Eq. (68) in the
case of an EdS universe. The evolution of the scale factor
is, from Eq. (63):

=)

assuming that a(0) = 0. Then the mode coefficient
Eq. (68) is

67TGp0I(2) =1, (69)

Falk 1)+ fn(k 1) = = e&,(K)f,(Kk, 1), (70)

where we have used again the adimensional quantity &, (k)
defined in Eq. (43). A set of independent solutions of (70)
which satisfies the IC (31) are

U, (k. 1) = a(k{a;(k)(é)“”( 't ap S(2) " (")}

(71a)
V. (k1) = a(k)t0[<to>a w_ <%>”’T(k)} (71b)
where
B _ 1
R SERTH Y 7
and
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- (k) = é[ 1+ 246 (k) — 1] (73a)
at (k) = é[ |+ 24, (k) + 1] (73b)

If £,(k) > 0 the solution presents a power-law amplifica-
tion mode and a power-law decaying mode. If —1/24 <
g,(k) <0, there are two decaying modes. Finally, if
g,(k) = —1/24, the solution is oscillatory and can be
written as

U,(k, 1) = <;>_(1/6) CoS[n(k) 1n<;>}
o (s o] s
y,,t(k) (t()) o sin[ 7n(k)ln<é>} (74b)

VK, 1) =
where

ya(k) = $/124¢,(k) + 1], (75)

i.e., the static oscillatory behavior of the static universe
survives, but now the oscillation is periodic in the loga-
rithm of time with decreasing amplitude. The evolution of
the displacements is computed with Eq. (34). The effect of
the expansion [through the “viscous” first term of the r.h.s.
of Eq. (67)] is to slow down the growing and decaying
mode of the nonexpanding exponential solution into a
power-law solution.

B. Fluid limit and Zeldovich approximation

Let us calculate the fluid limit of the solution given by
Egs. (34), (35), and (71). As explained in Sect. III this
corresponds to taking the limit k — O at fixed ¢ of the
dynamical matrix D(Kk). In this case, as we have seen in
Sec. III one of the eigenvectors is parallel to k, with
eigenvalue 4mGp,, and the other two are normal to k
with eigenvalue equal to zero. We have then:

é,(k) =K, g1(k) =1—af =2/3, a; =1,
(76a)

& (k) =K, g(k) =0— af =0, a; =1/3,
(76b)

é3(k) = k3, g3(k) =0— af =0, a; =1/3,
(76¢)

where ﬁz 1 and ﬁ3 | are orthogonal to k chosen so that
k,| - ks, = 0. Using (76) in (71), we get for the mode
parallel to k:
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Uy, 1) = Uy(1) = %F(if/ g <i>_l} (77a)

2\t

3 1\2/3 t\!
Vik, 1) = V(1) = §z0[<—> - <—> } (77b)
fo Lo
and for the modes perpendicular to k:
Uy k,t)=Usk, 1) =U,(t) =1, (78a)

Vy(k, 1) = Vs(k, 1) = V, (1) = 3:0[1 - (é)l/s} (78b)

The evolution operators (35) are then:
Pk 1) = U0k, k, + (Ky1),(kor), + (K31), (K31,
(79a)
Q (K, 1) = Vy(k,k, + Vi(0[(ky1),u(kay),
+ (f(u)ﬂ(f(u)yl
[where we have used explicitly that U (r) = 1]. Using

Eq. (34) we write the evolution of the displacements in
the fluid limit as

(79b)

u(R, 1) = u (R, 1) + uy(R, 1) Uy(1) + v (R, 10) V(1)
+vi(R, 1)V (1), (30)

where
w(R, 1) = 4 3 (@, ) )ke ™, 812)
X
1 oA
u; (R, 1) = NZ(ﬁ(k’ 1o) — (a(k, 7p) - K)k)e®* R, (81b)
3

and analogously for the velocities v. Using the definition of
peculiar gravitational acceleration g

g ='f—c'ix=i‘—gr=a[ﬁ+2gu} (82)
a a
we can rewrite Eq. (80) [with Egs. (77) and (78)] as

(R, = uy (R 1)+ e ] 15 () +3(5) ]

5\t

o)

t\—1/3
F® i 1= (1) (83)
0
where v is the peculiar velocity defined as
. a .
v(x,) =Ff——-r=r—ax. (84)
a

This formula is precisely the one found in [29]. Note that in
this reference, the Lagrangian coordinate X corresponds to
the position of the particle at ¢t = ¢y, i.e, X =R +
u(R, #,). For asymptotically large times the solution (83) is
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3 /t\2/373

uR, =21\ —) |58R, 1) +v(R, 1) . (85)
5 "\t 2

This solution, using Egs. (82) and (84), gives the following

simple relation between the displacements and the peculiar

velocity with the peculiar acceleration at any time:

3/t\4/3
u(R, 1) = —(—) a(R, 10)23, (86a)
2\ty
v(R, 1) = g(R, 1)t. (86b)
By imposing the IC
u, (R, ) =0=v,(R, 1), (87a)
2
ViR, 1) = g(R, 1p)ty = 3_tu”(R’ %),  (87b)
0

the evolution is given exactly at any time by Egs. (86),
which is the well-known Zeldovich approximation [41], in
which the decaying mode is zero from the initial time. In
cosmological N-body simulations of structure formation
IC are canonically imposed [24,42—-44] using (87): given
an initial power spectrum of density fluctuations a
Gaussian realization of the gravitational potential is gen-
erated, and used to derive the initial gravitational field
g(R, t,) at the unperturbed particle positions. The particles
are then displaced and given initial velocities as specified
by (87).

