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In this work a detailed spectral analysis of the time series of the 8B solar neutrino flux published by the
Super-Kamiokande Collaboration is presented, performed through a likelihood scan approach.
Preliminarily a careful review of the analysis methodology is given, showing that the traditional
periodicity search via the Lomb-Scargle periodogram is a special case of a more general likelihood
based method. Since the data are published together with the relevant asymmetric errors, it is then shown
how the likelihood analysis can be performed either with or without a prior error averaging. A key point of
this work is the detailed illustration of the mathematical model describing the statistical properties of the
estimated spectra obtained in the various cases, which is also validated through extensive Monte Carlo
computations; the model includes a calculation for the prediction of the possible alias effects. In the
successive investigation of the data, such a model is used to derive objective, mathematical predictions
which are quantitatively compared with the features observed in the experimental spectra. This article
clearly demonstrates that the handling of the errors is the origin of the discrepancy between published null
observations and claimed significant periodicity in the same SK-I data sample. Moreover, the compre-
hensive likelihood analysis with asymmetric errors developed in this work provides results which cannot
exclude the null hypothesis of constant rate, even though some indications stemming from the model at
odd with such conclusion point towards the desirability of additional investigations with alternative
methods to shed further light on the characteristics of the data.
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I. INTRODUCTION

Recently a number of periodicity searches on the solar
neutrino time series data released by the Super-
Kamiokande collaboration have been published, either us-
ing the standard Lomb-Scargle periodogram method [1] or
a likelihood based methodology [2–4]. Both methods are
intended to produce an estimate of the power spectrum of
the series, with the purpose to unravel periodicities hidden
in the noise affecting the data, which would appear as sharp
peaks in the spectrum itself. The difficulty associated with
such an analysis is that the noise affecting the data points
produces in the spectrum random peaks that can attain very
high levels, thus hampering the capability to detect prop-
erly actual modulations embedded in the series. The cru-
cial aspect of the analysis is thus the significance
assessment of the peaks (in particular the largest) found
in the estimated spectrum: such a significance is defined as
the probability that a peak as high or higher than the
highest peak found in the actual spectrum can be generated
by chance noise fluctuations. The outcomes of the signifi-
cance assessment in the published analysis are controver-
sial, with different analysis producing different results.

The purpose of this work is to present a thorough model
for the time series data analysis and interpretation, from
which derive mathematical predictions that could be ex-
tensively compared with the Super-Kamiokande data,
highlighting the role of the elements at the origin of the
mentioned discrepancy in the published results. To this end
the analysis methodologies under consideration (period-
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ogram and likelihood) are first carefully reviewed, showing
the close relationship between them, stemming from the
fact that they share the same basic approach to the problem
of power spectrum estimation. Furthermore, a thorough
account is given of the statistical properties of the esti-
mated spectra in the various approaches, showing how to
extend the statistical description normally given to the
highest spectral peak to the peaks of less height; after-
wards, such methodologies are systematically applied to
the 10 day and 5 day binned time series of the solar
neutrino data published by Super-Kamiokande
collaboration.

Specifically, the paper is organized as follow: in Sec. II
the basic definition used to derive the Lomb-Scargle peri-
odogram [5] is revisited, and it is demonstrated that it
coincides with the definition used to obtain the spectrum
stemming from the likelihood methodology; the difference
between the two is simply that in the former the data points
are considered affected by a common error, while in the
latter are affected by unequal individual errors. In Sec. III
the definition of the likelihood spectrum is developed to an
explicit formulation following a procedure that resembles
the least square sinusoidal fit to the data used in [5]. At the
end of the section it is pointed out that, through a numerical
iterative procedure, the likelihood spectrum can be also
computed in the special situation of asymmetric errors
affecting the data points. In Sec. IV, as further step under
the assumption of ignoring the error asymmetry, the same
numerical approximation adopted still in [5] to get the final
form of the periodogram is exploited to obtain from the
likelihood spectrum a generalized ‘‘weighted’’ period-
ogram that accounts for the unequal errors; along such a
-1 © 2006 The American Physical Society
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derivation it is shown that numerically the likelihood spec-
trum and the generalized weighted periodogram practically
coincide (in the case of symmetric errors), thus allowing to
replace for practical purposes the former with the latter. In
Sec. V, as check of the overall procedure, it is then illus-
trated how from the generalized weighted periodogram the
standard Lomb-Scargle periodogram is recovered if the
data points errors are equal. For completeness it also
reported the demonstration given in [6] that, for evenly
sampled time series, the standard periodogram reduces in
turns to the so called Schuster periodogram, i.e. a power
spectrum estimate which stems directly from the applica-
tion of the Fourier transform to time series sampled at
equally spaced points.

In Sec. VI the crucial issues of the statistics of the
estimated spectrum are addressed: first the specific dem-
onstration that the generalized weighted periodogram
shares the same distribution properties of the standard
Lomb-Scargle periodogram, under the null hypothesis of
no periodicity embedded in the series, is given; then resort-
ing to the Wilks’ theorem, such a property is put in a
general context that encompasses all the spectrum defini-
tions being considered. By ordering according to their rank
the peaks in the estimated spectrum (the highest, the 2nd
highest and so on), it is also introduced an analytical model
for the probability density functions of the height of the
peaks so ordered, thus extending the statistical treatment
normally restricted only to the highest spectral peak.
Furthermore, based on the work illustrated in [7], it is
presented the model of the expected spectral response at
the frequency corresponding to a true periodicity em-
bedded in the series and it is shown how it can be used to
predict the location of the alias frequencies.

In Sec. VII it is simulated the analysis of fictitious time
series comprising 100 points either evenly or unevenly
sampled, with special emphasis on the Monte Carlo pro-
cedure to compute the null hypothesis distributions used to
asses the peaks significance. A careful account of the
comparison of the Monte Carlo outputs with the statistical
model of the previous section is given, as well. In Sec. VIII,
instead, it is exemplified the expected model output for a
true periodicity, performing also in this case a detailed
Monte Carlo-model comparison.

In Secs. IX and X the Super-Kamiokande 10 day binned
dataset is extensively analyzed using the three spectral
methodologies introduced in the first part of the paper:
Lomb-Scargle, weighted periodogram and likelihood
with asymmetric errors. Specifically in Sec. IX it is re-
ported the peaks significance assessment via the compari-
son with the null hypothesis Monte Carlo distributions,
while in Sec. X it is shown how the actual spectral features
compare with the model expectations for true periodicities
present in the series, including also the model prediction
for the alias phenomenon. In Sec. XI an overall data-model
comparison is discussed.
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Similarly, Secs. XII and XIII contain the same evalu-
ations for the Super-Kamiokande 5 day binned dataset; in
Sec. XIV the systematic effects associated with the errors
handling are discussed, while in Sec. XV a complete over-
all review of the data-model comparison is illustrated,
putting in a comprehensive unitary framework the results
related to both the 10 and 5 day series. Finally, a digression
on the systematic evaluation of the detection efficiency in
the 5 day case is reported in Sec. XVI.

The summary of the obtained results is given in the last
Sec. XVIII.

Readers interested in the analysis output but not desiring
to go deeply into the mathematical details may skip the
derivations reported in Secs. II, III, IV, and V; it is however
recommended to read Sec. VI about the statistical proper-
ties of the estimated spectrum: this section is truly the
cornerstone of the entire paper since it provides the mathe-
matical model for objective and quantitative predictions to
be confronted with the actual experimental spectra.
Furthermore, the Secs. II, III, IV, V, VI, VII, and VIII
represent a sort of short review of the unsmoothed spectral
analysis of time series (unsmoothed in the sense that no
tapering or windowing is applied to the data), and feature
hence a general validity, independently from the subse-
quent application to the SK data.

II. SPECTRUM ESTIMATE AS REDUCTION IN
THE SUM OF SQUARES AND LIKELIHOOD

SPECTRUM

For the sake of the present discussion it is useful to adopt
as starting point the definition of the spectrum of a series as
reduction in the sum of squares, following the definition
given in [8] in the framework of astronomical studies. The
concept is simple: given a series xk, from which the aver-
age value F is preliminarily subtracted, one can construct
two sum of squares, that of the xk

PN
k�1 x

2
k and that of the xk

subtracted of a quantity Xk resulting from some fit proce-
dure

PN
k�1�xk � Xk�

2. The reduction in the sum of squares

XN
k�1

x2
k �

XN
k�1

�xk � Xk�2; (1)

attains a maximum when the fit is good, because obviously
in such a case the subtracted terms are minimized. Starting
from this simple formulation, and adopting a least square
sinusoidal fit to the data to determine the Xk, Lomb derived
its periodogram [5].

This straightforward definition can be put in a more
general context via a likelihood approach.

The fit of the Xk to the data can be considered obtained
via a likelihood maximization, i.e.

�X1mx; X2 max; . . . ; XNmax� ) maxL

� maxe��1=2��
P

N
k�1
��xk�Xk�2=�2

k��;

(2)
-2



LIKELIHOOD SCAN OF THE SUPER-KAMIOKANDE I . . . PHYSICAL REVIEW D 73, 103003 (2006)
where the �k‘s are the errors affecting each measured term
xk

The amount of increase of maxL over the ‘‘fit to zero’’
likelihood

LR �
maxe��1=2��

P
N
k�1
��xk�Xk�2=�2

k��

e��1=2�
P

N
k�1
�x2
K=�

2
k�

(3)

is higher when the fit is good.
If, instead of using as indicator of the presence of a good

model fit to the data the (3), we use its logarithm

S �
1

2

XN
k�1

x2
K

�2
k

�
1

2
min

XN
k�1

�xk � Xk�2

�2
k

; (4)

we reobtain essentially (1), apart an inessential factor 1=2,
with in addition the generalization of the inclusion of the
errors. (It is worth to point out that in the final formulation
of the Lomb-Scargle periodogram Scargle [6] added the
factor 1=2 for normalization purpose, and hence the paral-
lelism between (4) and the Lomb-Scargle definition is
total.) Actually, in (1) the errors were implicitly assumed
equal for all the points �k � � and hence without the need
to be explicitly included.

If the Xk in (4) are obtained via a frequency dependent
sinusoidal fit to the data, then (4) itself becomes a fre-
quency dependent function: the likelihood spectrum, i.e.
the likelihood estimate of the power spectrum of the origi-
nal data series.
III. EXPLICIT FORMULATION OF THE
LIKELIHOOD SPECTRUM

Let us now proceed to put (4) in an explicit form for the
above mentioned sinusoidal case. For simplicity we follow
the notation of the Lomb paper [5]. Hence, considering that
the series has been preliminarily averaged to zero, we fit it
with oscillations around zero written as

A cos!t� B sin!t; (5)

hence if the terms of the series xk feature a non zero
average F, then they are simply replaced by

xk � F: (6)

The likelihood is thus

L � e��1=2��
P

N
k�1
��xk��A cos!tk�B sin!tk��2=�2

k��; (7)

which is maximized when the term

E �
XN
k�1

�xk � �A cos!tk � B sin!tk��
2

�2
k

; (8)

gets the minimum. Furthermore, we can write the like-
lihood ratio as
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LR �
max�A;B�e��1=2��

P
N
k�1
��xk��A cos!tk�B sin!tk��2=�2

k��

e��1=2�
P

N
k�1
�x2
k=�

2
k�

;

(9)

from which the spectrum definition of the previous section
becomes

S�!� �
1

2

XN
k�1

x2
k

�2
k

�min�A;B�
1

2

�
XN
k�1

�xk � �A cos!tk � B sin!tk��
2

�2
k

: (10)

In order to accomplish explicitly the minimization op-
eration in (10), we can follow the same procedure used by
Lomb, generalized to the current case in which the �k
terms are present.

First we proceed to minimize (8) by performing the
partial derivatives

@E
@A
�
XN
k�1

2

�2
k

�xk � �A cos!tk � B sin!tk���� cos!tk�

(11)

@E
@B
�
XN
k�1

2

�2
k

�xk � �A cos!tk � B sin!tk���� sin!tk�;

(12)

and equating both equations to zero we get

A
XN
k�1

cos2!tk
�2
k

� B
XN
k�1

sin!tk cos!tk
�2
k

�
XN
k�1

xk
�2
k

cos!tk

(13)

A
XN
k�1

sin!tk cos!tk
�2
k

� B
XN
k�1

sin2!tk
�2
k

�
XN
k�1

xk
�2
k

sin!tk;

(14)

which can be written in matrix notationPN
k�1

cos2!tk
�2
k

PN
k�1

sin!tk cos!tk
�2
kPN

k�1
sin!tk cos!tk

�2
k

PN
k�1

sin2!tk
�2
k

0@ 1A A
B

� �

�

PN
k�1

xk
�2
k

cos!tkPN
k�1

xk
�2
k

sin!tk

0
@

1
A: (15)

By defining

cc �
XN
k�1

cos2!tk
�2
k

cs �
XN
k�1

sin!tk cos!tk
�2
k

ss �
XN
k�1

sin2!tk
�2
k

(16)
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� �
cc cs
cs ss

� �
; (17)

we get finally

A
B

� �
� ��1

PN
k�1

xk
�2
k

cos!tkPN
k�1

xk
�2
k

sin!tk

0@ 1A; (18)

being

��1 �
ss
D � cs

D
� cs

D
ss
D

� �
D � cc 	 ss� cs2: (19)

At this point substituting (18) in (10) we get the explicit
and exact formulation of the likelihood spectrum.

It must be pointed out that the result obtained in this way
is fully equivalent to the alternative approach of simply
performing the minimization in (10) by some numerical
iterative procedure. In this case it is customary to write the
trial sinusoidal function, instead as (5), as

AF sin�!tk � ’�: (20)

A being thus the amplitude of the oscillation, expressed as
fraction of the average value F, and ’ being the phase;
consistently the spectrum is written as

S�!� �
1

2

XN
k�1

x2
k

�2
k

�min�A;’�
1

2

�
XN
k�1

�xk � �AF sin�!tk � ’��2

�2
k

: (21)

Even if the numerical procedure has the disadvantage of
being much more time consuming than the implementation
of the analytical solution, it has the advantage of allowing
concurrently the determination of the uncertainty on the
fitted amplitude A of the trial modulation function. More
important, the numerical iterative procedure applied to
(21) can be generalized to the case in which, instead of
having a single �k for each point of the series, there are a
couple of asymmetric errors �k up and �k down, while ob-
viously the above analytical solution cannot be afforded in
presence of asymmetric errors.

In particular in case of asymmetric errors (21) becomes

S�!� �
1

2

XN
k�1

x2
k

�2
kp1

�min�A;’�
1

2

�
XN
k�1

�xk � �AF sin�!tk � ’��2

�2
kp2

; (22)

where

�kp2 � �k down if xk > �AF sin�!tk � ’� and

�kp2 � �k up if xk < �AF sin�!tk � ’�
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and

�kp1��kdown if xk>0 and �kp1��kup if xk<0:
IV. DERIVING THE GENERALIZED WEIGHTED
PERIODOGRAM FROM THE LIKELIHOOD

SPECTRUM

In [5], in the hypothesis of common �, it is shown how
to derive the standard Lomb-Scargle periodogram through
a suitable approximation of expressions similar to those
reported in the previous section. The same treatment can be
extended to the present case of unequal �k, leading to a
weighted form of the periodogram, which automatically
allows the proper inclusions of the errors. To this purpose
we can manipulate (10) itself as follows (omitting for
simplicity the indication min)

1

2

XN
k�1

x2
k

�2
k

�
1

2

XN
k�1

x2
k

�2
k

�
1

2

XN
k�1

�A cos!tk � B sin!tk�2

�2
k

�
XN
k�1

xk�A cos!tk � B sin!tk�

�2
k

; (23)

which becomes

XN
k�1

xk�A cos!tk � B sin!tk�

�2
k

�
1

2

XN
k�1

�A cos!tk � B sin!tk�2

�2
k

; (24)

and

XN
k�1

�2xk � �A cos!tk � B sin!tk���A cos!tk � B sin!tk�

2�2
k

:

(25)

By writing the last expression as

XN
k�1

fxk��xk��Acos!tk�Bsin!tk��g�Acos!tk�Bsin!tk�

2�2
k

(26)

it is easily recognized that the term in brackets [xk �
�A cos!tk � B sin!tk�], being the residual of the fit, is
negligible with respect to xk. Equation (26) thus becomes
approximately equal to

XN
k�1

xk�A cos!tk � B sin!tk�

2�2
k

; (27)

that in matrix form can be written

1

2

�PN
k�1

xk cos!tk
�2
k

PN
k�1

xk sin!tk
�2
k

�
A
B

� �
; (28)

or, according to (18) and (19)
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1

2

�PN
k�1

xk cos!tk
�2
k

PN
k�1

xk sin!tk
�2
k

� ss
D � cs

D
� cs

D
cc
D

� �

�

PN
k�1

xk cos!tk
�2
kPN

k�1
xk sin!tk
�2
k

0
@

1
A: (29)

Following Lomb, the 2� 2 matrix in (29) can be put in
diagonal form making cs � 0. As shown in [5], this is
obtained inserting a time shift such that (5) becomes

A cos!�t� �� � B sin!�t� ��; (30)

where � is deduced from the equationPN
k�1

sin2!tk
�2
kPN

k�1
cos2!tk
�2
k

� tan2!� (31)

With this choice (27) becomes

1

2

PN
k�1

xk cos!�tk���
�2
k

PN
k�1

xk sin!�tk���
�2
k

� � 1
cc 0
0 1

ss

 !

�

PN
k�1

xk cos!�tk���
�2
kPN

k�1
xk sin!�tk���

�2
k

0B@
1CA; (32)

which can be manipulated to obtain

1

2
1
cc

PN
k�1

xk cos!�tk���
�2
k

1
ss

PN
k�1

xk sin!�tk���
�2
k

� �

�

PN
k�1

xk cos!�tk���
�2
kPN

k�1
xk sin!�tk���

�2
k

0B@
1CA (33)

1

2

�
1

cc

�XN
k�1

xk cos!�tk � ��

�2
k

�
2
�

1

ss

�

�XN
k�1

xk sin!�tk � ��

�2
k

�
2
�
; (34)

and finally, remembering (16)

1

2

�
PN
k�1

xk cos!�tk���
�2
k

�2PN
k�1

cos2!�tk���
�2
k

�
1

2

�
PN
k�1

xk sin!�tk���
�2
k

�2PN
k�1

sin2!�tk���
�2
k

; (35)

(we remind that for a series with not zero F average xk is to
be considered replaced by xk � F).

Equation (35) is the weighted periodogram that general-
izes the Lomb-Scargle periodogram to take into account
the errors associated with each data point. From the rele-
vant derivation, it is clear that such a weighted period-
ogram represents a numerical approximation of the
likelihood spectrum. Actually, it is a very good approxi-
mation, as it was checked computing with the two different
methods the spectra of the Super-Kamiokande data, and
observing an agreement of the spectral values up to the
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second, or third, decimal digit. It should be noted that the
weighted periodogram (35) is different from the weighted
form of the Lomb-Scargle periodogram introduced in [9],
and used in [3] as an intermediate step for the Super-
Kamiokande data analysis.
V. FROM THE WEIGTHED PERIODOGRAM TO
THE STANDARD PERIODOGRAMS

These last two steps are simpler. From (35), if all the �k
are equal, we get immediately

1

2�2

�
�
PN
k�1 xk cos!�tk � ���2PN
k�1 cos2!�tk � ��

�
�
PN
k�1 xk sin!�tk � ���2PN
k�1 sin2!�tk � ��

�
; (36)

with � given by PN
k�1 sin2!tkPN
k�1 cos2!tk

� tan2!�; (37)

which is the well known formulation of the standard Lomb-
Scargle periodogram.

There is, however, an important conceptual difference
between (35) and (36) concerning the errors: while the
former implies that the errors are individually known, in
the sense that each data point is given together with the
relevant error estimate, (36) is normally interpreted with �
unknown, which hence must be derived from the scatter of
the measured values, i.e.

�2 �
1

N � 1

XN
k�1

x2
k: (38)

Finally, the transformation of the Lomb-Scargle to the
normal Schuster periodogram in case of even sampling is
well-known [6]: the standard Schuster periodogram is
evaluated only at a finite set of frequencies 2�

T j with j
from 1 to N=2 (the case j � 0 is not included because the
average value is preliminarily subtracted); T is the total
time interval, N is the number of sampling points and
�T=N�k are the sampling points. For the specific set of
natural frequencies 2�

T j (j from 1 to N=2) it can be shown
that

XN
k�1

sin2!tk � 0; (39)

and hence from the (37) it stems that � � 0.
Furthermore

XN
k�1

cos2!�tk � �� �
XN
k�1

cos2 2�
N
jk �

N
2
; (40)

and
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XN
k�1

sin2!�tk � �� �
XN
k�1

sin2 2�
N
jk �

N
2
: (41)

(36) thus becomes

1

N�2

��XN
k�1

xk cos
2�
N
jk
�

2
�

�XN
k�1

xk sin
2�
N
jk
�

2
�
; (42)

which is indeed the Schuster periodogram [10] for even
sampling, as derived from the direct application of the
Fourier transform to an evenly sampled series.
VI. STATISTICAL PROPERTIES OF
PERIODOGRAMS

It is well known that the ordinate of each frequency of
the Schuster periodogram of a purely noisy time series
features an exponential distribution [7]. The same property
for the standard Lomb-Scargle periodogram has been
proved in [6] (see also [11]).

Also the generalized weighted periodogram (35) fea-
tures the same distribution property, as demonstrated in
this section. Indeed, following [6], in the case of purely
noisy series (i.e. no modulation embedded) (35) can be
considered the sum of the squares of two normally distrib-
uted zero mean random variables, i.e.

� PN
k�1

xk cos!�tk���
�2
k����������������������������������

2
PN
k�1

cos2!�tk���
�2
k

r �
2
�

� PN
k�1

xk sin!�tk���
�2
k����������������������������������

2
PN
k�1

sin2!�tk���
�2
k

r �
2
: (43)

The terms in the brackets are linear combinations of the
variables xk: since they are zero mean and normally dis-
tributed variables, this ensures that the same property is
featured also by their combinations.

The term within the first bracket features a variance
which is equal toP

k

P
j

hxkxji cos!�tk��� cos!�tj���
�2
k�

2
j

2
PN
k�1

cos2!�tk���
�2
k

�
1

2
; (44)

(this result is obtained considering that hxkxji � 0 if k � j
and hxkxji � �2

k if k � j).
Similarly, also the variance of the variable in the second

bracket of (43) is equal to 1=2. The correlation of the two
terms is P

k

P
j

hxkxji cos!�tk��� sin!�tj���
�2
k�

2
j

2
���������������������������������������������������������������PN
k�1

cos2!�tk���
�2
k

PN
k�1

sin2!�tk���
�2
k

r

�

P
k

cos!�tk��� sin!�tk���
�2
k

2
���������������������������������������������������������������PN
k�1

cos2!�tk���
�2
k

PN
k�1

sin2!�tk���
�2
k

r � 0: (45)
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The equality to zero is due to the fact that the numerator
is the cs factor (16), forced to be zero with the suitable
choice of �.

It can now be used the result that the distribution of the
sum of the squares of two independent Gaussian random
variables with zero mean and equal variance � is [6]

1

2�2
e��z=2�2�; (46)

and since in the present case �2 is 1=2, we get the result
that the distribution of the modified Lomb-Scargle period-
ogram is simply e�z, like that of the standard Lomb-
Scargle periodogram [6] (it is worth to repeat this result
is valid if there is no modulation in the time series).

It can be shown that the exponential distribution prop-
erty shared by the Schuster periodogram, the Lomb-
Scargle periodogram and the newly introduced weighted
periodogram are simply particular manifestations of the
log-likelihood ratio theorem (or Wilks’ theorem) [12,13].
More generally, such a theorem proves that the starting
point of all these spectra, i.e. the likelihood spectrum,
shares the same property, as well.

Indeed the Wilks’ theorem states that, given N occur-
rences of the random variable x obeying to the PDF
p�x; �1�2 . . . �t� depending upon the t parameters
�1�2 . . . �t, and constructed the generalized likelihood ratio

GLR �
max��q�1 . . . �t�

QN
i�1 p�xi; �1 . . . �q�q�1 . . . �t�

max��1�2 . . . �t�
QN
i�1 p�xi; �1�2 . . . �t�

;

(47)

(hence the maximization at the numerator is done keeping
fixed the subset of parameters from �1�2 . . .�q, while the
maximization of the denominator is over the full set of
parameters) the quantity �2 ln�GLR� under the null hy-
pothesis is asymptotically distributed as �2�q�, where q is
the number of degrees of freedom.