V. COMPARISON WITH N-BODY SIMULATIONS

In this section we compare predictions of the perturba-
tive treatment we have presented in the previous sections,
which we will now refer to as particle linear theory (PLT),
to what one obtains with full gravity (FG) calculated
numerically in N-body simulations. The aim is to study
the limits of validity of PLT as the relative displacements of
the particles increase. We also compare with the evolution
obtained using standard Lagrangian fluid linear theory
(FLT). At the end of the section we also study further the
oscillating modes which were identified in the spectrum
of eigenvalues discussed in Sect. III. Note that time will
be expressed everywhere in this section in units of
1/\/47Gp, (i.e. the characteristic time scale in the fluid
limit), unless otherwise stated. We also draw the reader’s
attention to the fact that the simulations we consider in this
section are relatively small with respect to typical current
standard cosmological simulations, but that this is not a
relevant consideration here as PLT works for any finite
number of particles. For our purposes here it is sufficient
to have a large enough number of particles to separate large
scales (i.e. the box size) from small scales (i.e. the inter-
particle distance).

The IC for our study'® are generated by perturbing in
two different ways a sc lattice with N particles. We choose

3Except in the the study of oscillating modes in Sec. V C.
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to restrict ourselves to simulations without space expan-
sion and with zero initial velocities.'"* In this case it is
straightforward to show, using the results of Secs. II and
I11, that the displacements of the particles according to PLT
are

3
u(R, 7)) = % {exp(ik -R) X Z A, (k)
k n=1

% cosh( 477Gp08n(k)t)én(k)}, (88)

where ¢,(k) and €,(k) are defined in Eqgs. (28) and (43),
while the A, (k) are determined by the IC. In the fluid limit,
following the discussion in Sec. III after Eq. (56), this
becomes

u(R, 1) = %Z{exp(ik - R)[A (k) cosh(F7Cpgnk
k

+ Ayl (K)Kkyy + Asy (K)ksy T}

[cosh(\/4mGpyt) — 1]
47TGp0

=u(R,0) + i(R,0).

(89)

This therefore corresponds to what we denote by FLT. Note
that in the following, we consider this last equation with
the full initial acceleration (R, 0), and not the linearized
one [see Eq. (13) or (16)], since in the Lagrangian fluid
approach, the force on a fluid element is the full gravita-
tional force [29].

We consider two different kinds of initial displacements:
spatially uncorrelated, and correlated. In the first case, each
particle of the lattice is randomly displaced, with uniform
probability, in a small cubic box centered on its lattice site.
The power spectrum of density fluctuation (PS) P(K, ) o«
|85(K, t)|? of the resulting particle distribution is propor-
tional to k2 at small k [45,46]. For the correlated case, the
displacements are obtained from a set of Gaussian varia-
bles{a,(k), b, (k)} ,: the uth component of the displace-
ment of a particle at the lattice point R is then

u,(R) = lvzexp(ik R, (k) + ib, ()] (90)
k i, (k)

The random variables a,, (k) and b, (k) have average 0 and

“This choice is made for simplicity. Another equally simple
case is that of the EdS universe, with velocities given by the
Zeldovich approximation. The difference between the two cases
is simply, as we have seen, in the time dependence of the modes.
Indeed in the asymptotic fluid limit given by the Zeldovich
approximation the two cases can be mapped onto one another
by a simple transformation between time and scale factor:
exp(+4mGpot) < a. In any case we will see that the criteria
we deduce for validity of the PLT are expressed in a very simple
way which one would expect to be essentially the same irre-
spective of the model.
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TABLE I. Summary of the two different distributions used as
IC for the comparison between linear theory and true gravity
(UC stands for uncorrelated while CO is for correlated). The
column “‘dyy/€” gives the average distance between nearest
neighbors and its standard deviation, both normalized by €. The
next column is the softening length €, normalized by dyy, used
in the FG simulation. The fifth column gives the initial value of
the function {p, at the interparticle distance, defined in Eq. (91).
The time in the last column is defined later in the same equation:
it gives the time scale at which PLT is expected to break down.

Name ]Vl/3 P(k) dNN/€ E/dNN gD(g, 0) l(
ucCle 16 K2 0.97 = 0.01 0.029  0.002 5.0
co32 32 k™2 0.983+0.009 0.057 0.0006 5.0

variance o?(k) « k~* and are statistically independent of
one another."” This gives rise, to a good approximation, to
a distribution with PS of the density field proportional to
k=2 at small k.'°

We have performed our FG N-body simulations using
the publicly available treecode Gadget [48]."” In Tables I
are summarized the parameters characterizing the two
different IC and simulations. The number of particles in
the simulations is 16 and 32?, respectively. Note that the
softening lengths € chosen are in both cases much smaller
than the initial interparticle distance. This means that this
modification of the gravitational force can be neglected in
our calculation of PLT since it has already broken
down when nearest neighbor particles are so close.'® For
both sets of IC, we have considered three different evolu-
tions: (i) according to FG, (ii) according to PLT and
(iii) according to FLT. Snapshots are shown in Figs. 6
and 7. In these projected representations of the configura-
tions at different times, we have considered in the latter
case (C0O32) a subvolume of the simulation box containing
initially 16° particles in order to facilitate the visual com-
parison of the two cases. From these figures one can al-
ready see how well, to a first approximation, PLT works in

SNote that for u «(R) to be real, the following conditions are
reguired a,(—k) =a,(k) and b,(—k) = —b, (k).