In our case (47) specializes to

GLR �
e��1=2��

P
N
k�1
�x2
k=�

2
k��

max�A;’�e��1=2��
P

N
k�1
��xk�AF sin�!tk�’��2=�2

k��
;

(48)

and therefore the quantity �2 ln�GLR� is

�2 ln�GLR� �
XN
k�1

x2
k

�2
k

�min�A;’�

�
XN
k�1

�xk � AF sin�!tk � ’��
2

�2
k

; (49)

which, apart a factor 1=2, coincides with the definition of
the spectrum in the framework of the likelihood method.
The Wilks’ theorem thus ensures that this quantity, under
the null hypothesis, is asymptotically distributed as �2�2�,
i.e. as 1

2 e
��z=2�, and consequently the likelihood spectrum,
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being simply (49) multiplied by 1=2, is asymptotically
distributed as e�z. Having demonstrated that the weighted
periodogram, the standard Lomb-Scarge periodogram and
the Schuster periodogram are simply special cases of the
likelihood spectrum, this result applies as well to them: we
have thus recovered the previous property in a more gen-
eral context.

The exponential distribution of the Schuster and of the
standard Lomb-Scargle periodogram is the basis of the
false alarm probability formula, described in [6,11], to
perform the significance assessment of the largest detected
peak. This false alarm formula, which is

P�>z� � 1� �1� e�z�M; (50)

where M is the number of independent scanned frequen-
cies, stems from the probability density function of the
height of the largest spectral peak in case of pure noise
series: if the peaks are M, each individually exponentially
distributed, the PDF of the largest is obviously

plargest�h� � M�1� e�h�M�1e�h; (51)

from which the integration above a threshold z gives (50).
The above demonstration that also the likelihood spec-

trum and the weighted periodogram share the same expo-
nential distribution allows to extend to them the same false
alarm formula (50). For completeness, it is worth to remind
that in the case of the Schuster periodogram for even
sampled series M is unambiguously defined and is equal
to the number of frequencies at which the periodogram is
computed, i.e. N=2 so called natural frequencies, N being
the number of sampling points (see the clear explanation in
[14]). In the case of uneven sampling M is not easily a
priori defined: it depends on the coherence of the series
and is heuristically interpreted as the effective number of
independent scanned frequencies; actually the correct
value of M is determined via Monte Carlo, in the sense
that many synthetic data sets with the same properties of
the experimental series under study are generated and the
Monte Carlo distribution of the largest spectral peak is
fitted to (51) with a suitable choice of M. A thorough
account of this procedure is given, for example, in [15].

It may be useful to extend (51) to give the probability
density function of the height of all the peaks, not only of
the largest. By ordering the peaks at the various frequen-
cies over the search band in term of their height, it is, in
particular, possible to express analytically the distribution
of the height of the lowest peak, of the second lowest peak
and so on, up to the highest peak, in case of pure white
noise time series.

The author has already solved such a problem, in the
different context of photoelectron statistics, in [16] (an
alternative demonstration of the same result has been given
in [17]). The result in [16] applied to the present situation
states that, if the number of independent frequencies is M,
then the probability density function of the spectrum ordi-
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nate of the ith (in term of height, starting from the lowest)
spectral peak is

pi�h=M� �
M!

�i� 1�!�M� i�!
�1� F�h���M�i�

� �F�h��i�1p�h�; (52)

where

F�h� �
Z h

0
p���d�; (53)

being p�h� simply e�z.
In particular from (52) the distribution of the highest

peak is

pM�h=M� � M�1� e�h�M�1e�h; (54)

which correctly coincides with (51).
Up to now we have assumed that the series is purely

originated by noise. On the other hand, if there is a modu-
lation embedded in it, the distribution of the height of the
spectrum at the corresponding frequency is obviously al-
tered. In the following, to address this case, the guidelines
reported in [7] are followed. Denoting with !s the signal
frequency, (43), written for that frequency, specializes to

�PN
k�1

Sk cos!s�tk����ek cos!s�tk���
�2
k������������������������������������

2
PN
k�1

cos2!s�tk���
�2
k

r �
2

�

�PN
k�1

Sk sin!s�tk����ek sin!s�tk���
�2
k�����������������������������������

2
PN
k�1

sin2!s�tk���
�2
k

r �
2
; (55)

where Sk is

Sk �
1

�te;k � ts;k�

Z te;k

ts;k
A sin�!st� ’�dt; (56)

since in this case the xk samples are the sum of a real
sinusoidal signal (that, because of the characteristics of the
SK data, is integrated, and not simply sampled, over a
detection period of which tsk and tek are the start and end
times) plus the noise terms, denoted with ek.

Writing (55) as

�PN
k�1

Sk cos!s�tk���
�2
k

�
PN
k�1

ek cos!s�tk���
�2
k������������������������������������

2
PN
k�1

cos2!s�tk���
�2
k

r �
2

�

�PN
k�1

Sk sin!s�tk���
�2
k

�
PN
k�1

ek sin!s�tk���
�2
k�����������������������������������

2
PN
k�1

sin2!s�tk���
�2
k

r �
2
; (57)

the arguments developed to demonstrate the statistical
properties of (43) extend here showing that the two terms
in the brackets are independent Gaussian random variables
(denoted respectively X and Y) with variance equal to 1=2,
-7
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and non zero mean value given, respectively, by

Xm �

PN
k�1

Sk cos!s�tk���
�2
k������������������������������������

2
PN
k�1

cos2!s�tk���
�2
k

r ; (58)

and by

Ym �

PN
k�1

Sk sin!s�tk���
�2
k�����������������������������������

2
PN
k�1

sin2!s�tk���
�2
k

r : (59)

(58) and (59) are valid also in the case of the standard
Lomb-Scargle periodogram, provided that one puts the �k
factors equal to the common value �.

The ordinate of the spectral line at the frequency corre-
sponding to the signal thus is a random variable Z given by
the sum of the squares of the two normal variables X and Y
with distributions respectively

1����
�
p e��X�Xm�

2
; (60)

and

1����
�
p e��Y�Ym�

2
: (61)

It is known that the sum of the square of normal,
independent variables produces a random variable with
PDF belonging to the family of the chi square functions
(in this case the non central chi square functions).
However, instead of using the general expression of this
family of curves, it is easier to use directly the probabilistic
rules for the combination of random variables [18], from
which it can be inferred that the PDF of Z can be expressed
through a numerical integration as

Z 2

0

1

2�
e��

���
Z
p

cos��Xm�2��
���
Z
p

sin��Ym�2d�: (62)

Equation (62) will be extensively used to assess the spec-
tral properties when a signal is present. It may be worth to
note that when Xm and Ym are zero (no signal present) (62)
becomes

Z 2�

0

1

2�
e��

���
Z
p

cos��2��
���
Z
p

sin��2d� (63)

or

Z 2�

0

1

2�
e�Zcos2��Zsin2�d�; (64)

and finally

Z 2�

0

1

2�
e�Zd� � e�Z: (65)
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In this way we have, hence, concretely proved the
exponential distribution of the periodogram in case of
pure noise.

The numerical integral (62) can be used, as well, to
perform the prediction of the expected alias frequencies
for a true signal embedded in the series. For this purpose it
is enough to compute Xm and Ym (58) and (59) at other
frequencies than the frequency!s of the true signal Sk, and
check if at any of these other frequencies the integration
(62) predicts a significant spectral response.
VII. NULL HYPOTHESIS DISTRIBUTIONS:
MONTE CARLO EXAMPLES AND COMPARISON

WITH THE MODEL

It is largely reported in the literature concerning time
series that the significance assessment of the largest peak
found in the periodogram of an experimental data set is
normally done via Monte Carlo [15]. In practice, given the
characteristics of the time series under examination, i.e.
sampling times sequence and noise variance (or variances
in case of unequal measurements errors), a large number of
fictitious, purely noisy (i.e. with no modulation embedded)
time series data sets obeying to the same characteristics are
generated via Monte Carlo, and for each of them the
corresponding highest peak in the associated spectrum is
recorded. The histogram of these values is used to assess
the significance of the highest peak found in the spectrum
of the real data: indeed its significance is given by the
fraction of times in which a larger value is got in the
Monte Carlo calculation, which is thus a measure of the
probability to get by pure noise chance a peak as high or
higher than that detected experimentally.

Even if not strictly needed, sometimes the Monte Carlo
results are fitted to (50) or (51) in order to get the effective
number M of independently scanned frequencies.

Such a Monte Carlo procedure in this section is exten-
sively tested with the purpose to gain adequate insight in it,
in view of its subsequent application to the Super-
Kamiokande data, also extending the methodology illus-
trated in the literature to the less high peaks, in order to
check how good is the model represented by (52). To this
purpose some example calculations have been performed,
referred to an hypothetical series with 100 sampling points,
either equally spaced or Poisson distributed in time (i.e.
with an exponential distribution between two subsequent
points).

Just to fix the ideas, the numbers used to describe the
fictitious data series in the examples are taken to resemble
the Super-Kamiokande data, even if not strictly needed.

We remind that the model (52) is expected to be exactly
valid in case of even sampling, when the periodogram to be
used is the Schuster version, evaluated only at the set of
natural frequencies. We can then apply the Monte Carlo
procedure to (42) and check whether the resulting output
histograms, describing the distributions of the largest
-8
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FIG. 1 (color online). Schuster periodogram: comparison of Monte Carlo with the model under the hypothesis of known noise
variance.
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peaks, are in agreement with (52). The Monte Carlo com-
putation have been accomplished generating for each of
the 100 points of the series a random number drawn
according to a Gaussian distribution of mean value 2.5
and sigma 0.5. For each set of 100 simulated elements,
the relevant periodogram has been computed according to
(42), and then the three highest peaks recorded and put in
histogram form. The resulting histograms are shown in
Fig. 1, overlapped to the corresponding model functions:
the agreement between the Monte Carlo outputs and the
formula (52), computed for M � 50, is really excellent for
all the three peaks. Since (52) are normalized to unit area,
for purpose of comparison here and in the following the
same normalization is applied to the Monte Carlo
distributions.

A caveat, however, is due. The agreement is very good if
in (42) it is inserted as � the same value used in the
generation of the random numbers of the series.
Obviously, in a real experimental situation the variance
of the data is not known, hence in (42) it has to be inserted a
value estimated from the data itself.

The outcome of such a situation is shown in Fig. 2. The
agreement of the Monte Carlo data and of the model is lost,
but for the highest peak the tail of the relevant distribution,
which is the essential part for its significance assessment, is
still properly described by the model function. It must be
stressed that the model (52) is independent from the mean
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FIG. 2. Schuster periodogram: comparison of Monte Carlo with the
data.
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value and sigma of the generated numbers forming the
noisy series: this fact stems from the normalization effect
of the �2 factor at the denominator of (42) and from the
preliminary subtraction of the average value from the terms
of the series. The same is true for the Monte Carlo histo-
grams reported in Fig. 2: they depend only on the number
of equally spaced data points, as checked changing the
values both of the mean value and of the variance of the
hypothetical experimental series. It can also be noted that
the effect of not knowing a priori the noise variance is to
make the histograms narrower and higher than the corre-
sponding model functions.

As an interesting historical digression, it is worth to note
that Fisher in [19] solved exactly the problem of the
significance assessment of the highest peak of the
Schuster periodogram, in the case of variance inferred
from the data itself. Specifically, he proved that, by eval-
uating the ratio g of the highest periodogram peak to the
sum of the ordinates of all the peaks, the PDF of g is given
by

p�g� �
X
k

M
k

� �
��1�k�1k�M� 1��1� kg��M�2�; (66)

where the sum over k extends up to the minimum between
M and the highest integer less than 1=g. The comparison
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model under the hypothesis of noise variance estimated from the
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between the (66) and the corresponding Monte Carlo dis-
tribution is reported in Fig. 3: the agreement is excellent.

From these evaluations we can infer two conclusions:
the first is that the Monte Carlo is reliable and well under-
stood in term of analytical models, the second that, since
also the lesser amplitude peaks obey to well defined dis-
tributions, it is in principle conceivable to attempt a sig-
nificance assessment also for them, and not only of the
highest. This possibility relies on the use either of the
model (52) (which practically is only an approximation
because of the unknown variance) or, better, of an accurate
Monte Carlo calibration like that in Fig. 2. Can a similar
approach be pursued also in the case of uneven sampling?
To check this possibility, several Monte Carlo computa-
tions have been done assuming an hypothetical series of
100 points Poisson distributed (with a mean time between
two points equal to 5 days).