1°This can be seen directly from Eq. (58), which is valid in the
continuous limit, i.e., in the limit of small perturbations and
when the effects of the discretization introduced by the lattice
are neglected. For a detailed analysis of the corrections to this
result see [14,46,47].

"Version 1.2. See http://www.mpa-garching.mpg.de/gadget/.
Note that the discreteness effects in NBS which we discuss in
this paper are not, in principle, dependent on the details of the
numerical code used, e.g., tree code, PM or PM: to the extent
that these codes accurately calculate gravitational forces, our
results are exact. Further the specific features of a given code
(e.g. the form of a small scale smoothing of the gravitational
force) can be incorporated in our treatment, leading to minor (but
quantifiable) modifications.

8The effect of smoothing, which can be easily implemented in
the PLT, will be discussed in a forthcoming paper [23] on the
quantification of discreteness effects.
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FIG. 6.

predicting the evolution of the two systems considered.
The improvement given by PLT over FLT as an approxi-
mation to the FG evolution is visually very clearly manifest
in the case of UC16. In the case of CO32 the difference
between the PLT and FLT is less visually evident, but one
can still discern that the former does distinctly better in
tracing the nonlinear structures forming in the FG simula-
tion. The reason why the differences are more pronounced
in the case of UC16 is simply that in the corresponding IC

Evolution from IC UC16 (projection on the plane z = 0). From left to right, times 4.5, 5 and 5.5 and from top to bottom, FG,
PLT, and FLT. At t = 5, PLT breaks down according to the criterion based on the function ¢ (¢, r) defined in Eq. (93) (see the time tyin
Table I).

there is, compared to CO32, relatively much more power at
small scales than at large scales. As we have seen in
Sec. IIL, it is at these smaller scales that the two approx-
imations differ.

The amplitudes of the initial displacements in both
simulations have been chosen sufficiently small so that
linear theory remains valid during a non-negligible
time (in units of 1/\/47Gp). Actually both Egs. (88)
and (89) predict the same evolution when ¢ is small:
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FIG. 7. Evolution from IC CO32 (projection on the plane z = 0). From left to right, times 4.5, 5 and 5.5 and from top to bottom, FG,
PLT and FLT. At ¢t = 5, PLT breaks down according to the criterion based on the function ¢, (€, t) defined in Eq. (93) (see the time tyin
Table I). Note that this is a cubic subset of 1/8 of the system to have approximatively 163 particles, as for UC16 in Fig. 6.

u(R, 1) = (2/2)ii(R, 0). In order to distinguish predic-
tions of PLT from those of FLT, the linear regime must
last sufficiently long, i.e., the initial relative displacements
of particles must be sufficiently small. We will see below
that, for our chosen initial amplitudes, PLT breaks down
approximately at the same time in the two systems. This is
purely coincidental.

Let us first consider how to characterize quantitatively
the regime of validity of PLT. As discussed in Sec. II B, we

anticipate that the relevant quantity will be the relative
displacement of particles compared to the initial distance
separating them. This motivates the study of the following
statistical quantity:
(luR, 1) —u®R' + R, 1)[*)p

IRI?

(fD(O; t) - fD(R’ t)):

gD(R) t)

2

IR G1)

103507-15



B. MARCOS et al.

where £p(R, 1) = (u(R/, 1) - u(R’ + R, 1)) is the trace of
the correlation tensor of the displacements which is related
to the PS of displacements Pp(k, 1) = |i(k, 1)|?/N by"

1
&R, 1) = N ZPD(k, 1) exp(ik - R). (92)

Given the convergence criterion Eq. (15), we expect PLT to
break down when (R, r) ~ 1 for some R. One would
expect that this condition will first be attained for |R| = ¢,
i.e., when a significant number of nearest neighbors have
come close to 1 another.

Figs. 8 and 9 show the evolution of the function {p(R, ?)
averaged over the first six nearest neighbors, i.e., for the six
vectors R of norm €,20 for IC UC16 and CO32, respec-
tively. In both cases, the FG evolution is compared with the
predictions of PLT and FLT. The horizontal line is at 1 and
allows one to determine the characteristic time 7, such that

1

it 1) = EWZ:;VD(R, ) =1, 93)

around which we expect PLT to break down, as discussed
above. This time—reported in Table [—is of the order of
5.0 for both IC.?! We see from these figures that this
expectation turns out to be correct: the PLT evolution
from both sets of IC traces very accurately the FG evolu-
tion of the N-body simulation until a time very close to 7.
For UC16 (Fig. 8) the deviation between the PLT and FG
evolutions becomes significant for a time just slightly ear-
lier, while for CO32 (Fig. 9) this time is slightly later.
Considering the curves for FLT, we see that it does less
well than PLT in both cases, the improvement given by
PLT over FLT being much more marked in the case of
UCI16. This confirms quantitatively the visual impression
of Figs. 6 and 7, for the same reason we gave above. Even
though (€, t) is a real space quantity characterizing

“We note that for the case of the spectrum of displacements in
C032, Pp(k, 0) « |k|™*, this quantity is actually not well de-
fined, in the sense that it diverges in the thermodynamic limit
(i.e. L — oo at fixed number density n, = N/L?). Indeed for a
generic PS of displacements Pp(k) o |k|"”, we have, taking the
continuous limit of Eq. (92), that &p(R) = m X
f S‘ k" 1sin(kR)dk which is infrared divergent for n < —3 (k,
being an ultraviolet cutoff given by the Nyquist frequency in this
context). However, it can be shown [14] that the function
{p(R, 1) is well defined in the same limit for n > —5. This limit
in fact just coincides with the condition that the associated
density fluctuations have finite variance, since this requires
that lim,_k3(k*Pp(k)) = 0. These divergences in &n(R) are
not a problem provided ¢y (R, ¢) is well defined: the particles can
move an infinite distance from their lattice positions, but what is
important for the validity of the approximation used is how much
their relative displacements changes compared to their
separation.

*Three of them are actually enough since £p(R, 7) is symmet-
ric in its first argument.

21 As mentioned above, the fact that this time is very close in
both simulations is purely coincidental.
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FIG. 8. Evolution of the function {(¢, 1), defined in Eq. (93),
according to FG, PLT and FLT in the UC16 simulation. The
horizontal line is 1 and gives the characteristic time #; around

which we expect PLT to break down (as an approximation to
FG).

correlation around the interparticle distance €, it is an
integral in k space which picks up a contribution from
longer wavelength modes which are well described (as
discussed in Secs. II and III and further below) by FLT.
For the much more infrared dominated spectrum of dis-
placements of CO32 this contribution is much more sig-
nificant and so FLT naturally is a better approximation for
this quantity than in the case of UCI6.

We next give an alternative, perhaps intuitively more
direct, way of quantifying the regime of validity of PLT.
We consider the nearest neighbor (NN) distribution w(r, 1):
at a given time ¢, this function gives the probability density

FG
—————————— FLT
ol b PLT :
10°
=
TR :
A
o
107 1
107 | 3
10-4 L L L L L L
0 1 2 3 4 5 6

FIG. 9. Evolution of the function {p(¥, r) according to FG,
LPT, and FLT in the CO32 simulation. The horizontal line is 1
and gives the characteristic time 7, around which we expect PLT
to break down (as an approximation to FG).
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FIG. 11. Evolution of the NN distribution Y(r, ¢) in the CO32

simulation. The times are indicated in the legend.

for a particle to have its nearest neighbor at the distance r
(see e.g. [46]). In Figs. 10 and 11 are shown, for the FG
evolution of UC16 and CO32, the cumulative distributions
derived from w(r, 1),

Y(r, 1) = ﬁ "o (s, 1)ds. (94)

These represent the probability that a given particle has its
NN within a distance r. It allows one to determine quite
accurately the time at which “shell crossing” occurs.” We
see that between 1 =~ 4 and t = 5 = 1, the behavior of the
cumulative distributions changes in an important way: for

22We adopt here loosely the terminology used in fluid theory to
refer to the time when particles fall on top of one another: if one
considers the particles in the simulation as the centers of fluid
elements, this corresponds to what is called *“shell crossing,” at
which point the linearized Lagrangian fluid theory (i.e. FLT)
breaks down as the density diverges.
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FIG. 12. Evolution of the distances d(f) (normalized to {)
between a randomly chosen particle in UC16 and its six NN
in the FG simulation. The arrow shows the NN which is used for
the study of the relative displacement (Fig. 14).

t < 4, almost no particle has its NN closer than a distance
r =~ 0.3, while at time t =~ 5 = 1;, 50% of the particles
have their NN at a distance smaller than this distance. Thus
at ¢t = 4, the first shell crossings occur and at t = 5, ap-
proximately half of the particles have already had their
own shell crossing or are very close to it.

A. Comparison of relative displacements

It is interesting to study also the accuracy of PLT in
tracing the FG evolution of the trajectories of individual
particles (rather than only averaged quantities). We con-
sider now the relative displacement of a particle with
respect to its NN, that is u(R, r) — u(R’, r) where R’ and
R are separated by a vector of elementary size €. To do so

NN selected ———=

FIG. 13. Evolution of the distances d(f) (normalized to {)
between a randomly chosen particle in CO32 and its six NN
in the FG simulation. The arrow shows the NN which is used for
the study of the relative displacement (Fig. 15).
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FIG. 14. Evolution according to FG (thick line), PLT (medium
line) and FLT (thin line) of the absolute value of each coordinate
(denoted by a different type line) of the relative displacement
u(R, 1) — u(R’, 1) of a randomly chosen particle and its NN in
UC16. The particle is the same as the one chosen for Fig. 12 and
the NN corresponds to the one indicated by an arrow in this last
figure. Note that, for clarity, we have shifted two of the coor-
dinates by =0.4.

we have chosen randomly a particle in each simulation and
selected among its six initial NN the one which ends up
closest to it at the time at which PLT breaks down in the
corresponding FG simulation (see Figs. 12 and 13). In
Figs. 14 and 15 are shown the result for UC16 and
CO32, respectively. These two figures allow one to see
that for both IC, PLT describes very well the evolution of

2.5

FIG. 15. Evolution according to FG (thick line), PLT (medium
line) and FLT (thin line) of the absolute value of each coordinate
(denoted by a different type line) of the relative displacement
u(R, 1) — u(R’, 1) of a randomly chosen particle and its NN in
CO32. The particle is the same as the one chosen for Fig. 13 and
the NN corresponds to the one indicated by an arrow in this last
figure. Note that, for clarity, we have shifted two of the coor-
dinates by *=0.3.
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the relative displacement of the two particles considered up
to a time of the order of 4.5 = 0.9¢;. In both systems, this
time is slightly smaller than the time at which the particle
selected is the closest to its NN: from Figs. 12 and 13 we
may estimate that this time is approximately 5.0 in the
system UC16 and 5.5 in CO32.