Such null hypothesis Monte Carlo calculations have
been computed adhering to the features of the three differ-
ent analysis methods under examination: Lomb-Scargle,
weighted periodogram and likelihood with asymmetric
errors. As for the Schuster periodogram, the starting point
of the procedure in all cases is the definition of the char-
acteristics of the hypothetical experimental time series,
that provides the input for the subsequent Monte Carlo
procedure for significance assessment. Then, in the gen-
eration stage, many synthetic time series sets are con-
structed generating at each point of the series (whose
timing retains that of the hypothetical original data series)
a random number drawn by a Gaussian distribution with
properly chosen mean value and variance.

In particular, in the cases of the Lomb-Scargle period-
ogram the hypothetical experimental series is assumed
with mean value evaluated equal to 2.5 and scatter of the
measured values equal to 0.5; afterwards in the correspond-
ing Monte Carlo procedure the synthetic time series are
generated taking for the Gaussian distributions the same
quantities, respectively, for the mean value and the vari-
ance. The Lomb-Scargle periodogram for each of these
synthetic sets is computed in two different ways: either
introducing in the Lomb-Scargle formula as � the genera-
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FIG. 3. Schuster periodogram: comparison of Monte Ca
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tion value 0.5 or the value inferred from the generated
series (the latter is obviously the realistic procedure while
dealing with real data); as mean value in both cases it is
taken the simple average of the synthetic series.

In the case of the weighted periodogram, the hypotheti-
cal experimental series is still assumed with measured
mean value 2.5, but to each point it is attributed a fictitious
experimental error taken randomly from a distribution
centered at 0.5 and with sigma 0.05. In the Monte Carlo
procedure the synthetic time series are generated taking for
the individual Gaussian distributions the common mean
value 2.5 and for the individual variances the correspond-
ing errors at each point. The weighted periodogram for
each of these synthetic sets is computed introducing in the
weighted periodogram formula the same individual �k’s
used in the generation step, while the mean value is taken
as the series weighted average.

Finally, in the case of the likelihood analysis done
retaining the asymmetric errors, the hypothetical experi-
mental series is still assumed with mean value evaluated to
be 2.5, but for each point two fictitious asymmetric errors
are assumed (again individually drawn from a distribution
centered at 0.5 and with sigma 0.05). In the corresponding
Monte Carlo procedure the synthetic time series are gen-
erated exploiting asymmetric Gaussian distributions with
the upper and lower part parametrized by the correspond-
ing asymmetric errors, and with mean value still equal to
2.5. The likelihood spectrum for each synthetic set is
computed with the iterative numerical procedure men-
tioned in Sec. III using the same asymmetric errors ex-
ploited in the generation stage, and with mean inferred by
the weighted average of the series itself.

In all cases the output of the Monte Carlo are the histo-
grams obtained recording the largest spectral peaks. In the
following these histograms for the various cases under
investigation are reported, and compared with the model
(52).

In Fig. 4 and 5 the distributions from the Monte Carlo in
the case of the standard Lomb-Scargle periodogram are
shown. For coherence with the subsequent calculations of
the SK data, the spectral analysis is assumed over the
.15 0.2 0.25 0.3

of all peaks)

Fisher formula

Monte Carlo distribution

rlo with the Fisher formula for the PDF of the ratio g.
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FIG. 4. Lomb-Scargle periodogram: comparison of Monte Carlo with the model under the hypothesis of known noise variance.
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frequency range from 0 to 50 cycles/year. Figure 4 pertains
to the (unrealistic) situation in which the (common) noise
variance is perfectly known, while Fig. 5 is related to the
more realistic case with the sigma estimated directly from
the data, reproducing exactly the standard Lomb-Scargle
procedure in a real experimental condition.

By examining the results it comes out that in the latter
case the agreement between the model and the
Monte Carlo output is good, and practically perfect for
the tails of the distributions: hence the notion of effective
independent frequencies is well founded, at least for prac-
tical purposes, in the case of the standard Lomb-Scargle
methodology. In particular by fitting the highest peak
distribution to the model, the value of 137 is inferred for
M. For purpose of comparison, also the continuous curves
plotted in Fig. 4 are referred to the same value ofM (a fit is
not attempted since the curves deviate significantly from
the model).

It can be noted, however, that the tails of the distribu-
tions in Fig. 4 are not drastically different from the model
functions, especially the tail of the highest peak distribu-
tion. It also comes out an interesting difference with the
Schuster periodogram: in that case the a priori knowledge
of the variance ensured a perfect match with the model,
while now the Monte Carlo histograms evaluated under the
same condition are broader and lower than the model
functions. On the other hand, the Monte Carlo demon-
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strates that in the case of the standard Lomb-Scargle ap-
proach there is a balance effect between the narrowing of
the distributions observed in the case of even sampling,
when the variance is not known (Fig. 2), and the broad-
ening of the same distributions in the case of uneven
sampling, when the variance is known (Fig. 4). The net
effect of this balance is a recovery of a good agreement
with the model (52). Interestingly, at least for the distribu-
tion of the highest peak the same effect was also noted in
[15].

The case of weighted periodogram is shown in Fig. 6.
The results in the figure are similar to those shown in

Fig. 4 got using the same single sigma supposed known:
the distributions are broader and lower than the model
functions, still plotted for M equal 137.

The histograms in Fig. 7 are those obtained through the
application of the likelihood with asymmetric errors; their
more remarkable feature is that the respective tails are
significantly enhanced with respect to the model functions.

In Fig. 8 the distributions of the highest peak for all the
four cases under consideration are displayed together. This
way of showing the histograms allows to appreciate clearly
that the three situations of variance(s) a priori known are
similar (with the asymmetric situation featuring a more
pronounced tail), while the Lomb-Scargle standard method
histogram profile deviates distinctively from the others;
this difference however is less marked in the tail region,
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FIG. 7 (color online). Likelihood spectrum with asymmetric errors: comparison of Monte Carlo with the model. The same
asymmetric variances are used in the generation and in the analysis steps.
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where the tail of the Lomb-Scargle distribution is only
slightly less pronounced than the other tails. Similar con-
clusions could be drawn by overlapping the corresponding
distributions of the lesser amplitude peaks, with the only
difference that the tails in the cases of the variances known
would appear somehow more enhanced with respect to the
Lomb-Scargle histograms.

In summary, the following points can be highlighted as
stemming from these Monte Carlo tests: (a) also the lesser
amplitude peaks and not only the highest obey to well
defined distributions; (b) in the standard Lomb-Scargle
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FIG. 8 (color online). Display of the distributions related to the
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approach such distributions follow well the theoretical
model; (c) in the other three cases considered the distribu-
tions of the various peaks are very similar each other, due
to the fact that all such cases share the common feature of
supposing the variance (or variances) as known a priori;
(d) the tail of the highest peak is similar across the four
methods, with the asymmetric case exhibiting the stronger
tail; (e) the tails of the other peaks are slightly more
pronounced in the three cases of variances known with
respect to the Lomb-Scargle method.
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The circumstance that the less high peaks feature well
defined distributions implies that, not only for the highest
peak detected in a experimental spectrum, but also for at
least the other more prominent peaks, it can be attempted a
significance assessment by comparing their ordinates with
the corresponding null hypothesis Monte Carlo distribu-
tions. This is not a new idea, since, for example, it has been
studied in [20]. Obviously a multiple peaks significance
assessment must be handled with great care: it can be used
to reinforce the global agreement, or disagreement, of a
spectrum with the constant rate hypothesis, with respect to
the information given by the highest peak alone, but it
cannot be thought to give automatically indications
whether a specific peak is due to signal or noise. Indeed,
if there is in a spectrum a mixture of noise and signal lines,
what happens is that the correct sequence of the highest,
second highest and so on noise peaks is altered by the
interleaved presence of the signal lines, thus likely produc-
ing one or more inconsistent low values in the assessment
procedure, but this inconsistency, for example, may arise
not directly by the signal line or lines, that could be low
enough to appear consistent with one or more of the noise
distributions, but by a noise peak that, ordered in the wrong
way because of the presence of the signal lines themselves,
is erroneously confronted with the noise distribution not
pertaining to it but to a lower peak. Conversely, if from
other information one may peak up correctly the signal
lines, then by repeating the significance assessment on the
remaining true noise peaks one would recover the correct
series of significance values.

Furthermore, the points (d) and (e) above imply that,
given a pure noise series, the spectrum appearance should
not change substantially in passing from one of the analysis
method to another, especially focusing the attention to the
most prominent peaks, and as a consequence the signifi-
cance values of the highest peaks should be fairly compa-
rable among the different methodologies.

VIII. DISTRIBUTIONS CORRESPONDING TO A
TRUE PERIODICITY

The previous section has been focused to unravel the
features of the null hypothesis distributions. The comple-
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FIG. 9. Lomb-Scargle method spectrum ordinate distribution at
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mentary evaluation is that referred to the alternative situ-
ation: given a true periodicity embedded in the time series,
what is expected to detect via the spectral analysis? This
evaluation can be done both via Monte Carlo or via the
numerical integration of (62).

The approach through the numerical integration is fea-
sible in the case of the analysis performed either through
the Lomb-Scargle or the weighted periodogram methods;
we remind that in the numerical integration the difference
between the two cases is in the definition of the term Xm
and Ym, as explained at the end of Sec. VI.

On the other hand, the Monte Carlo procedure is the only
one possible in the case of the likelihood approach with
asymmetric errors.

To show in a concrete case the behavior of the spectrum
at the frequency of a true signal, and also to compare the
Monte Carlo evaluation with the output of the numerical
integration, let us assume a frequency equal to 5 cycles/
year and an amplitude of oscillation equal to 9% of the
average flux and examine the distributions of the relevant
spectrum ordinate under different conditions. In order to
produce very realistic examples, we consider this period-
icity as embedded in a series with timing, mean value and
error values equal to that of the 5 day binned SK data set
(whose description is postponed to the next section). For
the present discussion it must be kept in mind only that
each point of the series is given with two experimental
asymmetric errors.

In Fig. 9 there is the plot of the height distribution of the
spectral ordinate at the signal frequency, obtained through
the numerical integration of (62) in the case of the Lomb-
Scargle periodogram, overlapped to the corresponding
Monte Carlo distribution, computed generating the time
series via the experimental asymmetric errors and perform-
ing the analysis on each generated data set through the
Lomb-Scargle procedure. The Monte Carlo follows well
the curve, but not perfectly, the reason being equal to that
already encountered at the beginning of the discussion of
the null hypothesis distribution for the Schuster period-
ogram: the normalization sigma at the denominator of the
Lomb-Scargle formula is itself a random term, since it is
inferred from the data and it is not known a priori, thus
25 30 35 40 45 50

e at signal frequency

 a=0.09 f=5 Lomb-Scargle numerical integration

 a=0.09 f=5 Lomb-Scargle Monte Carlo

signal frequency: comparison of Monte Carlo with the model.
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adding a variability effect which is not contemplated by the
(62). To check that this is actually the origin of the dis-
crepancy, it has been done a test changing the generation
procedure in the Monte Carlo by using a single standard
deviation for all the points, and then using exactly the same
value in the subsequent Lomb-Scargle stage as normaliza-
tion sigma; in this way the Monte Carlo and the numerical
integration plot should coincide perfectly. Such a perfect
coincidence is indeed shown in Fig. 10, which hence
provides the confirmation that both the Monte Carlo and
the model are reliable and well understood.

In Fig. 11 the curves related to the weighted period-
ogram case are reported: in the Monte Carlo the time series
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is generated exploiting, as before, the asymmetric errors,
while in the computation of the weighted periodogram for
each data set the variance at every point is taken as the
mean of the two experimental asymmetric errors. The
agreement in this case between the Monte Carlo and the
numerical model is very good.

From the plots in Fig. 9 and 11 it can be inferred that the
error done replacing the Monte Carlo with the numerical
integration of (62) is minimum, with the benefit on the
other hand of speeding up the computations. Furthermore,
confronting directly the Lomb-Scargle and weighted peri-
odogram cases for the same frequency and amplitude, as in
Fig. 12, it stems the important result that the distribution of
25 30 35 40 45 50
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the ordinate of the spectrum corresponding to a true peri-
odicity shifts toward higher values in passing from the
former to the latter method.

To complete this review it is left to show the distribution
obtained with the third method contemplating the analysis
via the likelihood with asymmetric errors. Such a
Monte Carlo distribution is reported in Fig. 13, together
with the numerical computation related to the weighted
periodogram case.

It can be seen that the Monte Carlo predicts that the
inclusion of the asymmetric errors produces a modification
of the distribution of the spectrum ordinate at signal fre-
quency with respect to that of the weighted periodogram
case, in which the errors are included after being made
symmetric via their average. In particular the net effect is a
certain shift of the whole distribution toward higher values.

Equipped with this model and Monte Carlo insight into
the spectrum distribution properties both in case of the null
hypothesis and in presence of a true periodicity, the rest of
the paper is devoted to analyze in detail the actual SK data.
IX. ANALYSIS OF THE SK 10 DAY BINNED
DATASET: ASSESSMENT OF PEAKS

SIGNIFICANCE VIA COMPARISON WITH THE
MONTE CARLO NULL HYPOTHESIS

DISTRIBUTIONS

The Super-Kamiokande collaboration published the
time series of the 8B neutrino flux measurements organized
both in 10 and 5 day bins [1]. For each bin it was provided,
together with the flux value, also the respective mean live
time twk, properly evaluated in order to take into account
the live time of the detector, as well as the relevant cor-
rective factor to remove the 7% peak-to-peak annual varia-
tion due to the Earth’s orbit eccentricity around the Sun.
However, in all the calculations reported in the following it
has been preferred not to apply such a correction, in order
to leave the data fully intact. The Super-Kamiokande col-
laboration published also for each bin the two asymmetric
errors�up

k and�down
k ; as thoroughly explained above, in the

standard Lomb-Scargle periodogram they are ignored and
replaced with a common � given by the scatter of the
103003
measured values. On the contrary, in the weighted period-
ogram approach the symmetric �k’s are taken as

�k �
�up
k � �

down
k

2
;

while in the likelihood method with asymmetric errors the
�up
k and �down

k are taken as they are.
In addition, the datasets provide for each 10 or 5 day

long segment the start time ts and the end time te.
In this section it is reported for the 10 day binned dataset

the null hypothesis analysis in the framework of the three
type of investigations under consideration. In particular,
for each case it is shown the respective power spectrum as
well as the null hypothesis Monte Carlo distributions for
the largest spectral peaks, from which the significances of
the actual highest peaks in the spectrum are derived.

Adhering to the guidelines of the previous Sec. VII, the
Monte Carlo distributions are evaluated differently accord-
ing to the features of the three different analysis methods.
So, specifically, in all cases the synthetic time series sets
are constructed generating at each point of the series
(whose timing retains that of the original data series) a
random number drawn by a Gaussian distribution of spe-
cific mean value and variance: in the case of the Lomb-
Scargle periodogram, the mean value is equal to the aver-
age value of the experimental series, and the variance is
common for all the points and equal to the scatter of the
values of the experimental series; in the case of the
weighted periodogram, the mean value is taken equal to
the weighted average of the data series, while the variances
are different point by point and taken equal to the mean
value of the two corresponding asymmetric errors; finally,
in the case of the analysis done retaining the asymmetric
errors, the individual Gaussian distributions used to gen-
erate the Monte Carlo series are kept asymmetric, with the
upper and lower part parametrized by the corresponding
asymmetric errors. After the generation process, the
Monte Carlo proceeds as described in Sec. VII, producing
as output the desired null hypothesis distributions of the
largest spectral peaks. The results are thoroughly described
in the following.
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A. 10 day data Lomb-Scargle periodogram

The Lomb-Scargle periodogram of the 10 day binned
SK data is shown in Fig. 14, in the frequency range from 0
to 50 cycles/year.

The four highest peaks have ordinates, respectively, 7.1
(26.51), 6.8 (26.99), 6.41 (9.4) and 5.36 (23.6) (in the
brackets there is the indication of the respective frequency
expressed in cycles/year; in the rest of the paper the
frequencies are normally written leaving implicit the unit
of cycles/year). Here and in the following, to each line
should be considered attached an uncertainty of 
0:07,
corresponding to the FWHM of the spectral lines. From a
Monte Carlo similar to that used to derive the Fig. 5 in the
section of the examples, the results reported in Fig. 15 are
obtained. It can be seen that the distribution of the highest
peak is very well described by the model function plotted
with M � 529.

The distributions of the other three less high peaks are
somehow also described by the same M value, even if the
tails are not perfectly matched. One may wonder why the
agreement between the model and the Monte Carlo is
better here than in the example reported in Fig. 5. The
reason is likely in the different spacing of the points of the
series: while in the example in Fig. 5 the points were
Poisson distributed in time, in the case of the SK data the
spacing between them maintains a high degree of regular-
ity, even though is not perfectly even.
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The four major peaks listed above are well consistent
with the simulated distributions, in the sense that none of
them lies on the tail of the respective distribution.
Quantitatively, reminding that the definition of significance
of a peak is the integral of the corresponding Monte Carlo
distribution above its actual value, we get that for the peak
at 7.1 the significance is 34.7% (3474 entries above the 7.1
ordinate out of 10 000 simulated events), that for the peak
at 6.8 the significance is 15% (1504 entries above the 6.8
ordinate out of 10 000 simulated events), that for the peak
at 6.41 the significance is 8% (802 entries above the 6.41
ordinate out of 10 000 simulated events), and that for the
peak at 5.36 the significance is 27% (2694 entries above the
5.36 ordinate out of 10 000 simulated events). So, in sum-
mary, the Lomb-Scargle periodogram of the 10 days
binned data is perfectly consistent with a noisy series
with no periodicity embedded. This result is in agreement
with the conclusions in [1] got through the same analysis
method, limited to consider the highest peak only.

B. 10 day data weighted periodogram

The weighted periodogram of the 10 day binned SK data
is shown in Fig. 16, in the frequency range from 0 to
50 cycles/year. The four highest peaks have ordinates,
respectively, 8.5 (26.52), 7.46 (9.4) 6.84 (26.98) and 6.01
(23.61). Hence these are the same four peaks identified in
the Lomb-Scargle spectrum, with the difference that the
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FIG. 16. Weighted periodogram of the 10 day binned SK data.
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second highest peak here was the third highest in the
previous spectrum and vice versa.

From a Monte Carlo similar to that used to derive the
Fig. 6 we get the results reported in Fig. 17. It can be seen,
as in the example of Fig. 6, that the Monte Carlo histo-
grams do not follow the model functions, reported in the
figure for the same value M � 529 derived above.
Quantitatively, from the Monte Carlo distributions we get
that for the peak with ordinate 8.5 the significance is 12.4%
(1239 entries above 8.5 out of 10 000 simulated events),
that for the peak with ordinate 7.46 the significance is 9.1%
(912 entries above the 7.46 ordinate out of 10000 simulated
events), that for the peak with ordinate 6.84 the signifi-
cance is 6.5% (654 entries above the 6.84 ordinate out of
10 000 simulated events), and that for the peak with ordi-
nate 6.01 the significance is 11.2% (1125 entries above the
6.01 ordinate out of 10 000 simulated events).

So, also the weighted periodogram of the 10 days binned
data appears to be consistent with a noisy series with no
periodicity embedded. There are however some facts that
deserve to be pointed out: the first is the inversion of the
order of the second and third peak, the second is a general
increase trend of the ordinate of the four highest peaks
which finds its counterpart in the overall decrease of the
significance values with respect to the previous period-
ogram, the third is the enhancement of the tails of the
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null hypothesis simulated distributions (actually such an
enhancement is more marked for the lowest peaks, while
the tail of the highest is pretty unchanged). A thorough
discussion, encompassing also these points, is deferred to
the next Sec. XI.

C. 10 day data likelihood spectrum with asymmetric
errors

The likelihood spectrum with asymmetric errors of the
10 day binned SK data is shown in Fig. 18, in the frequency
range from 0 to 50 cycles/year. The four highest peaks have
ordinates, respectively, 8.08 (26.51), 7.05 (9.4), 6.44
(26.98) and 5.67 (23.61), thus the same peaks as before.

From a Monte Carlo similar to that used to derive the
Fig. 7 in the example section we get the results reported in
Fig. 19. It can be seen, as in the example of Fig. 7, that the
Monte Carlo histograms do not follow the model functions,
plotted for comparison in the figure with M � 529.

Quantitatively, from the Monte Carlo histograms we get
that for the peak with ordinate 8.08 the significance is
20.1% (2013 entries above 8.08 out of 10 000 simulated
events), that for the peak with ordinate 7.05 the signifi-
cance is 18.2% (1824 entries above the 7.05 ordinate out of
10000 simulated events), that for the peak with ordinate
6.44 the significance is 16.1% (1611 entries above the 6.44
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FIG. 18. Likelihood spectrum with asymmetric errors of the 10 day binned SK data.
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ordinate out of 10 000 simulated events) and that for the
peak with ordinate 5.67 the significance is 25.6% (2559
entries above the 5.67 ordinate out of 10 000 simulated
events). So, what happens is that the ordinates of the
highest peaks are larger than in the Lomb-Scargle case,
but lower than in the weighted periodogram spectrum;
moreover, the tails of the null hypothesis distributions are
enhanced with respect to both the previous case, and as a
consequences the resulting significances of the highest
peaks are well consistent with a noisy series with no
periodicity embedded. It should be, however, pointed out
that this last spectrum as appearance is more similar to the
weighted periodogram spectrum than to the Lomb-Scargle
one, in particular, for what concerns the sequence of the
highest peaks.

Prior to further discuss the features of the three spectra
under consideration in Sec. XI, in the next section we
exploit the calculations of Sec. VIII to check what would
be the predictions for a true periodicity embedded in the
data.
X. ANALYSIS OF THE SK 10 DAY BINNED
DATASET: PREDICTION OF THE SPECTRUM

BEHAVIOR IN PRESENCE OF A TRUE
PERIODICITY

By referring to the calculations reported in Sec. VIII it is
known that in case of a true periodicity embedded in the
103003
data what is expected is, at the signal frequency, a spectral
ordinate which obeys to the distribution (62) (see examples
in Sec. VIII). In order to summarize meaningfully in the
case of the 10 day binned data the expected spectral
response to a true periodicity over the search band, in
Fig. 20 it is plotted the mean value of the signal induced
distribution (62) as function of the frequency.

The curves are computed for the two different relative
amplitudes of 0.05 and 0.07, and for the cases of Lomb-
Scargle and weighted periodogram. Few dots are added to
show also the behavior of the likelihood spectrum with
asymmetric errors. Some things deserve to be highlighted:
(a) the spectral response is not uniform over the search
band and vanishes rapidly beyond the Nyquist frequency
(signalled by the irregularity present on all the curves);
(b) the spectral response changes sharply as function of the
amplitude of the periodicity; (c) in passing from the first to
the second and third method, in average the spectrum
ordinate increases slightly.

Another prediction is that related to the possible alias. It
has been suggested in previous analyses [2,3] that the two
lines at 9.4 and 26.52 can be an alias pair. Through (62) this
can be checked quantitatively: assuming a periodicity of a
given frequency and amplitude (62) is computed for all the
frequencies of the search band, in order to determine at
frequencies different from the true frequency what is the
respective amplitude distribution of the spectrum ordinate
induced by that true frequency. At all frequencies, with
-18
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FIG. 21. Predicted alias frequencies of a real modulation with frequency equal to 9.4 cycles/year.
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exception of the alias ones, such a computation should
simply produce the expected noise exponential distribu-
tion, while at the alias frequency (or frequencies) the same
calculation should reproduce a distribution similar to that
induced by a real signal.

In order to understand which is the case, for every
computed distribution it is evaluated the respective mean
value, that must be 1 for the non alias frequencies (mean
value of the expected exponential distribution), and higher
than 1 for the alias frequencies. A plot that reports the
mean value against the frequency will thus display sharp
peaks at the alias frequencies. The result of this search is
plotted in Fig. 21, for a presumed periodicity of 9.4 cycles/
year with relative amplitude 0.055. Two alias frequencies
are predicted, one at 26.55 and the other at 45.34.

In the next section these results and those of Sec. IX are
examined together in the attempt to construct a consistent,
explicative picture.

XI. OVERALL COMPARISON OF THE MODEL
PREDICTIONS WITH THE DATA

Having studied in Sec. IX the expected properties of the
null hypothesis distributions and in Sec. X the properties of
the spectral responses in case of a true periodicity, it can
now be tried to outline an overall interpretation of the
detected behavior of the 10 day SK spectra obtained with
the various methods of analysis.
103003
Prior to go ahead with such a discussion it is worth to
note that, while doing the analysis thoroughly explained
above, the fit gives an estimate of the relative amplitude
associate to each spectral line. In particular for the line at
9.4 it results: in the Lomb-Scargle analysis an amplitude of
0:052
 0:014, in the weighted periodogram analysis an
amplitude of 0:054
 0:015

0:014 and in the likelihood with asym-
metric errors an amplitude of 0:054
 0:015

0:014 . So, we are
dealing with a potential effect in the 5–6% amplitude
range.