We also note that PLT does again also in this case better
than FLT in describing the relative displacements. Indeed
FLT already breaks down at t = 3 in UC16 and ¢ = 3.5 in
CO32.

B. Evolution of modes

In this subsection we consider the comparison of PLT
with FG and FLT in reciprocal space. We first consider the
evolution of the PS of displacements Pp(Kk, 7) for a few
specific vectors k. Then we study the evolution of this
quantity, but now averaged on vectors k of similar modu-
lus. Besides verifying the conclusions drawn in Sec. III,
this numerical study allows us to assess the validity of PLT
for different wavenumbers as a function of time.

Following the results and discussion in Sec. III, we
expect firstly to see the PLT evolution to differ less and
less from FLT as we go to longer wavelength modes
(k| < 1/¢), since the eigenvalues and eigenvectors of
the modes approach those of the fluid limit in this case.
For such modes we expect that PLT and FLT should both
follow the FG evolution accurately up to at least 7 ~ 7,. For
short-wavelength modes (|k| ~ 1/€) we expect PLT to be
significantly more accurate than FLT. As for the time of
breakdown of PLT for a given mode, we would expect that
long-wavelength mode evolution should be described ac-
curately by PLT for a time longer than that of short-
wavelength modes: the breakdown of the approximation
in the sense we have characterized it above, i.e., in terms of
the approach of NN particles, would not be expected to
affect significantly the evolution of longer wavelength
modes. We will discuss this point further below.

Figs. 16 and 17 show the evolution of Pp(K, ), normal-
ized to its initial value (i.e. at r = 0), for two chosen
vectors k with very different lengths and different orienta-
tions with respect to the lattice, for IC UC16 and CO32. In
both cases, PLT follows very accurately the FG evolution
up to a certain time for both long and small wavelength
modes. The time up to which the agreement is good
depends, as has been anticipated, on the wavelength. It
breaks down first for the large k (small wavelength) mode,
and significantly later for the small & (large wavelength)
mode. For both IC the effects of nonlinearity become
significant for the large kK mode chosen (one of the modes
of largest modulus in each case), at ¢t = 3.5, i.e., slightly
before the time of the first shell crossings as determined
above from Figs. 10 and 11. In this case we see also clearly
that FLT is a poor approximation to the evolution, corre-
sponding to an evolution with an exponent which is sig-
nificantly too large. For the long-wavelength mode (one of
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FIG. 16. Evolution of Ppu(k, r) normalized to its initial value
for two chosen vectors k according to FG (thick lines), PLT
(medium lines) and FLT (thin lines) with IC UC16. The vectors
k are 27(1,0,0)/L and 27(7,7,7)/L.

the modes of smallest modulus in each case), on the other
hand, we see that FLT and PLT, as expected predict the
same evolution (at the level of precision allowed by the
figures). And in this case we see that they both trace the FG
evolution very accurately for a very significantly longer
time, up to ¢ = 6 in the case of C032.

We now consider the PS of displacements Pp(K, 7),
averaged in spherical shells, which we denote simply by
P D(k, t):

1
PD(k, l) = —
Tk ar=<IKl<k+dk

Pp(k, 1), (95)

10 T T T T T
— (1,0,0)
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FIG. 17. Plot similar to the one in Fig. 16 but for IC CO32 and
vectors k = 27r(1,0,0)/L and k = 27(15, 15, 15)/L.
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FIG. 18. Evolution of the averaged PS of displacements
Pp(k, 1), Eq. (95), according to FG (thick lines), PLT (medium
lines) and FLT (thin lines) from IC UCI16. The times are
indicated at the left of the curves. The values of k are given in
unit of the Nyquist frequency ky.

where n; is the number of vectors k in the spherical shell
[k — dk, k + dk[. This analysis of Pp(k, t) allows one to
observe in further detail how PLT fails in describing FG
evolution after some time and at different scales.
Moreover, it shows how it is more accurate than FLT in
approximating FG.

Figure 18 shows the evolution of the averaged PS of
displacements according to FG (thick lines), PLT (medium
lines) and FLT (thin lines) with IC UC16. The first differ-
ence between PLT and FG appears at large k at ¢t = 4.5,
slightly before 7,. This difference propagates to smaller k
at later times. FLT is already discernibly different from FG
at + = 1.8 at large k and the difference propagates to
smaller k at later times.

Figure 19 is similar to Fig. 18 but concerns IC CO32.
Note that, since Pp(k,0) « k™4, it is Pp(k, £)k* which is
shown.? Similar conclusions can be drawn to those in the
uncorrelated case. The differences between PLT and FG
become visible at ¢ = 4.5 and propagate at later times.
Actually at t = 6.5, there is no longer good agreement at
any k. FLT starts to deviate discernibly from FG at r = 1.8.