Coming back to the overall interpretation attempt, the
peculiar fact detected experimentally while computing the
spectra under the three different methods is the increase of
the ordinates of the more prominent peaks while passing
from the standard Lomb-Scargle methodology to the two
methods taking into account the errors. However, the in-
crease is more evident in the weighted periodogram case
than in the asymmetric errors spectrum. On the other hand,
the Monte Carlo evaluation shows that the tails of the null
hypothesis distributions, when compared with the Lomb-
Scargle configuration, change slightly in the weighted
periodogram case while are markedly enhanced in the
asymmetric likelihood configuration. Thus it stems that
the significance assessment of the peaks becomes stronger
in the second method with respect to the standard Lomb-
Scargle methodology, while it is pretty comparable with it
in the third approach.
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Very interesting is the comparison of the spectra with the
predicted spectral response in Fig. 20. Three of the four
more prominent peaks, those at frequency 23.61, 26.52 and
26.98, fall in a region where the spectral analysis has
reduced sensitivity to a true periodicity; this quantitative
observation induces to presume that they may arise from
fake effects.

In particular, the above alias calculation suggests that
the peak at 26.52 could well be the alias of a real signal
located at 9.4 cycles/year: the alias predicted by the calcu-
lation is indeed at 26.55, so practically coincident with the
location of the detected peak at 26.52 (see Fig. 22). The
alias calculation, however, predicts also another peak at
45.34. In order to locate with respect to the Nyquist fre-
quency such a peak, let us consider that the first alias
frequency must be specularly located with respect to the
true signal around the Nyquist frequency. Hence, denoting
such a frequency with Nq, we have that �Nq� 9:4� �
Nq � 26:55 and hence Nq � �26:55� 9:4�=2 � 17:975,
very close to the nominal value of 18. From this result it
stems that 2� 17:975� 9:4 is equal to 45.35, coincident
with the second alias predicted by the calculation, which is
therefore an alias shifted on the right of the double of the
Nyquist frequency of a quantity just equal to the 9.4
frequency.

The investigation of the spectra shows that actually also
this second peak is present, with low height in the Lomb-
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Scargle case and slightly more pronounced in the other two
spectra.

Moreover, the strong correlation of the two peaks at 9.4
and 26.52 emerges also from another test, whose output is
shown in Fig. 23: the line at 9.4 is removed from the times
series, exploiting its fit parameters (hence not only the
amplitude but also the phase), and then the spectrum
recomputed. From Fig. 23, in which the original spectrum
is reported as dashed line, and the spectrum after the
subtraction as solid line, it is inferred that the subtraction
of the 9.4 line automatically removes also the 26.52 line.

It must be, however, pointed out that these plurality of
alias indications are necessary conditions that must be met
if it is a priori known that there is a real modulation, but
that vice versa, taken alone, cannot be considered as a
proof for the presence of a signal. The reason is that among
the noise peaks it exists a correlation that can mimics the
alias effect itself. To show such a correlation it has been
performed a Monte Carlo test generating a sets of purely
noise series, identifying the maximum of the spectrum
within the first Nyquist interval, and then recording the
height of the spectrum at the alias frequency. The result of
such a test is reported in Fig. 24, where the plots displayed
are, respectively, the histogram of the maximum within the
first Nyquist interval and the histogram of the correspond-
ing spectrum ordinate at the alias frequency; clearly the
latter histogram is very different from the usual simple
20 25 30

cycles/year)

pectrum

pectrum 9.4 presumed signal

line) after subtraction of the presumed 9.4 line.
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FIG. 24. Correlation of the alias pairs in the spectrum of a purely noisy series.

TABLE II. Weighted periodogram: peak significance ignoring
the presumed signal at 9.4 cycles/year and its alias.

Ordinate Frequency Significance

6.84 26.98 4264 events out of 10 000
6.01 23.61 4103 events out of 10 000
5.10 8.30 5995 events out of 10 000
4.7 11.55 6468 events out of 10 000
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exponential distribution that would have emerged in case
of absence of correlation and shows that the probability of
higher values is much enhanced with respect to the normal
noise distribution.

Thus the possible alias relation between the 26.52 and
the 9.4 line could be considered only a working hypothesis,
to be confirmed, or disproved, in a more general frame-
work. In particular in this respect it will be important to
check the behavior of the 5 days dataset (see next sections).
While waiting for that test, what can be done here is to
hypothesize that three frequencies 23.61, 26.52 and 26.98
are truly artefacts, with the 26.52 being the alias of that at
9.4, and then, following the suggestion in the Sec. VII,
repeat the significance assessment calculation ignoring the
peaks suspected to be induced by real signals, so to check if
the residual peaks produce an overall global significance
more constant across the three spectra.

Clearly, in such a scenario it is presumed that the 9.4 line
is a true signal. What is, however, not consistent with the
model is the circumstance that for a true periodicity the
calculation predicts, in average, a modest increase of the
spectrum ordinate while passing from the first to the sec-
ond and third method, while in the real spectra the increase
of the 9.4 ordinate is definitely more pronounced.
Interestingly, in this respect the disagreement with the
model is less pronounced in the asymmetric likelihood
case.

Keeping in mind this caveat, we can in any case do the
significance exercise; the significances of four highest
peaks, ignoring the 9.4 line and its presumed alias, are
summarized in the following Tables I, II, and III.
TABLE I. Lomb-Scargle periodogram: peak significance
ignoring the presumed signal at 9.4 cycles/year and its alias.

Ordinate Frequency Significance

6.80 26.99 4393 events out of 10 000
5.36 23.60 7265 events out of 10 000
5.00 37.00 7158 events out of 10 000
4.98 8.31 5187 events out of 10 000
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Therefore in all three cases the four residual highest
peaks would produce a good overall agreement with the
hypothesis of being consistent with a noisy spectrum, fairly
comparable among the three spectra, in contrast with the
not uniform behavior throughout the same spectra (par-
ticularly in the second case) detected before while consid-
ering also the 9.4 line and its potential alias. As a
consistency check, the same exercise has been repeated
after subtracting from the time series data the presumed
modulation at 9.4 cycles/year, getting comparable results.
From the examination of the tables it stems that also the
absolute value of the residual highest peaks are very uni-
form throughout the three spectra, in contrast with the
observed behavior of the 9.4 line and of its potential alias.

Hence from the summary of the evaluations presented
here, based essentially on the indications of the alias
calculation and of the comparison with the model predict-
ing the increase of the ordinate of the line corresponding to
a true signal in the methods taking into account the errors,
the suggestive possibility emerges of a true periodicity at
TABLE III. Asymmetric likelihood: peak significance ignor-
ing the presumed signal at 9.4 cycles/year and its alias.

Ordinate Frequency Significance

6.44 26.98 5942 events out of 10 000
5.67 23.61 6021 events out of 10 000
4.89 8.30 7504 events out of 10 000
4.67 11.55 7252 events out of 10 000
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9.4 accompanied by an alias at 26.52, with the other peaks
being ‘‘well-behaving’’ noise peaks. Such a scenario, how-
ever cannot be pushed beyond a simple working hypothe-
sis, because the significance calculation does not support
this possibility, being in any case all the three original
spectra well consistent with the hypothesis of constant
rate. Furthermore, it must be stressed that the actual in-
crease of the ordinate of the 9.4 line in passing from the
first method to the second and third ones, is larger than the
average increase predicted by the model in the same tran-
sitions for a true signal line, which is evaluated to be about
5% in both cases, while in the data it amounts, respectively,
to 16% and 10%.
XII. ANALYSIS OF THE SK 5 DAY BINNED
DATASET: ASSESSMENT OF PEAKS

SIGNIFICANCE VIA COMPARISON WITH THE
MONTE CARLO NULL HYPOTHESIS

DISTRIBUTIONS

The characteristics of the 5 day binned dataset released
by the Super-Kamiokande collaboration are similar to
those of the 10 day case and therefore are not repeated
here. In this section we present, in total analogy with the
10 day case, the features of the null hypothesis distribu-
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tions and their comparison with the more prominent peaks
in the respective experimental spectra.

A. 5 day data lomb-scargle periodogram

The Lomb-Scargle periodogram of the 5 day binned SK
data is shown in Fig. 25, in the frequency range from 0 to
50 cycles/year.

The three highest peaks have ordinates, respectively,
6.48 (43.68), 6.46 (33.96) and 6.28 (39.22). The fourth
peak is that at the frequency of 9.42 with height equal to
5.71 (Here and in the following to each line should be
considered attributed an uncertainty of 0.09, as stemming
from the FWHM of the spectral lines). This last peak
essentially coincides with the line at 9.4 emerging from
the investigation of the 10 day data set, while the other
three did not play any role in the analysis of that dataset.
From a Monte Carlo similar to that used to derive the Fig. 5
we get the results reported in Fig. 26. In particular, it is
derived that the distribution of the highest peak is fit to the
model function with M � 639. The distributions of the
other three less amplitude peaks are somehow also de-
scribed by the same M value, even if individually they
would be better fit through a slightly different (lower) M
value. Essentially it is reproduced the same situation of the
Lomb-Scargle analysis of the 10 day dataset, with the null
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hypothesis distributions following reasonably well the
model functions.

Quantitatively, from the Monte Carlo histograms we get
that for the peak with ordinate 6.57 the significance is
59.7% (5972 entries above 6.57 out of 10 000 simulated
events), that for the peak with ordinate 6.55 the signifi-
cance is 21.6% (2161 entries above the 6.55 ordinate out of
10 000 simulated events), that for the peak with ordinate
6.37 the significance is 8.1% (810 entries above the 6.37
ordinate out of 10 000 simulated events), and that for the
peak with ordinate 5.79 the significance is 9.9% (989
entries above the 5.79 ordinate out of 10 000 simulated
events). So, in summary, the Lomb-Scargle periodogram of
the 5 day binned data is consistent with a noisy series with
no periodicity embedded. It is, thus, obtained the same
conclusion got while analyzing the 10 day dataset with the
same Lomb-Scargle methodology.

B. 5 day data weighted periodogram

The weighted periodogram of the 5 day binned SK data
is shown in Fig. 27, in the frequency range from 0 to
50 cycles/year.

Now the four highest peaks have ordinates, respectively,
10.844 (9.42), 9.28 (39.22), 8.82 (43.66) and 6.69 (48.35).
Three of them are already among the four highest also in
the previous spectrum, while that at 48.35 was not present
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in the previous. The line at 9.42, that before was the fourth
in term of height, is now the highest.

From a Monte Carlo similar to that used to derive the
Fig. 6 we get the results reported in Fig. 28. It can be seen,
as in the example of Fig. 6, that the Monte Carlo histo-
grams do not follow the model functions, reported in the
figure for the same value M � 639 derived above.
However, the tails of the four distributions are not much
difference from the respective model functions, and hence
are similar to the tails of the distributions pertinent to the
previous Lomb-Scargle case.

Clearly, all the four highest peaks lie on the tails of the
respective distributions; quantitatively, from the
Monte Carlo histograms we get that for the peak with
ordinate 10.844 the significance is 1.8% (186 entries above
10.844 out of 10 000 simulated events), that for the peak
with ordinate 9.28 the significance is 0.5% (54 entries
above the 9.28 ordinate out of 10000 simulated events),
that for the peak with ordinate 8.82 the significance is 0.1%
(9 entries above the 8.82 ordinate out of 10 000 simulated
events), and that for the peak with ordinate 6.69 the sig-
nificance is 1.8% (176 entries above the 6.69 ordinate out
of 10 000 simulated events). So, in summary, the weighted
periodogram of the 5 day binned data appears to be not
consistent with a noisy series with no periodicity
embedded.
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The indication got here is different from that obtained in
the similar case of the 10 day spectrum, the reason being
twofold: on one hand the four highest peaks exhibit an
increase more pronounced now, with respect to the 10 day
dataset, in passing from the Lomb-Scargle to the weighted
periodogram, and on the other the tails of the Monte Carlo
null hypothesis distribution change toward higher values
less of what happened in the 10 day analysis.

C. 5 day data likelihood spectrum with asymmetric
errors

The likelihood spectrum evaluated taking into account
the asymmetric errors of the 5 day binned SK data is shown
in Fig. 29 in the usual frequency range from 0 to 50 cycles/
year. The four highest ordinates are, respectively, 9.22
(9.42), 8.97 (39.22), 8.23 (43.66) and 6.55 (31.21), hence
the first three are the same of the previous spectrum. From
a Monte Carlo similar to that used to derive the Fig. 7 we
get the results reported in Fig. 30, which look significantly
different from those related to the weighted periodogram
case. It can be seen indeed that the Monte Carlo histograms
deviate from the model functions plotted for the same value
M � 639 inferred above, with, in particular, the tails note-
worthy enhanced.