Figures 18 and 19 thus confirm clearly what was already
observed in Figs. 16 and 17: the breakdown of PLT starts at
the largest k and propagates progressively in time to
smaller k. Further PLT (and FLT) remain a good approxi-
mation to the evolution at the smaller k in our simulations
at times significantly longer than the time 7z, which we used

A slight excess of power over the expected PS is clearly
visible around the Nyquist frequency. This is a small aliasing
effect due to the fact that we have included some k in our sum
outside the first Brillouin zone: we have summed in Eq. (90) over
the modes (L/2m)k € [—30,30] rather than (L/2m)k €
[—16, 15F. This has no bearing on the conclusions drawn here.
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FIG. 19. Evolution of the averaged PS of displacements
Pp(k, 1), Eq. (95), according to FG (thick lines), PLT (medium
lines) and FLT (thin lines) from IC CO32. The times are
indicated at the left of the curves. The values of k are given in
unit of ky. Note that it is actually Pp(k, 1)k* which is repre-
sented.

to characterize the global validity of PLT. The reason is
simple,24 and it is the same one which explains, e.g., why
linear fluid theory successfully describes the evolution of
small perturbations to a self-gravitating system even when
there are strong nonlinearities at smaller scales: rearrang-
ing matter in any way, subject only to the constraint that
matter and momentum are conserved, up to some real
space finite scale, €, say, can produce, at most, fluctuations
at small k (i.e. k << 1/€,) with a PS of density fluctuations
o« k*. The perturbative approximation to full gravity rep-
resented by PLT breaks down globally, as we have seen,
when NN start to approach one another. When this hap-
pens, however, the full gravitational force can still be
approximated for a longer time by the full gravitational
force on each particle due its NN particle, plus the force
from all other particles still linearized, as in PLT, in the
relative displacements from their starting positions. This
means that FG can continue to be approximated by PLT
plus an effective interaction of finite range. This latter
interaction can produce at most a term in the PS in k%,
which will always be dominated by the simple amplifica-
tion given by PLT of the initial PS, which in the cases we
have considered has a small k behavior « k" with n <4
(n =2and n = —2 for UC16 and CO32, respectively). An
interesting question is whether, at these longer times, PLT
is a good approximation in so far as it agrees well with FLT,
or whether it can actually continue to trace the FG evolu-
tion better than FLT. From the numerical results we have

**The argument given is, in the context of cosmology, attributed
to Zeldovich. For an extensive discussion see [1] Sec. 27-28,
and also [49].
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given here it is not possible to distinguish FLT from PLT in
the corresponding regime. Larger simulations would be
required to answer this question.

C. Oscillating modes

We have noted in Sec. III that the spectrum of eigenval-
ues of the sc lattice contains some negative eigenvalues,
which give oscillating modes. These modes are not of
practical importance in typical cosmological simulations
since they are relatively few, and in a short time of little
importance compared to the unstable modes (which also
have considerably larger exponents®). It is nevertheless
interesting to study them briefly since they are a peculiarity
of the discrete system. Indeed, as discussed in Sec. III such
oscillating modes do not exist in fluid theory without initial
velocities.

To study these modes we consider a sc lattice with N'/3
even®® and the following initial displacement:

) .
u(R, 1= 8005(%7 ng>§l = { tggf

if R./€ is even,
if R, /€ is odd,

(96)

where § is a constant. This corresponds to displacing each
plane of particles with constant R, in the direction +§¥ and
—¥ alternately (see Fig. 5). The only excited mode is k =
(0, —1/¢,0). According to PLT, the eigenvalue associated
to this displacement is —0.156 - 47Gp,/3 (cf. Sec. III)
and the particles therefore should oscillate. If no initial
velocity is considered, then the motion of a particle should
be, as predicted by PLT

u (R, 1) = £ cos(wy1)y, 97)

with a frequency wy = 1/0.156 - 47Gp,/3.

To observe these oscillations numerically, we have writ-
ten a special code to integrate the equations of motion with
FG, rather than using the same code (GADGET) as in the
preceding subsections. The reason we do this is that it is
very difficult numerically to observe them with such a
code. Indeed the simulation of oscillating modes would
be an interesting and challenging test for the precision of
gravitational N-body codes. The primary difficulty is that
the negative eigenvalues are small compared to most of
positive ones (cf. Figure 2 in Sec. III), so that an even much
smaller amplitude perturbation in any of these modes can
grow as an instability on a time scale much smaller than the

ZFurther, the IC of cosmological simulations, because of the
Zeldovich approximation Eqs. (85)—(87), are purely longitudi-
nal, while the oscillating modes are on the acoustic branches
which are close to purely transversal for most k.

26Some eigenvectors of the oscillating modes have in this case
the particularly simple form we will treat. The fact that these
modes differ so significantly for the case that N'/3 is odd or even
illustrates again that their presence is entirely associated with the
discreteness of the system.
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FIG. 20. Oscillations of a particle with initial displacement
(96) and 6 = 0.004¢ according to FG (solid line) and PLT
(dashed line). The curves are actually indistinguishable on the
plot. The time is in units of 1/,/47Gp, and the displacement is
normalized to the value of 6. Details of the FG simulation are
given in the text.

period of oscillation. Such small perturbations are clearly
created by numerical imprecision, but also, by the intrinsic
nonlinearities in the FG, i.e., there is a coupling of modes
which is neglected in PLT. Thus one must work not only
with great numerical precision but also at extremely low
amplitude to avoid ‘‘contamination” by other modes
through the nonlinearities on the relevant (long) time-scale.

The code that we have used has been built specifically
for the particular initial displacements (96) taking into
account the following considerations. From the symme-
tries of the configuration, it follows that the full gravita-
tional force on a particle is only along the y axis, and
modulo a change of sign, all the particles move the same
way. Moreover, since the distribution of particles can be
seen as two perfect rectangular sublattices with lattice
spacing ¢ in the y and z directions and 2¢ in the x direc-
tion®’ the force on a given particle is only due to the
particles in the sublattice which does not contain this
particle.”® In order to evolve the system, it is therefore
sufficient to integrate the equation of motion of a single
particle in one dimension with a force coming from half of
the particles of the system (the force is calculated by using
the Ewald summation formula). The method used for the
integration is the embedded Runge-Kutta-Fehlberg (4) and
(5) method, implemented in the GNU scientific library29
and more precise than the standard leap-frog method used
in cosmological N-body simulations. One can also note

*’One lattice is constituted by the particles which are initially
displaced by an amount +§8 and the other one by the particles
dizplaced by —6.

ZThe force from the particles in the same sublattice is zero by
symmetry.

9http://www.gnu.org/software/gsl/.
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FIG. 21. Oscillations of a particle with initial displacement
(96) and & = 0.248¢ according to FG (solid line) and PLT
(dashed line). The last curve (“best fit,” dashed-dotted line)

represents a sine with frequency /0.0116 - 477G p,/3. Tt allows
one to see that the frequency of the oscillations is smaller than

the one predicted by PLT and that the functional behavior is
slightly different from an exact sine. The time is in units of
1//47Gp, and the displacement is normalized to the value of 8.
Details of the FG simulation are given in the text.

that, due to the periodicity of the system,® the number of
particles is not important as long as N'/3 is even: N'/3 = 2
is actually enough.

Figure 20 shows the oscillations along the y axis of a
particle according to FG (obtained by using the code we
have just described) and the prediction of PLT. The value of
6 used is 0.004¢, for which we find a perfect agreement
between FG and PLT. It is interesting to note that for larger
value of 8, the frequencies of the oscillations measured in
the FG simulations decrease and the functional behavior of
the oscillations is less and less close to exactly sinusoidal
as can be seen in Fig. 21. This trend towards a decreasing
frequency [rather than the constant frequency w, as in
Eq. (97)] as the amplitude increases has a simple explana-
tion: when 8 = €/4 the full force exactly vanishes as the
perturbed configuration is in this case again a perfect sc
lattice. This is also true when & = €/2, but in that case the
resulting distribution is just the initial sc lattice. It follows
that if 6/€ €]1/4, 1/2[, one observes the same types of
oscillation as for §/¢ €]0, 1/4[ due to the invariance of the
system under transformation of the type § — j€/2 * &
with j an integer.

VI. CONCLUSIONS

In this paper we have described in detail a new pertur-
bative treatment which describes the evolution of N self-

The systems which we consider are always periodic at the
level of the box but here the distribution inside the box is itself
periodic.
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gravitating particles of equal mass initially perturbed off a
perfect lattice, subject to periodic boundary conditions,
both in a static spacetime and in a cosmological (expand-
ing) background. We have reported specifically the spec-
trum of eigenvectors and eigenvalues for the modes of the
displacement field on a simple cubic lattice, which is the
case of relevance in cosmology. While the fluid limit (N —
o) is recovered for long-wavelength modes, the full spec-
trum for the finite N system contains both modes with
negative eigenvalues, corresponding to oscillations, and
modes with exponents greater than in the fluid limit.
Further the eigenvalues depend explicitly not only on the
modulus of the wave-vector k, but also on its orientation
with respect to the axes of the lattice. The breaking of
rotational invariance in the lattice is thus imprinted in the
evolution of the system. We have shown, by detailed
comparison with numerical simulations, that the linear
order of the scheme has approximately the same range of
validity as the corresponding (linear) order of the fluid
theory, up to when particles come very close to 1 another
(i.e. up to “‘shell-crossing” in fluid language). However it
traces the real evolution with greater accuracy than its fluid
counterpart.

In the context of cosmological simulations this means
that our method provides a precise tool for quantifying
fully, up to shell crossing, the effects of discreteness in
these simulations: these effects are nothing other than the
difference between the finite N evolution and the fluid
limit. In a forthcoming paper [23] we will explore more
extensively this application, giving precise quantitative
measures of these effects adapted for use in “correcting”
such N-body simulations. We conclude this paper by com-
menting on a few possible developments of the perturba-
tive theory we have described here.

Firstly the method can evidently also be extended to
higher order, just as has been done in the analogous treat-
ment of condensed matter system (see e.g. [40,50]). It is
straightforward to generalize Eq. (16) to an expansion to
any order. The © component of the force reads:

F0=Y S LG R - R)
n=0R’#R """
X L1, (R) = 4y, (RO)]... 1, (R) — , (R,

(98)

The tensor GX‘,),,,W,," is a function only of the interaction
potential v(r) and is given by:

9 Dy (r) } ©9)

or,dr,, ...or,

G s, (R) = _[

=R

The analysis can be followed through at any order in
analogy to linear order. Transforming to reciprocal space
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the problem simplifies, but there is now the added com-
plexity of a coupling of modes. A first calculation of
interest would be to map this description, in the fluid limit,
onto the corresponding one at the same order in the fluid
Lagrangian theory. This latter treatment has been explored
extensively in the cosmological literature and compared in
detail with numerical simulations (see e.g. [51] and refer-
ences therein). The study of the corrections to this limit
should allow one to get some insight on the interplay of
nonlinearity (which is of course also a feature of the fluid
model) and the effects of discreteness. Nonlinearity in
gravity involves the transfer of power from larger to
smaller scales, an effect which is often qualitatively argued
to make discreteness effects of less consequence. One
might hope to see such a mechanism at play, if indeed it
is there.