Quantitatively, from the Monte Carlo null hypothesis
distributions we get that for the peak with ordinate 9.22
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the significance is 12.1% (1208 entries above 9.22 out of
10 000 simulated events), that for the peak with ordinate
8.97 the significance is 1.6% (155 entries above the 8.97
ordinate out of 10 000 simulated events), that for the peak
with ordinate 8.23 the significance is 0.8% (78 entries
above the 8.23 ordinate out of 10 000 simulated events),
and that for the peak with ordinate 6.55 the significance is
6.3% (632 entries above the 6.55 ordinate out of 10 000
simulated events).

So, in summary, what happens is that the trend toward
stronger significance values, observed in the weighted
periodogram case, is attenuated here because of the con-
current effect of the lower ordinates of the highest peaks
and of the increased tails of the null hypothesis
distributions.

From this fact it stems a controversial situation, since the
overall spectrum appears only barely compatible with the
constant rate hypothesis, mainly because of the significan-
ces of the second, third and fourth peak, while the signifi-
cance of the highest peak considered alone would be
consistent with the constant rate hypothesis. It must be
added that, as in the 10 day case, the asymmetric likelihood
spectrum is more similar to the weighted periodogram than
to the Lomb-Scargle periodogram, and that in both spectra
the highest peak is the 9.42 line, which on the other hand
was only the fourth, in term of height, in the Lomb-Scargle
case.
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XIII. ANALYSIS OF THE SK 5 DAY BINNED
DATASET: PREDICTION OF THE SPECTRUM

BEHAVIOUR IN PRESENCE OF A TRUE
PERIODICITY

Let us consider again the model (62) and check its
predictions related to the 5 day bin case. In Fig. 31 it is
reported, over the whole search band, the expected average
value of the spectral height distribution induced by a true
periodicity; the plots refer to an amplitude either of 0.05 or
0.07 and to the Lomb-Scargle and weighted periodogram
cases; few dots are added to show also the behavior of the
likelihood spectrum with asymmetric errors. The Nyquist
limit is signalled by the irregularity present on all the
curves; it can be noted, as in the 10 day case, the large
sensitivity to small variation of the signal amplitude, and
the significant increase for the same amplitude of the
average spectral response in passing from the first to the
second method. This last circumstance is different from
what observed in the 10 day case, where the same increase
was calculated to be more modest.

Regarding the alias, in Fig. 32 it is displayed the pre-
dicted alias location for a true periodicity at the frequency
of 9.42, plotted up to the extended range of 72 cycles/year:
a small alias peak is predicted at the frequency of 62.55,
implying that the effective Nyquist frequency is evaluated
to be �Nq� 9:42� � Nq � 62:55, so that Nq � �62:55�
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9:42�=2 � 35:985, very close to the nominal value of 36;
the alias is accompanied by an effect of power spread over
contiguous frequencies that in spectrum analysis is referred
as sidelobe leakage.

XIV. SYSTEMATIC UNCERTAINTIES IN THE
ERRORS HANDLING

Clearly in the above analysis a crucial role is played by
the measurements errors, since it is their inclusion that
produces different results with respect to those stemming
in the standard Lomb-Scargle method, where the errors are
simply ignored. It can thus be important to evaluate some-
how the systematic effect associated with the way in which
the errors are handled. A first indication of this systematic
uncertainty may be already considered the difference in the
significances of the highest spectral peaks between the
weighted periodogram and the asymmetric likelihood
methods.

A further indication of such a systematic phenomenon
can be obtained by applying again the analysis of the
asymmetric errors, but inverting the inequality signs in
the prescriptions associated with (22). Such an inversion
would mean that one considers the Gaussian curves de-
scribed by the errors as centered on the presumed values
instead on the measured values. Very interestingly, the
difference in the results in the significance calculation are
40 50 60 70
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true periodicity at 9.42 cycles/year

ulation with frequency equal to 9.42 cycles/year.
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striking; for the 5 day bin dataset one would obtain that the
four highest spectra peaks would be (as usual in paren-
thesis there is the frequency values) 13.17 (9.42), 10.02
(39.22), 9.85 (43.66) and 7.98 (48.35). From the
Monte Carlo analysis we would get that for the peak with
ordinate 13.17 the significance is 0.2% (21 entries above
13.17 out of 10 000 simulated events), that for the peak
with ordinate 10.02 the significance is 0.1% (8 entries
above the 10.02 ordinate out of 10 000 simulated events),
that for the peak with ordinate 9.85 the significance is
better than 0.01% (no entries above the 9.85 ordinate out
of 10 000 simulated events), and that for the peak with
ordinate 7.98 the significance is 0.1% (11 entries above the
7.98 ordinate out of 10 000 simulated events).

So, comparing these results with those obtained in the
previous sections it can be inferred that in all the evalu-
ations taking account the errors the first three highest peaks
are the same (the fourth being different), in particular, with
the 9.42 peak being always the highest, while the signifi-
cances can change drastically. While it is reassuring that
the same frequency is singled out in the analysis as the
most prominent, independently from the errors handling,
the large variability in the significance values implies that
the implicit assumption in the weighted periodogram
analysis that averaging the errors would not change much
the significance results is not true. It is thus appropriate to
give more credibility to the significance analysis of the
asymmetric likelihood method, in which the errors are
taken as they are; this is the attitude taken in the next
section, where a comprehensive data-model comparison
will be attempted.
XV. OVERALL COMPARISON OF THE MODEL
PREDICTIONS WITH THE DATA

It is presented here an overall interpretation of the
detected behavior of the 5 day SK spectra, in the light of
the results of Secs. XII, XIII, and XIV obtained with the
various methods of analysis, integrated also with the results
stemming from the investigation performed on the 10 day
dataset.

Prior to go ahead with such a discussion, let us point out
that the fit procedure associated with the different analyses
gives for the line at 9.42 a relative amplitude of 0:056

0:016 in the case of the Lomb-Scargle analysis, 0:066

0:014 in the framework of the weighted periodogran meth-
odology and 0:062
 0:015

0:014 for the likelihood with asym-
metric errors.

The evaluation of the potential effect thus is only slightly
larger than in the 10 day case, and compatible within the
uncertainties.

The summary of the comparison with the null hypothesis
distributions is the confirmation of the same tendency
present in the 10 day spectra: in the weighted periodogram
case a significant enhancement of the ordinates of the more
prominent peaks, contrasted by a modest modification of
103003
the tails of the Monte Carlo distributions with the conse-
quence of stronger significance values with respect to the
Lomb-Scargle case; in the asymmetric likelihood case a
less pronounced increase of the peaks ordinates, compared
with enhanced tails in the Monte Carlo distributions, lead-
ing to significances which are still stronger than the Lomb-
Scargle but less than the weighted periodogram case.
Furthermore, the peaks increase phenomenon is more pro-
nounced with respect to the 10 day dataset; as net effect,
the resulting weighted periodogram spectrum is in strong
disagreement with the hypothesis of constant rate (but we
know that in terms of significance the results of the
weighted periodogram method are questionable), while
the situation is more complex for the correct asymmetric
likelihood spectrum, for the highest peak alone would be
still compatible with a pure constant rate hypothesis, while
the multiple peak analysis would seem at odd with such a
conclusion.

In the comparison of the spectra with the predicted
spectral response reported in Fig. 31 it can be noted that,
as in the 10 day case, three of the four more prominent
peaks, those at frequency 39.22, 43.66 and 48.35 (31.21 in
the asymmetric case), fall beyond the Nyquist limit in a
region of decreased sensitivity of the spectral analysis,
while that at 9.42 is well within the region of maximum
sensitivity.

Focusing the attention to this line (which is the only
peak presents prominently both in the 5 day and 10 day
spectra) it must be noted the increase of its ordinate of
about 90% in passing from the Lomb-Scargle to the
weighted periodogram case, and of about 61% from the
Lomb-Scargle to the likelihood with asymmetric errors.
These numbers can be compared with the predicted aver-
age increase as inferred from the model, which is of the
order of 27% (a little less in the weighted periodogram case
and slightly more in the asymmetric likelihood configura-
tion). So, the model actually predicts an enhancement of
the ordinate of a spectral line corresponding to a true
periodicity, but much less than the amount observed in
the data. Qualitatively, this is the same situation observed
in the 10 day bin spectra, with the difference that here both
the model increase and the data increase are amplified;
similarly to the 10 day case, the data-model disagreement
is less pronounced in the asymmetric spectrum.

In any case, this 27% increase prediction in the spectral
ordinate corresponding to a true periodicity, together with
the small modification of the null hypothesis distributions
across the three methods (such a modification is more
evident in the third case), demonstrate that the 5 day data-
set is in principle more sensitive than the 10 day dataset in
unravelling real signals embedded in the time series, via
the comparison of the spectra computed through the three
approaches under consideration: indeed what is expected
on the basis of the model is an enhancement of the signal
line(s) above a pretty constant ‘‘floor’’ of noise peaks. In
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this framework, hence, the more marked progression to-
ward higher values of the 9.42 spectral ordinate in the 5 day
case with respect to the 10 day one, could be well consid-
ered the practical manifestation of such enhanced sensitiv-
ity. However, in the context of each dataset taken
separately, the quantitative disagreement between the de-
tected and expected increase of the height of the suspect
9.42 line is surely large.

For the sake of completeness it must be added that this
data-model inconsistency seems to be manifested also in
the ‘‘anomalous’’ increase of some low level lines. As said
above, actually the null hypothesis distributions exhibit a
tendency to feature longer tails in the second and especially
in the third methods, but to an amount that seems not
adequate to describe the enhancement of some low ampli-
tudes lines. An example is a line at 12.7, which passes from
an height of 2.74 to 4.86 in the transition from the Lomb-
Scargle to the weighted periodogram. So, its absolute value
is such that it does not emerge from the noise floor in
neither cases, but the percentage increase is anyhow
remarkable.

Another important aspect of the present discussion is,
obviously, the alias effect. In the 10 day spectrum the
analytical model showed that a true periodicity at 9.4
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should have been accompanied by an alias at 26.55, practi-
cally coincident with the line at 26.52 found in the spectra.
Now, in the 5 day spectra there is no more hint of this
second line, and so the prediction of the alias calculation
showed in Fig. 32 is very interesting, since even there the
line at 26.55 actually is no more present.

Regarding the small peak at 62.55, which on the other
hand is computed by the alias model as displayed in
Fig. 32, it could be useful to check if there is any hint of
it in the actual spectra. This is done in Fig. 33 and 34 where
there are the two alias predictions, in the expanded spectral
region between 60 and 65 cycles/year, for the Lomb-
Scargle periodogram (computed assuming for the line
9.42 the amplitude of 0.056 mentioned at the beginning
of this section) and for the weighted periodogram (com-
puted assuming an amplitude of 0.066). Overlapped to the
prediction, the respective spectra are displayed, too, in-
cluded in the second plot the asymmetric likelihood
spectrum.

From both figures it is inferred that the expected alias
effect is not a sharp peak but a bump. The expected average
value of such a bump is higher in Fig. 34 than in Fig. 33. In
the actual spectra it is observed in correspondence of the
alias bump two peaks somehow merged together; the
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merging is more pronounced in the latter figure (weighted
periodogram and asymmetric likelihood), and less evident
in the former (Lomb-Scargle periodogram).

Such a behavior is consistent with the presence of the
bump predicted by the alias model, in the sense that the two
peaks are likely to be two noise peaks, with the bump just
located to fill the valley between them, more in the latter
spectra and less in the former spectrum. Even if the effect is
small, the prediction of the model is very distinctive and
peculiar, and matches the feature of the experimental spec-
tra. Clearly, the simple comparison of the alias model with
the standard Lomb-Scargle spectrum alone would have not
given much insight in this phenomenon, while the succes-
sive comparison of the model with all the three spectra
proves to be the key to shed light on the likely presence of
the effect. In any case, as already pointed out in the 10 day
case, the consistency of the detected spectral behavior with
the alias prediction per se is not a proof of the presence of a
real signal, due to the noise correlation effects which can
emulate a similar behavior.

This consistency, on the other hand, could make sense in
the framework of a more general set of indications con-
currently pointing towards of the presence of a signal.