The approach presented here may also prove useful in
providing insight about the nature of existing approxima-
tions to self-gravitating systems which go beyond the
simple fluid limit, as it provides an “‘exact’ evolution of
a self-gravitating finite N-body system in a certain range.
For example approximations have been developed to self-
gravitating systems involving pressure terms associated to
velocity dispersion (see e.g. [51-56]). In principle these
terms can be calculated exactly using our perturbative
scheme and the improvement (if this is the case) they
allow to the approximation of the full evolution better
understood.

Another direction in which this treatment can be gener-
alized is to the consideration of other initial configurations.
We have analyzed here almost exclusively the case of
perturbations from a sc lattice, as this is the kind of lattice
used in cosmological simulations. Our treatment can easily
be generalized to other lattices, and a comparative study of
the discreteness effects should be straightforward. Without
doing any calculation however one simple and interesting
result can be given. It is known that both the bec and fcc
lattice are stable (or at least metastable) configurations for
the Coulomb lattice. This means that there are no unstable
modes. For gravity this implies that there are only unstable
modes. There are therefore no oscillating modes, and thus,
by the Kohn sum rule, no modes with exponent greater than
in the fluid limit. Consequently either of these lattices
would appear to be better lattices to use in N-body simu-
lations, in which one wishes evidently to approach as
closely as possible the fluid evolution. The bcc lattice
would appear to be the more interesting of the two, as it
is known to be [57] the most densely packed lattice. It is
also a more isotropic configuration than either the sc or fcc
lattice.

Another case of interest to analyze would be that of
glassy configurations, which are often used as an alterna-
tive to the sc lattice in cosmological simulations [8,58,59].
These configurations are generated by simulating a set of
point particles evolving under negative gravity (i.e.
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Coulomb forces), with an appropriate damping term. By
doing so one arrives at a configuration in which the forces
are very small, but which is more isotropic than the lattice
(in which the forces are exactly zero). In the approximation
that the initial forces are negligible one could, in principle,
carry out the same kind of analysis as given here. The only
difference is that the 3N eigenmodes of the displacement
field will not be plane waves, which greatly complicates
the analysis compared to the case of the lattice.
Numerically however such a solution should be feasible
(for any specified glassy configuration), and it would be
necessary if this method is to be used to give a precise
quantification of discreteness effects from these IC as we
can now give, using the analysis presented here, for the
case of a lattice. We do not expect the results, however, to
be very different (either qualitatively or quantitatively): the
effects described here are essentially sampling effects
which depend on the sampling scale (the lattice spacing
€ above) and not on the precise nature of the sampling. The
particular manifestation of anisotropy which we have ob-
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APPENDIX A: EWALD SUM OF THE DYNAMICAL
MATRIX D(R)

The Ewald sum for the dynamical matrix is given from
(17) using the Ewald sum for the potential (39):

served in the sc lattice will necessarily be quite different, D(R) = D"(R) + DY(R) (AD)
and likely less pronounced, in the glassy case, but the
average slowing down of growth at smaller scales would
be expected to be very similar in magnitude. with
J
(r) _ (R - nL)M(R - nL),, 4a3 ) . 2
DR #0) = Gm;[ IR — oL T exp(—a?|R — nL|?)
) (R—nL),(R—nL)
+G B -3 £ :
m;[IR ~nLP IR — L[’ }
2a 5 2
X | erfc(a|R — nL|) + — exp(—a*|R — nL|?)|R — nL]| (A2)
N
[
and and v we obtain, with Eq. (28):
AmG 1 k|?
D%‘L(R) el Z ] exp(— %) cos(k - R)k,k,. 3 3
Vs ilklP L da > w30 = —m 3 (k) (k &, 07
(A3) n=1 n=1
+ S wk + K)[(k + K)-é,Kk)]?
The R = 0 term is KZO ( u ) (k)]
DR =0)=-> DR). (A4) - > WwK)K- én(k)]z}- (B1)
R+#0 K#0
Note that, by symmetry, only the first term of the r.h.s. of ) ) )
(A2) and (A3) contribute in the sum of Eq. (A4). In the case Using the orthogonality relation
of pure gravity the result of the sum (A4) is given by
Eq. (20). 3
D (€,(K)),(@,(k)), = 8, (B2)
APPENDIX B: KOHN SUM RULE n=1

We derive here the Kohn sum rule (53). Multiplying
Eq. (51) by (&,(k)),(e,(k)), and summing over n, u

we get finally [28]

103507-23



B. MARCOS et al.

3
Z wi(k) = —noyk*w(k) — n, Z (k + KI*w(k + K)
i=1

K70
— K*w(K)).
(B3)

In the case of gravity, using the same approximation as in

(1]

(3]

(19]

[20]
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Eq. (52) we conclude that

3
D wi(k) = —nok*w(k) = 4wGp.

n=1

(B4)
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