At this point putting together all the pieces of the puzzle,
the following summary can be done:
(a) th
e 9.42 line emerges clearly from the analysis of
both datasets;
(b) in
 the 10 day data this line is accompanied by an
alias line that disappears in the 5 day dataset; both
effects are in agreement with the prediction of the
alias calculations. Furthermore, a distinctive alias
bump is predicted by the model in the 5 day case,
which matches the observed spectral behavior;
(c) b
oth in the spectra related to the 10 and 5 day cases,
the 9.42 spectral ordinate increases from the first to
the second and third analysis methods, qualitative in
agreement with the model but quantitatively in dis-
agreement with it (the increase is more than
expected);
(d) th
e trend of the significance assessment values is
somehow puzzling; the situation in the 10 day case
referred in the previous Sec. XI can be succinctly
summarized reminding that the three original spec-
tra are consistent with the hypothesis of constant
rate, with some notes and caveats that are thor-
oughly described at the end of that section.
On the other hand, for the 5 day dataset there is
a distinctive difference considering either the sig-
nificance of the 9.42 line alone or the multiple
peaks significance assessment. The 9.42 line is the
highest both in the second and third method, but
with large difference in the significance value: in the
weighted periodogram approach with the crude er-
rors averaging the significance is as strong as 1.8%,
while it is only about 12.1% in the likelihood with
the correct treatment of the asymmetric errors.
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Hence in this framework the significance of the
highest peak in the method which treats the errors
correctly is a clear indication in favor of the con-
sistency with the constant rate hypothesis. On the
contrary, the concurrent assessment of the signifi-
cance of the highest peaks, in both cases, does not
provide further support to the constant rate hypothe-
sis because of the low significance values, especially
of the second and third peak in the likelihood
spectrum.
Thus the plurality of evaluations listed in the above
points a), b), c) and d), stemming from the calculations
of the model for the time series spectral analysis described
in the first part of this work, depicts a controversial sce-
nario: the significance of the highest spectral peak in the
correct asymmetric spectrum is such that the constant rate
hypothesis cannot be excluded, but the other indications
(multiple peaks significance assessment, alias, increase of
the 9.42 spectral ordinate from the Lomb-Scargle method
to the methods including the errors) do not seem in line
with this conclusion. However, two of these potential
counter-indications have to be considered with some
care, for the alias can be mimicked also by the correlation
of noise peaks and the ordinate increase of the 9.42 line is
not in agreement with the model prediction.

Hence, the strongest counter-indication of the constant
rate hypothesis appears to be the multiple peaks signifi-
cance assessment. To shed further light on this point, it can
be attempted the same exercise tried in the 10 day case, i.e.
the highest 9.42 peak is ignored and the significance of the
remaining peaks re-evaluated. In such a way it is obtained
that the three highest remaining peaks at frequencies 39.22,
43.66 and 48.35 (31.21 in the asymmetric likelihood)
feature, respectively, the significance values of 7.6%,
1.04% and 6.8% in the weighted periodogram spectrum,
and 14.6%, 4.4% and 16.4% in the likelihood with asym-
metric errors. It is, therefore, interesting to note that,
ignoring the highest peak, the three prominent peaks left
over would produce significance values that, in the case of
the correct asymmetric likelihood, can be considered in
agreement with the hypothesis of consistency with a pure
noisy spectrum.

For the sake of completeness, it must be added that the
peaks at 39.22 and 43.66, whose ordinates as that of
the 9.42 line increases substantially in the second and
third method if compared with the Lomb-Scargle case,
appear also in the 10 day case, even though with reduced
height.

In summary, the significance of the highest peak at
9.42 cycles/year in the correct asymmetric likelihood spec-
trum would lead to conclude that the consistency of the SK
data with the constant rate hypothesis cannot be excluded,
but the other contradictory indications which do not fully
support such consistency point towards the desirability of
further investigations of the same dataset through the ex-
ploitation of different analysis techniques.
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As conclusive remark of this section it should be added
that the plausible data-model inconsistency that has been
detected means that presumably we are scanning the data
with an inappropriate ‘‘instrument’’, i.e. the Gaussian as-
sumption. Recently a number of evaluation of time series
behavior in the presence of non Gaussian tailed noise has
been published, see for example [21], showing that devia-
tions from Gaussianity have significant impacts on the
spectrum statistical properties. Since in [1] it is explained
that the data uncertainties have been estimated by asym-
metric Gaussian approximation of the unbinned maximum
likelihood fit to the cos�sun distributions, the investigation
of the precise errors tail shape and of its effect in the
analysis could be a clue towards the understanding of the
model-data disagreement.
XVI. DETECTION EFFICIENCY

It can be useful to conclude this work with a digression
on the detection efficiency implied by a sampling scheme
and errors like that featured by the 5 day binned SK data.
Such a discussion explains also quantitatively why an
effect in the 5–7% range is difficult to catch.

It is well known that the signal-to-noise discrimination
in repeated experiments is usually quantified with the
probability of false alarm and the corresponding probabil-
ity of detecting a signal if actually present, i.e. given the
noise distribution a threshold is defined which ensures the
desired false alarm level, and consequently the integral
above that threshold of the signal induced distribution
gives the respective detection probability. This procedure
is of special use in real time laboratory experiments, when
the threshold is set through a discriminator so to allow the
acquisition only of the signals of interest; indeed having
defined a priori via a calibration the threshold level corre-
sponding typically to a few percent of false alarm value, the
experimentalist knows how pure the acquired sample of
events is. This way of presenting things is clearly not the
best when you have only one event to judge. In the present
case the single event is the spectrum of the process, on
which it would be very limiting to perform only a yes/no
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periodogram methods corresponding to different oscillation amplitu
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decision inference: what it seems more appropriate, in-
stead, is to perform on it a plurality of investigations, as
shown in the previous sections.

Despite this caveat, it is of some interest, also for the
purpose of comparison with published results, to imagine
the experiment repeated many times and calculate the
expected detection efficiencies for a prescribed false alarm
level. The ingredients to perform such an evaluation are the
actual noise and signal distributions. Since we are dealing
with an hypothetical, standardized yes/no procedure, the
signal-to-noise comparison can be only the simple,
straightforward comparison with the highest noise spectral
peak distribution.

It must be kept in mind that the scenario is much differ-
ent if we are searching for a signal at a predefined fre-
quency or if we perform a blind scan over a search band.
The former case, assuming a modulation at the example
frequency of 5 cycles/year, is depicted in Fig. 35: the
distribution of the noise as thoroughly explained in
Sec. VII is a simple exponential curve, while the distribu-
tion related to the signal is the non central chi square
distribution (62), that is reported in the figure for the three
relative amplitudes of 0.05, 0.1 and 0.15, both for the
Lomb-Scargle (solid lines) and weighted periodogram
(dotted lines) methodologies (the Monte Carlo curves for
the likelihood with asymmetric errors are not reported
since they differ only slightly from those stemming from
the application of the weighted periodogram).

Since the curves related to the weighted periodogram
approach are systematically shifted towards higher values
with respect to those pertaining to the application of the
standard Lomb-Scargle periodogram, while the noise is
exponential distributed for both cases, it stems that the
degree of overlap of the noise and signal distributions is
higher in the latter case than in the former; this fact implies
that the weighted periodogram methodology features an
higher detection efficiency than the Lomb-Scargle method.

The more interesting occurrence is, however, that in
which the frequency of the signal is unknown and hence
the spectrum scanned over a search band. The Fig. 35 must
be accordingly modified, in the sense that now the noise
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distribution to be considered is the amplitude distribution
of the largest noise spectral peak, as extensively deter-
mined via the previous Monte Carlo evaluations. The
situation is, however, somehow qualitatively similar be-
cause the Monte Carlo showed that the largest peak distri-
bution do not differ much among the various analysis
methods. For illustrative purpose, in Fig. 36 the single
frequency noise exponential distribution has been replaced
with the largest spectral noise peak distribution of Fig. 28,
evaluated for the weighted periodogram case: clearly the
noise distribution, being shifted toward higher values, now
hinders severely the detection of small amplitude
oscillations.

The plot of Fig. 36 can be transformed into an expressive
series of isosensitivity contours on a frequency-amplitude
plane. For this purpose one sets the maximum acceptable
false alarm probability, for example, 98%, and from the
Monte Carlo noise distribution derives the corresponding
threshold (vertical line in the figure). The integral above
this limit of the signal distribution corresponding to a
certain signal amplitude and frequency gives the relevant
detection efficiency at the predefined false alarm probabil-
ity level. Repeating many times such a computation it is
possible to construct the isosensitivity contours shown in
Fig. 37 and 38.
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The contours in the figures represent the loci on the
amplitude frequency plane that correspond to the 95%,
80% and 50% detection efficiency, for the given false
alarm probability of 98%. Those in Fig. 37 are related to
the application of the standard Lomb-Scargle periodogram,
while those in Fig. 38 result from the use of the weighted
periodogram; in this latter plot few dots have been added to
check the sensitivity also of the asymmetric likelihood
method: the dots are shifted slightly above the correspond-
ing continuous curves, indicating a modest sensitivity re-
duction in the asymmetric spectrum case.

By comparing the two figures it can be inferred that the
increase of sensitivity in passing from the former to the
latter method is of the order of 12%: for example while the
sensitivity contour of the Lomb-Scargle method, for the
95% detection efficiency and at low frequency, corre-
sponds to an amplitude of oscillation of 10%, the sensitiv-
ity contour for the weighted periodogram for the same
detection efficiency at low frequency corresponds to an
amplitude of 8.8%. The two figures also demonstrate that
the increase of sensitivity from the former to the latter
method is systematic over the whole frequency range.

It must be pointed out that the 95% sensitivity contour
for the 98% false alarm probability and for the Lomb-
Scargle method was also computed by the Super-
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Kamiokande collaboration in [1]. The contour they re-
ported in the Fig. 7 of that reference, apart a display
difference due to the difference choice of the variable on
the x axis (period instead of frequency), coincides well
with the corresponding contour reported here in the Fig. 37.

As final remark it should be added that from the sensi-
tivity contours curves it can be inferred that a 7% oscil-
lation would be detected, according to the 98% false alarm
probability threshold, about 50% of the times in a sequence
of hypothetical repeated experiments, if using the weighted
periodogram as analysis method; clearly, keeping in mind
the discussion of Sec. XV, this prediction is error model
dependent (as it stands, it is valid for Gaussian errors) and
may thus change accordingly.
XVII. SUMMARY

In summary this work is constituted by two main parts.
The first part is focused to a very thorough review of the

analysis methods present in the literature for the periodo-
gramlike spectral analysis of time series. While doing this
review it has been pointed out the intimate relationship
between the standard Lomb-Scargle methodology and the
more general likelihood approach, of which the Lomb-
Scargle periodogram is simply the special case in which
the errors are not considered. It has been also illustrated
how the likelihood method allows to take into account the
errors, even if asymmetric and without a prior averaging.

This first part includes also a deep illustration of the
spectrum statistical properties, both in the null hypothesis
and in the case of a true periodicity embedded in the series:
two important points in this context are the introduction of
a model describing the probability density functions for all
the subsequent spectral peaks, and not only for the highest
as usually done in the literature, and the description of the
model giving the probability density function of the spec-
trum ordinate corresponding to a true periodicity, which
103003
can be also powerfully used to predict the associated alias
effects. The first part is concluded with some validation
examples, including careful comparisons of the above
models with Monte Carlo calculations.

The second part of this work is devoted to apply the
mathematical tools shaped in the first part to the Super-
Kamiokande solar neutrino time series data, both the
10 day and 5 day binned datasets. Succinctly, what stems
from the calculation is the following: the standard Lomb-
Scargle methodology, which is a subset of the previous
model using only a part of its statistical capabilities, does
not reveal hints of periodicity embedded in the data, in
agreement with the Super-Kamiokande analysis. On the
other hand, the inclusion in the analysis of all the statistical
tools of the model, i.e. errors both in the symmetric or
asymmetric form, multiple peaks significance assessment
and alias prediction, delineates a more complex picture in
which a line at 9.42 cycles/year (a periodicity thus of
almost 39 days, already pointed out in the various analyses
of Sturrock and collaborators) emerges in the spectrum
with an individual significance which cannot exclude the
constant rate hypothesis, but accompanied by other indi-
cators that do not fully endorse such a conclusion.
Therefore, in order to shed further light on the features of
the SK time series data, and, in particular, on the men-
tioned discrepancy, more independent analyses of the same
dataset would be desirable, possibly carried out exploiting
alternative investigation techniques.
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